Selivanovski hard sets are hard

by

Janusz Pawlikowski (Wrocław)

Abstract. Let $H \subseteq Z \subseteq 2^{\omega}$. For $n \geq 2$, we prove that if Selivanovski measurable functions from 2^{ω} to Z give as preimages of H all Σ_n^1 subsets of 2^{ω} , then so do continuous injections.

Let $H \subseteq Z$ be subsets of the Cantor space $\mathcal{C} = 2^{\omega}$. Say that (H, Z) is Σ_n^1 -hard if for any Σ_n^1 set $Q \subseteq \mathcal{C}$ there is a continuous function $f: \mathcal{C} \to Z$ with $Q = f^{-1}[H]$.

Kechris [1] proved (¹) that using here Borel rather than continuous functions we get the same family of pairs. For $n \ge 2$ Sabok [4] improved this by replacing Borel functions with functions such that preimages of all sets from the canonical subbasis of \mathcal{C} are in $\Sigma_1^1 \cup \Pi_1^1$.

We show for $n \geq 2$ that by changing in the definition of Σ_n^1 -hardness "continuous" to "Selivanovski measurable" we do not get more pairs, and by changing "continuous" to "continuous injective" we do not get fewer pairs.

Recall that a function is *Selivanovski measurable* if preimages of open sets belong to the σ -field of Selivanovski sets (also called C-sets), which is the least σ -field that contains all Borel sets and is closed under the Suslin operation.

Kechris and Sabok use effective descriptive set theory, and Kechris asked about a classical proof of his theorem. Our proof is classical and can be adapted to give Kechris's theorem (see [3] for a direct classical proof of Kechris's theorem).

THEOREM. Let $n \geq 2$ and $H \subseteq Z \subseteq C$. If Selivanovski measurable functions from C to Z give as preimages of H all Σ_n^1 subsets of 2^{ω} , then so do continuous injections.

(¹) Kechris formulated his result for n = 1, but his proof works for any $n \ge 1$.

[17]

²⁰¹⁰ Mathematics Subject Classification: Primary 03E15; Secondary 54H05.

Key words and phrases: Selivanovski sets, continuous reduction, projective sets.

Note that since for any separable metrizable space S there exists a Borel injection $e: \mathcal{C} \to S$ whose inverse is continuous (e.g., $e(s)(i) = 1 \Leftrightarrow s \in O_i$, where $\{O_i\}_{i \in \omega}$ is a basis of S), and e can be chosen to be continuous if S is zero-dimensional, we can change in the Theorem the range space Z to any separable metrizable space and the domain space \mathcal{C} to any zero-dimensional uncountable Polish space.

Note also that the Theorem cannot be extended to n = 1: pick distinct points z_0 and z_1 in \mathcal{C} and let $Z = \{z_0, z_1\}$; if $Q \subseteq \mathcal{C}$ is Σ_1^1 , then the map sending Q to z_0 and $\mathcal{C} \smallsetminus Q$ to z_1 is Selivanovski measurable; however, no non-clopen $Q \subseteq \mathcal{C}$ is a continuous preimage of $H = \{z_0\}$.

1. Spaces, pointclasses, functions. All our spaces are separable and metrizable; let X, Y, and Z range over such spaces. We identify the Baire space $\mathcal{N} = \omega^{\omega}$ with

$$\{x \in \mathcal{C} \colon \forall i \; \exists j > i \; x(j) = 1\}.$$

For $Q \subseteq X \times Y$, $f: X \times Y \to Z$, and $x \in X$, define the sections $Q_x \subseteq Y$ and $f_x: Y \to Z$ by $y \in Q_x \Leftrightarrow (x, y) \in Q$ and $f_x(y) = f(x, y)$.

A pointclass is a map Φ that assigns to any space X a family $\Phi_X = \Phi(X)$ of subsets of X; we often drop X if context permits. Let $\Phi_{XY} = \Phi(X, Y)$ be the family of all Φ measurable functions from X to Y, i.e., functions such that preimages of open subsets of Y are in $\Phi(X)$.

Let \mathcal{B} and \mathcal{S} be the pointclasses of Borel and Selivanovski sets. Selivanovski sets have the Baire property, and thus Selivanovski measurable functions are Baire measurable.

We shall also use the pointclases Σ_n^1 , Π_n^1 , and Δ_n^1 , $n \ge 1$. For an arbitrary space X, the families $\Sigma_n^1(X)$, $\Pi_n^1(X)$, and $\Delta_n^1(X)$ are defined in the same way as for a Polish space (see [2, 25.A]): the $\Pi_n^1(X)$ sets are the complements of $\Sigma_n^1(X)$ sets, and the $\Sigma_n^1(X)$ sets are the projections of $\Pi_{n-1}^1(X \times \mathcal{N})$ sets, if n > 1, and of closed subsets of $X \times \mathcal{N}$, if n = 1; also, $\Delta_n^1(X) = \Sigma_n^1(X) \cap \Pi_n^1(X)$.

We have

$$\mathbf{\mathcal{B}}(X) \subseteq \mathbf{\Delta}_1^1(X) \subseteq \mathbf{\mathcal{S}}(X) \subseteq \mathbf{\Delta}_2^1(X);$$

if X is an uncountable Polish space, then the first inclusion is improper, and the next two are proper (see [2]; for $\mathbf{S} \neq \mathbf{\Delta}_2^1$ see Section 4).

LEMMA 1. Let $\Phi \in \{\mathcal{B}, \mathcal{S}, \Sigma_n^1, \Pi_n^1, \Delta_n^1\}$.

(1) If
$$X \subseteq X'$$
, then:
(a) $Q' \in \Phi_{X'} \Rightarrow X \cap Q' \in \Phi_X$,
(b) $Q \in \Phi_X \Rightarrow \exists Q' \in \Phi_{X'} \ Q = X \cap Q'$, if $\Phi \neq \Delta_n^1$,
(c) $Q \in \Phi_X \land X \in \Phi_{X'} \Rightarrow Q \in \Phi_{X'}$.

- (2) If Y is Σ_n^1 in a Polish space, then projections along Y of Σ_n^1 subsets of $X \times Y$ are $\Sigma_n^1(X)$.
- (3) Φ is closed under countable unions, countable intersections, and sections. The class of Φ measurable functions is closed under sections.
- (4) If $f_0: X_0 \to Y_0$ and $f_1: X_1 \to Y_1$ are Φ measurable, then the Cartesian product function $(x_0, x_1) \mapsto (f_0(x_0), f_1(x_1))$ is Φ measurable.
- (5) A function is Φ measurable iff preimages of closed sets are Φ sets. For any function, the notions of Σ_n^1 , Π_n^1 , and Δ_n^1 measurability coincide.
- (6) The graph of a Φ measurable function is a Φ set.
- (7) Preimages of Φ sets under Φ measurable functions are Φ sets.
- (8) If the domain of a Δ_n^1 measurable function is Σ_n^1 in a Polish space, then images of Σ_n^1 sets are Σ_n^1 sets.
- (9) If Y is Σ_n^1 in a Polish space and the graph of $f: X \to Y$ is Σ_n^1 , then $f \in \mathbf{\Delta}_n^1(X, Y)$.

Proof. (4) The open subsets of $Y_0 \times Y_1$ are the countable unions of products $V_0 \times V_1$, with V_0 and V_1 open; the preimage of $V_0 \times V_1$ is $f_0^{-1}(V_0) \times f_1^{-1}(V_1) \in \Phi_{X_0 \times X_1}$.

(5) Closed sets are G_{δ} , and open sets are F_{σ} .

(6) If $f \in \Phi_{XY}$, then graph f is the preimage of the diagonal of Y^2 under the Φ measurable function $(x, y) \mapsto (f(x), y)$.

(7) We give a proof for $\Phi = \Sigma_n^1$. Embed Y into a Polish space Y'; given any $Q \in \Sigma_n^1(Y)$, get $Q' \in \Sigma_n^1(Y')$ with $Q' \cap Y = Q$; then

$$f^{-1}(Q) = \{ x \in X \colon \exists y \in Y' \ y \in Q' \land f(x) = y \}$$

is the projection along Y' of the intersection of $\Sigma_n^1(X \times Y')$ sets: $X \times Q'$ and graph f.

- (8) For $Q \subseteq X$, f(Q) is the projection of $(Q \times Y) \cap \operatorname{graph} f$ along X.
- (9) For $Q \subseteq Y$, $f^{-1}(Q)$ is the projection of $(X \times Q) \cap \operatorname{graph} f$ along Y.

Denote by $\mathcal{P}(X)$ the family of all Cantor (i.e., homeomorphic to \mathcal{C}) subsets of X endowed with the Vietoris topology. Note that if G is G_{δ} in X then $\mathcal{P}(G)$ is G_{δ} in $\mathcal{P}(X)$. Also, if X is a perfect Polish space, then so is $\mathcal{P}(X)$, and if G is comeager in such an X, then $\mathcal{P}(G)$ is comeager in $\mathcal{P}(X)$.

Recall that if $g: X \to Y$ is Baire measurable, then there is a comeager set $G \subseteq X$ such that g|G is continuous. So, if X is a perfect Polish space, then g is continuous on comeagerly many $p \in \mathcal{P}(X)$ (on any $p \in \mathcal{P}(G)$). Equivalently, if sets $Q^n \subseteq X$, $n \in \omega$, have the Baire property, then there is a comeager set $G \subseteq X$ such that the sets $G \cap Q^n$, $n \in \omega$, are clopen in G. So, if X is a perfect Polish space, then for comeagerly many $p \in \mathcal{P}(X)$, the sets $p \cap Q^n$, $n \in \omega$, are clopen in p.

J. Pawlikowski

Let $\mathcal{P} = \mathcal{P}(\mathcal{C})$, and let $\pi: \mathcal{P} \times \mathcal{C} \to \mathcal{C}$ be a continuous function such that each section $\pi_p, p \in \mathcal{P}$, is a homeomorphism from \mathcal{C} onto p (e.g., let π_p be induced by the unique bijection from $2^{<\omega}$ onto the split nodes of the tree $\{s|l: s \in p, l \in \omega\}$ which preserves the lexicographic ordering).

For $z \in \mathcal{C}$, define $z^* \in \mathcal{C}$ by $z^*(i) = z(2i)$, and write

$$\mathcal{C}_x = \{ z \in \mathcal{C} \colon z^* = x \}, \ \mathcal{P}_x = \mathcal{P}(\mathcal{C}_x), \ x \in \mathcal{C}.$$

Fix also a list $\{I_n\}_{n\in\omega}$ all of clopen subsets of \mathcal{C} , with $I_0 = \emptyset$.

Finally, the main notion: if
$$n \ge 1$$
 and $H \subseteq Z \subseteq C$, we say that (H, Z) is

- Σ_n^1 -hard if $\forall Q \in \Sigma_n^1(\mathcal{C}) \exists$ continuous $f \colon \mathcal{C} \to Z$ with $Q = f^{-1}[H]$,
- $S\Sigma_n^1$ -hard if $\forall Q \in \Sigma_n^1(\mathcal{C}) \exists$ Selivanovski measurable $f : \mathcal{C} \to Z$ with $Q = f^{-1}[H]$.

2. Injections. We first show how hardness can be realized via injections.

LEMMA 2. Suppose that (H, Z) is Σ_n^1 -hard for some $n \ge 1$. Then any Σ_n^1 subset of C can be obtained as the preimage of H under a continuous injection from C into Z.

Proof. Define $c: \mathcal{N} \times \mathcal{C} \to \mathcal{C}$ by

$$c(s,y)(i) = 1 \iff y \in I_{s(i)}.$$

Then c is continuous, and $\{c_s\}_{s\in\mathcal{N}}$ is the family of all continuous functions from \mathcal{C} to \mathcal{C} .

CLAIM. $\exists \mathfrak{p} \in \mathfrak{B}_{\mathcal{NP}} \ \forall s \in \mathcal{N} \ \mathfrak{p}(s) \subseteq \mathcal{C}_s \land c_s | \mathfrak{p}(s) \ is \ injective \ or \ constant.$ Proof of Claim. Let

 $Q = \{(s, p) \in \mathcal{N} \times \mathcal{P} \colon p \subseteq \mathcal{C}_s \wedge c_s | p \text{ is injective or constant} \}.$

We claim that (1) Q is G_{δ} , and (2) $\forall s \in \mathcal{N} Q_s$ is nonmeager in \mathcal{P}_s . Once this is established, we can use the uniformization theorem for Borel sets with "large sections" [2, 18.6] to get the desired \mathfrak{p} .

(1) Consider in $\mathcal{N} \times \mathcal{C}^2$ the open set ∇ and the closed set Δ defined by

$$\nabla = \{ (s, y_0, y_1) \in \mathcal{N} \times \mathcal{C}^2 : c_s(y_0) \neq c_s(y_1) \}, \\ \Delta = \{ (s, y_0, y_1) \in \mathcal{N} \times \mathcal{C}^2 : y_0 = y_1 \}.$$

Note that $(s, p) \in Q$ iff $p \subseteq \mathcal{C}_s$ and

$$\{s\} \times p^2 \subseteq \nabla \cup \Delta \ \lor \ \{s\} \times p^2 \subseteq (\mathcal{N} \times \mathcal{C}^2) \smallsetminus \nabla.$$

Now, " $p \subseteq C_s$ " defines a closed set in $\mathcal{N} \times \mathcal{P}$. The displayed line defines, in turn, a G_δ set: the map $(s, p) \mapsto \{s\} \times p^2$ is continuous, and the set

$$\mathcal{P}(\nabla \cup \Delta) \cup \mathcal{P}((\mathcal{N} \times \mathcal{C}^2) \smallsetminus \nabla)$$

is G_{δ} in $\mathcal{P}(\mathcal{N} \times \mathcal{C}^2)$ because the sets $\nabla \cup \Delta$ and $(\mathcal{N} \times \mathcal{C}^2) \setminus \nabla$ are G_{δ} in $\mathcal{N} \times \mathcal{C}^2$.

(2) Fix $s \in \mathcal{N}$. Either c_s is constant on a nonempty open set $U \subseteq \mathcal{C}_s$ then $\mathcal{P}(U)$ is nonempty open in \mathcal{P}_s , and $p^2 \subseteq \mathcal{C}^2 \smallsetminus \nabla_s$ for $p \in \mathcal{P}(U)$; or else $\mathcal{C}_s^2 \cap \nabla_s$ is dense open in \mathcal{C}_s^2 —then there are comeagerly many $p \in \mathcal{P}_s$ with $p^2 \subseteq \nabla_s \cup \Delta_s$ by the Kuratowski–Mycielski theorem [2, 19.1]. \bullet_{Claim}

Now, consider the following Borel injection from $\mathcal{N} \times \mathcal{C}$ into \mathcal{C} :

$$h(s, y) = \pi(\mathfrak{p}(s), y).$$

If $Q \in \Sigma_n^1(\mathcal{C})$, then $h[\mathcal{N} \times Q] \in \Sigma_n^1(\mathcal{C})$. As (H, Z) is Σ_n^1 -hard, for some continuous $f: \mathcal{C} \to Z$,

$$h[\mathcal{C} \times Q] = f^{-1}[H].$$

Hence, since h is injective,

$$\mathcal{C} \times Q = h^{-1}[f^{-1}[H]].$$

Pick s with $f = c_s$. Then

$$Q = h_s^{-1}[c_s^{-1}[H]] = (c_s h_s)^{-1}[H].$$

But $c_s h_s$ is injective or constant, as h_s is a bijection onto $\mathfrak{p}(s)$, and $c_s |\mathfrak{p}(s)$ is injective or constant.

If $c_s h_s$ is injective, we are done. Otherwise, it must be the case that $Q \in \{\mathcal{C}, \varnothing\}$. Then there is also a continuous injective $g: \mathcal{C} \to Z$ with $Q = g^{-1}[H]$ since both H and $Z \smallsetminus H$ contain copies of \mathcal{C} (²).

3. Suslin operation. For any set Λ , a set $T \subseteq \Lambda^{<\omega}$ is a tree if it is closed under initial segments. A tree T is *well-founded* if $\neg \exists t \in \Lambda^{\omega} \ \forall l \in \omega \ t | l \in T$.

Henceforth let $A = \omega^{<\omega}$, and let \mathcal{E} be the set of all nonempty well-founded subtrees of $A^{<\omega}$. Identifying $\mathsf{Pow}(A^{<\omega})$ with \mathcal{C} , we view \mathcal{E} as a $\mathbf{\Pi}_1^1$ subset of \mathcal{C} .

In the following:

- $\circ \langle \dagger \rangle$ is the one-term sequence consisting of \dagger ;
- $\circ i \in \omega;$
- $\circ \ \sigma,\varsigma,\tau\in A; \ \theta,\vartheta\in A^{<\omega};$

 \emptyset , resp. \emptyset , is the empty sequence in A, resp. $A^{<\omega}$;

- for $\theta \neq \emptyset$, last θ = the last term of θ ;
- $\varsigma \hat{\sigma}$ and $\vartheta \hat{\theta}$ denote the concatenations of the respective sequences; but $\sigma \hat{i} = \sigma \hat{\langle} i \rangle$ and $\vartheta \hat{\sigma} = \vartheta \hat{\langle} \sigma \rangle$; so last $\vartheta \hat{\vartheta} = \mathsf{last} \vartheta$ and last $\vartheta \hat{\sigma} = \varphi$;
- $\circ \ \varepsilon \in \mathcal{E}; \ \theta \hat{\ } \varepsilon = \{\theta \hat{\ } \vartheta \colon \vartheta \in \varepsilon\}; \ \varepsilon_{\theta} = \{\vartheta \colon \theta \hat{\ } \vartheta \in \varepsilon\};$
- $\circ \ s,t \in \mathcal{N}; \ s \leq t \ \text{iff} \ \forall l \ s(l) \leq t(l).$

^{(&}lt;sup>2</sup>) Fix $G \in G_{\delta}(\mathcal{C}) \smallsetminus F_{\sigma}(\mathcal{C})$. Let $g \colon \mathcal{C} \to Z$ be continuous with $G = g^{-1}[H]$. Then g[G] is uncountable, as otherwise $G = g^{-1}[g[G]]$ would be F_{σ} . Being an uncountable Σ_1^1 set, g[G] contains a copy of \mathcal{C} . The same argument works for g with $Q = g^{-1}[Z \smallsetminus H]$.

We use the symbol (³) \bigwedge for the Suslin operation: given sets $\{Q^{\sigma}\}_{\sigma \in A}$,

$$\bigwedge_{\sigma} Q^{\sigma} = \bigcup_{s} \bigcap_{\sigma \subseteq s} Q^{\sigma}$$

Note that if a family $\mathcal{F} \subseteq \mathsf{Pow}(X)$ is closed under the operation $X \smallsetminus A_{\sigma} Q^{\sigma}$, then \mathcal{F} is a σ -field closed under the Suslin operation; so, if \mathcal{F} also contains a basis of X, then $\mathcal{F} \supseteq \mathbf{S}_X$.

LEMMA 3. Suppose that X is compact and $\{Q^{\sigma}\}_{\sigma \in A} \subseteq \mathsf{Pow}(X)$. If each $A_{\tau} Q^{\sigma \hat{\tau}}, \sigma \in A$, is clopen, then there exists $t \in \mathcal{N}$ such that

$$\bigwedge_{\sigma} Q^{\sigma} = \bigcup_{s \le t} \bigcap_{\sigma \subseteq s} Q^{\sigma}.$$

Proof. Let $\tilde{Q}^{\sigma} = A_{\tau} Q^{\sigma \tau}$. Note that $\tilde{Q}^{\varnothing} = A_{\sigma} Q^{\sigma}$, and for each σ ,

$$\tilde{Q}^{\sigma} = \bigcup_{i \in \omega} \tilde{Q}^{\sigma^{\hat{i}}}.$$

Since the tilded sets above are compact and clopen, there exist $k_{\sigma} \in \omega$ such that if $k \geq k_{\sigma}$ and if " $i \in \omega$ " is changed to " $i \leq k$ ", then the equality is preserved. It follows that $t \in \mathcal{N}$ given by

$$t(\ell) = \max\{k_{\sigma} \colon |\sigma| = \ell \land \forall l < \ell \ \sigma(l) \le t(l)\}$$

works.

4. Coding. We construct a Δ_2^1 measurable function that is universal for $S_{\mathcal{CC}}$. Define $U_{\varepsilon}^{\theta} \subseteq \mathcal{C}$ by

$$U_{\varepsilon}^{\theta} = \begin{cases} I_{||\mathsf{last}\,\theta|}, & \theta \notin \varepsilon, \\ \mathcal{C} \smallsetminus A_{\sigma} U_{\varepsilon}^{\theta^{\uparrow}\sigma}, & \theta \in \varepsilon, \end{cases}$$

and then define $u \colon \mathcal{E} \times \mathcal{C} \to \mathcal{C}$ by

$$u(\varepsilon, x)(i) = 1 \iff x \in U_{\varepsilon}^{\langle\!\langle i \rangle\!\rangle}.$$

LEMMA 4. $u \in \mathbf{\Delta}_2^1(\mathcal{E} \times \mathcal{C}, \mathcal{C})$ and $\{u_{\varepsilon}\}_{\varepsilon \in \mathcal{E}} = \mathbf{S}_{\mathcal{CC}}$.

Proof. For the first part it is enough to see that $x \in U^{\theta}_{\varepsilon}$ is Δ^{1}_{2} . We have

$$x \in U^{\theta}_{\varepsilon} \iff \exists d \subseteq \varepsilon \ \varphi \land \theta \in d \iff \forall d \subseteq \varepsilon \ \varphi \Rightarrow \theta \in d,$$

where φ is

$$\forall \theta \ \big((\theta \notin \varepsilon \Rightarrow x \in I_{|\mathsf{last}\,\theta|}) \land (\theta \in \varepsilon \Rightarrow \neg \exists s \ \forall \sigma \subseteq s \ \theta \hat{\ } \sigma \in d) \big).$$

For the second part it is enough to see that $\{U_{\varepsilon}^{\theta}\}_{\varepsilon\in\mathcal{E}} = \mathbf{S}_{\mathcal{C}}$ whenever $\theta = \langle\langle i \rangle\rangle$. In fact, this is true for any θ .

 $[\]begin{array}{l} \label{eq:linear} \end{tabular} \label{linear} \end{tabular} \label{linear} \end{tabular} \end{tabular} \label{linear} \end{tabular} \$

The \subseteq inclusion is clear. To see the \supseteq inclusion note first that $U_{\varepsilon}^{\theta^{\gamma}\vartheta} = U_{\varepsilon_{\theta}}^{\vartheta}$ for all θ and ϑ . Also, for any θ and any $\{\varepsilon^{\sigma}\}_{\sigma\in A}$, if

$$\varepsilon = \{\theta | l \colon l \le |\theta|\} \cup \bigcup_{\sigma} (\theta^{\hat{\sigma}} \sigma)^{\hat{c}} \varepsilon^{\sigma},$$

then

$$U_{\varepsilon}^{\theta} = \mathcal{C} \smallsetminus \bigwedge_{\sigma} U_{\varepsilon^{\sigma}}^{\theta}.$$

It follows that $\{U_{\varepsilon}^{\theta}\}_{\varepsilon\in\mathcal{E}}$ is a σ -field closed under the Suslin operation.

We still need to see that $\{U_{\varepsilon}^{\theta}\}_{\varepsilon\in\mathcal{E}}$ contains a basis of \mathcal{C} . First, if θ is terminal in ε , then $U_{\varepsilon}^{\theta^{\gamma_{\mathscr{O}}}} = I_{|\mathscr{O}|} = \mathscr{O}$, so $A_{\sigma} U_{\varepsilon}^{\theta^{\gamma_{\mathscr{O}}}} = \mathscr{O}$, hence $U_{\varepsilon}^{\theta} = \mathcal{C}$. Next, given any $n \neq 0$, let

$$\varepsilon = \{\theta | l \colon l \le |\theta|\} \cup \{\theta \hat{\sigma} \colon |\sigma| \neq n\}.$$

Now, if $|\sigma| \neq n$ then $\theta^{\hat{\sigma}}\sigma$ is terminal in ε , so $U_{\varepsilon}^{\theta^{\hat{\sigma}}\sigma} = \mathcal{C}$, and if $|\sigma| = n$ then $\theta^{\hat{\sigma}}\sigma \notin \varepsilon$, so $U_{\varepsilon}^{\theta^{\hat{\sigma}}\sigma} = I_{|\sigma|} = I_n$. Altogether this gives $A_{\sigma}U_{\varepsilon}^{\theta^{\hat{\sigma}}\sigma} = I_n$, hence $U_{\varepsilon}^{\theta} = \mathcal{C} \smallsetminus I_n$.

5. Uniformization

LEMMA 5. There is $\mathfrak{p} \in \mathbf{\Delta}_2^1(\mathcal{E}, \mathcal{P})$ such that for each ε ,

 $\mathfrak{p}(\varepsilon) \in \mathcal{P}_{\varepsilon}$ and $u_{\varepsilon}|\mathfrak{p}(\varepsilon)$ is continuous.

Proof. The desired \mathfrak{p} is obtained by the Σ_2^1 uniformization theorem applied to the set Q of all $(\varepsilon, p) \in \mathcal{E} \times \mathcal{P}$ with $p \in \mathcal{P}_{\varepsilon}$ for which there exist $\bar{n} \in \omega^{A^{<\omega}}$ and $\bar{s} \in \mathcal{N}^{A^{<\omega}}$ such that $\forall \theta \notin \varepsilon ||\mathsf{last} \theta| = \bar{n}(\theta)$ and

$$\forall \theta \in \varepsilon \left(\bigwedge_{\sigma} p \cap I_{\bar{n}(\theta^{\hat{\sigma}})} \subseteq p \smallsetminus I_{\bar{n}(\theta)} \subseteq \bigcup_{s \leq \bar{s}(\theta)} \bigcap_{\sigma \subseteq s} p \cap I_{\bar{n}(\theta^{\hat{\sigma}})} \right).$$

Note that u_{ε} is continuous on any $p \in Q_{\varepsilon}$ since $\forall \theta \ p \cap U_{\varepsilon}^{\theta} = p \cap I_{\bar{n}(\theta)}$. We will show: (1) $Q \in \Sigma_{2}^{1}(\mathcal{E} \times \mathcal{P})$, and (2) $\forall \varepsilon \ Q_{\varepsilon} \neq \emptyset$.

(1) The conditions " $p \in \overline{\mathcal{P}_{\varepsilon}}$ " and " $\forall \theta \notin \varepsilon ||\mathsf{last} \theta| = \overline{n}(\theta)$ " define closed sets in $\mathcal{E} \times \mathcal{P}$ and $\mathcal{E} \times \omega^{A^{<\omega}}$. The displayed condition, in turn, defines a $\mathbf{\Pi}_1^1$ set in

 $\mathcal{E} \times \mathcal{P} \times \omega^{A^{<\omega}} \times \mathcal{N}^{A^{<\omega}}.$

Its first inclusion gives clearly a Π_1^1 set in $\mathcal{P} \times \omega^{A^{<\omega}}$. Its second inclusion gives a closed set in $\mathcal{P} \times \omega^{A^{<\omega}} \times \mathcal{N}^{A^{<\omega}}$, as it says that the compact set $p \smallsetminus I_{\bar{n}(\theta)}$ is contained in the projection of the compact set

$$\{(x,s) \in \mathcal{C} \times \mathcal{N} \colon s \leq \bar{s}(\theta) \land \forall \sigma \subseteq s \ x \in p \cap I_{\bar{n}(\theta,\sigma)}\}.$$

(2) Since for any θ and ς , the set $C_{\varepsilon} \cap A_{\sigma} U_{\varepsilon}^{\theta^{\gamma}(\varsigma^{\widehat{\sigma}})}$ has the Baire property in C_{ε} , we can choose $p \in \mathcal{P}_{\varepsilon}$ such that for any θ and ς , the set $p \cap A_{\sigma} U_{\varepsilon}^{\theta^{\gamma}(\varsigma^{\widehat{\sigma}})}$ is clopen in p. In particular, for any $\theta \in \varepsilon$, the set $p \cap U_{\varepsilon}^{\theta} = p \smallsetminus A_{\sigma} U_{\varepsilon}^{\theta^{\gamma}(\varnothing^{\widehat{\sigma}})}$ is clopen in p. To get $\bar{n} \in \omega^{A^{<\omega}}$, if $\theta \notin \varepsilon$ then let $\bar{n}(\theta) = |\mathsf{last}\,\theta|$, and if $\theta \in \varepsilon$ then let $\bar{n}(\theta)$ be any n such that

$$p \cap U_{\varepsilon}^{\theta} = p \cap I_n$$

To get $\bar{s} \in \mathcal{N}^{A^{<\omega}}$, if $\theta \notin \varepsilon$ then let $\bar{s}(\theta)$ be any element of \mathcal{N} , and if $\theta \in \varepsilon$ then let $\bar{s}(\theta)$ be the t of Lemma 3 applied to p and $\{p \cap I_{\bar{n}(\theta^{\circ}\sigma)}\}_{\sigma \in A}$ so that

$$\bigwedge_{\sigma} p \cap I_{\bar{n}(\theta^{\hat{\sigma}}\sigma)} = \bigcup_{s \leq \bar{s}(\theta)} \bigcap_{\sigma \subseteq s} p \cap I_{\bar{n}(\theta^{\hat{\sigma}}\sigma)}. \bullet$$

6. Proof of the Theorem. In view of Lemma 2, we just need to get Σ_n^1 -hardness from $S\Sigma_n^1$ -hardness. Consider the following Δ_2^1 measurable injection from $\mathcal{E} \times \mathcal{C}$ to \mathcal{C} :

$$g(\varepsilon, x) = \pi(\mathfrak{p}(\varepsilon), x),$$

where \mathfrak{p} is from Lemma 5. If $Q \in \Sigma_n^1(\mathcal{C})$, then $g[\mathcal{E} \times Q] \in \Sigma_n^1(\mathcal{C})$ by Lemma 1(8). So, if (H, Z) is $\mathfrak{S}\Sigma_n^1$ -hard, then for some $f \in \mathfrak{S}_{\mathcal{C}Z}$,

$$g[\mathcal{E} \times Q] = f^{-1}[H]$$

Hence, since g is injective,

$$\mathcal{E} \times Q = g^{-1}[f^{-1}[H]].$$

Pick ε with $f = u_{\varepsilon}$. Then

$$Q = g_{\varepsilon}^{-1}[u_{\varepsilon}^{-1}[H]] = (u_{\varepsilon}g_{\varepsilon})^{-1}[H].$$

But $u_{\varepsilon}g_{\varepsilon}$ is continuous because g_{ε} is a homeomorphism onto $\mathfrak{p}(\varepsilon)$ and $u_{\varepsilon}|\mathfrak{p}(\varepsilon)$ is continuous.

7. Kechris's Theorem. Change A to ω , $A^{<\omega}$ to $\omega^{<\omega}$, \mathbf{S} to $\mathbf{\mathcal{B}}$, $\mathbf{\Sigma}_2^1$ to $\mathbf{\Sigma}_1^1$, $\mathbf{\Delta}_2^1$ to $\mathbf{\Delta}_1^1$, and A to \bigcup . So, \mathcal{E} is now the set of all nonempty well-founded subtrees of $\omega^{<\omega}$, and u is $\mathbf{\Delta}_1^1$ measurable.

In Lemma 5, let Q_{ε} consist of all $p \in \mathcal{P}_{\varepsilon}$ on which u_{ε} is continuous. Then Q_{ε} is comeager in $\mathcal{P}_{\varepsilon}$. Also, Q is Π_1^1 , since $u_{\varepsilon}|p$ is continuous iff

$$\forall n \; \exists m \; \forall x \in p \; x \in I_m \Leftrightarrow u(\varepsilon, x) \in I_n,$$

and " $u(\varepsilon, x) \in I_n$ " gives a $\Delta_1^1(\mathcal{E} \times \mathcal{C} \times \omega)$ set. To get \mathfrak{p} , use the uniformization theorem for Π_1^1 sets with "large sections" [1, 36.23] that provides here a Δ_1^1 measurable uniformization. (The Π_1^1 uniformization theorem may fail to give a Δ_1^1 measurable function.)

Now, if g is as in Section 6 and $Q \in \Sigma_1^1(\mathcal{C})$, then

$$g[\mathcal{E} \times Q] = \{ z \in \mathcal{C} \colon \exists y \in Q \ g(z^*, y) = z \} \in \mathbf{\Sigma}^1_1(g[\mathcal{E} \times \mathcal{C}]),$$

as we have here the projection along $Q \in \Sigma_1^1(\mathcal{C})$ of the $\Delta_1^1(g[\mathcal{E} \times \mathcal{C}] \times \mathcal{C})$ set given by the preimage of $\{(z, z) : z \in \mathcal{C}\}$ via the Δ_1^1 measurable function

$$g[\mathcal{E} \times \mathcal{C}] \times \mathcal{C} \ni (z, y) \mapsto (g(z^*, y), z) \in (z, y) \mapsto (g(z^*, y), z) \in (z, y)$$

So, for some ε , $g[\mathcal{E} \times Q] = g[\mathcal{E} \times \mathcal{C}] \cap u_{\varepsilon}^{-1}[H]$, hence $\mathcal{E} \times Q = g^{-1}[u_{\varepsilon}^{-1}[H]]$, and, as before, $Q = (u_{\varepsilon}g_{\varepsilon})^{-1}[H]$.

Acknowledgements. This research was supported by MNiSW grant N N201 418939.

References

- [1] A. S. Kechris, On the concept of Π_1^1 completeness, Proc. Amer. Math. Soc. 125 (1997), 1811–1814.
- [2] A. S. Kechris, *Classical Descriptive Set Theory*, Springer, 1994.
- [3] J. Pawlikowski, On the concept of analytic hardness, Proc. Amer. Math. Soc., accepted.
- [4] M. Sabok, Complexity of Ramsey null sets, Adv. Math. 230 (2012), 1184–1195.

Janusz Pawlikowski Department of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: Janusz.Pawlikowski@math.uni.wroc.pl

> Received 4 June 2013; in revised form 26 April 2014