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Abstract. According to the Furstenberg–Zimmer structure theorem, every measure-
preserving system has a maximal distal factor, and is weak mixing relative to that factor.
Furstenberg and Katznelson used this structural analysis of measure-preserving systems
to provide a perspicuous proof of Szemerédi’s theorem. Beleznay and Foreman showed
that, in general, the transfinite construction of the maximal distal factor of a separable
measure-preserving system can extend arbitrarily far into the countable ordinals. Here
we show that the Furstenberg–Katznelson proof does not require the full strength of
the maximal distal factor, in the sense that the proof only depends on a combinatorial
weakening of its properties. We show that this combinatorially weaker property obtains
fairly low in the transfinite construction, namely, by the ωω

ω

th level.

1. Introduction. Let X = (X,B, µ, T ) be a measure-preserving system,
that is, a finite measure space (X,B, µ) together with a measure-preserving
transformation, T . A (T -invariant) factor Y of such a system is said to be
distal if it is the last element of an increasing finite or transfinite sequence
(Yα)α≤θ of factors, such that Y0 is the trivial factor, for each α < θ, Yα+1 is
compact relative to Yα, and for each limit ordinal γ ≤ θ, Yγ is the limit of
the preceding factors. A structural analysis due to Furstenberg and Zimmer,
independently, shows that every measure-preserving system has a maximal
distal factor, and is weak mixing relative to that factor (see [7, 9, 10]).

Furstenberg [7] proceeded to give an ergodic-theoretic proof of Sze-
merédi’s theorem that used only a finite sequence of compact extensions
of the trivial factor. But he noted, in passing, that one could give an alter-
native proof using the maximal distal factor. Furstenberg and Katznelson
[9, 8] in fact used this strategy to prove a multidimensional generalization
of Szemerédi’s theorem. Even for the original version of the theorem, the
Furstenberg–Katznelson proof (which draws on ideas from Ornstein, and
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is presented in [10]) is perhaps the cleanest and most perspicuous proof of
Szemerédi’s theorem to date.

Beleznay and Foreman [5] have shown that for the separable spaces that
arise in the proofs of Szemerédi’s theorem, the transfinite construction of the
maximal distal factor can extend arbitrarily far into the countable ordinals.
It is therefore striking that the proof of a finitary combinatorial result can
make use of such a transfinite construction in an essential way.

Our goal here is to provide a precise sense in which the Furstenberg–
Katznelson proof does not “need” the full transfinite hierarchy. Specifically,
we show that the argument does not require that X is weak mixing rel-
ative to a distal factor Y; rather, it is enough to know that Y is a limit
of distal factors with respect to which X exhibits sufficient approximations
to weak mixing behavior. We show that such distal factors always occur
fairly low down in the transfinite hierarchy, in fact, by the ωω

ω
th level.

This helps clarify the combinatorial role of the maximal distal factor in the
Furstenberg–Katznelson argument, and the axiomatic strength needed to
carry out the proof.

A central theme here is that if instead of exact limits one is interested
in having only sufficiently large pockets of approximate stability, one can
often obtain better bounds, uniformity, and/or computability results. We
referred to this phenomenon as “local stability” in [3]; Tao [19, 20] has used
the term “metastability” in a similar sense. In particular, we will rely on a
metastability analysis of the mean ergodic theorem due to Kohlenbach and
Leuştean [13].

The outline of this paper is as follows. In Section 2, we briefly present
the Furstenberg–Katznelson proof of Szemerédi’s theorem, introducing the
relevant definitions. In Section 3, we state our main results, which are then
proved in Sections 4 to 6. In Section 7, we describe the logical methods that
underlie our work, and draw conclusions about the axiomatic strength of
the principles needed in the Furstenberg–Katznelson proof.

2. Preliminaries. Szemerédi’s theorem states that for every k and
δ > 0 there is an N large enough so that if S is any subset of {1, . . . , N}
with density at least δ, then S contains an arithmetic progression of length k.
Furstenberg [7] showed that this is equivalent to the statement that for every
measure-preserving system X , every k, and every set A of positive measure,
there is an n such that µ(

⋂
l<k T

−lnA) > 0. We will henceforth refer to this
measure-theoretic equivalent as Szemerédi’s theorem.

The T -invariant factors of a measure-preserving system (X,B, µ, T ) are
naturally identified with the sub-σ-algebras B′ of B that are closed under the
map A 7→ T−1A. It is fruitful to adopt a Hilbert-space perspective, and con-
sider the space L2(X ) of square integrable functions on X , with the isometry
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T̂ which maps f to f ◦T . Any T -invariant factor gives rise to the T̂ -invariant
subspace Y of B′-measurable functions of L2(X ). This space contains all the
constant functions, and is closed under the map f 7→ max(f, 0). Conversely,
any such space gives rise to a corresponding factor. We will henceforth use
T instead of T̂ to denote the relevant isometry on L2(X ), and use the term
“factor of X” to mean a T -invariant subspace of L2(X ) containing the con-
stant functions and closed under the map f 7→ max(f, 0). If A is an element
of B, “A in Y” means that the characteristic function χA of A is in Y, which
amounts to saying that A is in the corresponding σ-algebra.

If Y is a factor of X , the expectation operator E(f | Y) denotes the
projection of f onto Y. More information about factors and the expectation
operator can be found, say, in [8]. For the most part, we will be able to
restrict our attention to the subset L∞(X ) of essentially bounded elements
of L2(X ), and we will use L∞(Y) to denote the essentially bounded elements
of the factor Y.

The Furstenberg–Zimmer structure theorem shows that any measure-
preserving system X has a maximal distal factor, that is, a factor Y that is
built up using a transfinite sequence of compact extensions; and that X is
weak mixing relative to Y. We now briefly review the definitions and provide
a more precise statement of the theorem.

Definition 2.1. If Y is a factor of X , we say X is weak mixing relative
to Y if for every f and g in L∞(X ),

lim
n→∞

1
n

∑
i<n

�
[E(fT ig | Y)− E(f | Y)E(T ig | Y)]2 dµ = 0.

The following lemma presents two important consequences of relative
weak mixing. The first provides a sense in which weak mixing extensions
are also “weak mixing of all orders”. The second shows that if X is weak
mixing relative to Y, then Y is “characteristic” for the averages of the form
(1/n)

∑
i<n

∏
l<k T

lnfl, in the sense that only the projections of f0, . . . , fk−1

on Y bear on the limiting behavior.

Lemma 2.2. Suppose X is weak mixing relative to Y. Then for every k
and for all functions f0, . . . , fk in L∞(X ), the following hold:

lim
n→∞

1
n

∑
i<n

�(
E
(∏
l<k

T lifl

∣∣∣Y)−∏
l<k

T liE(fl | Y)
)2
dµ = 0

and

lim
n→∞

∥∥∥∥ 1
n

∑
i<n

(∏
l<k

T lifl −
∏
l<k

T liE(fl | Y)
)∥∥∥∥

L2(X )

= 0.

Given a factor Y, write 〈f, g〉y for E(fg | Y)(y); this provides a “bundle”
of Hilbert spaces indexed by elements y of X (defined up to almost every-
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where equivalence). A function f in L2(X ) is said to be almost periodic
relative to Y if for every δ > 0, there is a finite set of functions g0, . . . , gk
in L2(X ) such that mini≤k ‖f − gi‖y < δ for almost every y in X . Another
factor Z ⊇ Y is said to be a compact extension of Y if every element of Z is
a limit of functions that are almost periodic relative to Y. The space Z(Y)
spanned by the functions that are almost periodic relative to Y is called the
maximal compact extension of Y.

Lemma 2.3, below, provides another characterization of Z(Y). Given X
and a factor, Y, the square of X relative to Y, X ×Y X , is defined in [7, 8,
9, 10]. Here we only need the following characterization of the Hilbert space
L2(X ×Y X ). Start with formal elements consisting of sums

∑
i<n fi ⊗ gi,

where fi and gi are elements of L∞(X ). Define an inner product on these
elements by taking

〈f ⊗ g, h⊗ k〉Y = 〈E(fh | Y), E(gk | Y)〉,
where the right-hand side refers to the usual inner product on L2(X ), and
extending to finite sums using bilinearity. Then L2(X ×Y X ) is, up to iso-
morphism, the completion of this space under the associated norm. One can
show that for any h in L∞(Y), the elements hf ⊗ g and f ⊗ hg are identi-
fied by the norm, and so one can view L∞(Y) as embedded in L2(X ×Y X )
via the map h 7→ h ⊗ 1; in particular, the real numbers are embedded as
elements c⊗ 1. The projection of an element f ⊗ g on Y is then given by

E(f ⊗ g | Y) = E(f | Y)E(g | Y).

The action of T on L2(X ×Y X ) is obtained by taking T (f ⊗ g) = Tf ⊗ Tg
and extending it to the rest of the space.

One can define multiplication by an element f ⊗ g by setting (f ⊗ g) ·
(h⊗ k) = fh⊗ gk. Integration in L2(X ×Y X ) is given by�

f d(µ×Y µ) = 〈f, 1⊗ 1〉.

In particular, if h is in L∞(Y), then�
h d(µ×Y µ) =

�
h dµ.

There is also a lattice structure on L2(X ×Y X ) derived from that on L2(X );
all we will need below is that if f and g are elements of L∞(X ), then
‖f ⊗ g‖L∞(X×YX ) ≤ ‖f‖L∞(X ) · ‖g‖L∞(X ).

If H is any element of L∞(X ×Y X ) of the form
∑

i<n hi⊗ gi and f is in
L2(X ), define

H ∗Y f =
∑
i<n

E(fhi | Y)ki.

The ∗Y operation then extends to arbitrary elements of L2(X ×Y X ) by
taking limits. For any H in L∞(X ×Y X ), the operation f 7→ H ∗Y f is a
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bounded linear operator, with ‖H ∗Y f‖L2(X ) ≤ ‖H‖∞ · ‖f‖L2(X ) (see, for
example, [8, pp. 130–131]).

We will be particularly interested in elements of L∞(X ×Y X ) of the
form

Hn
g =

1
n

∑
i<n

T i(g ⊗ g),

where g is in L∞(X ). The mean ergodic theorem implies that the functions
Hn
g converge to a limit, Hg, in L2(X ×Y X ). For each n, the norm ‖Hn

g ‖∞,
and hence ‖Hg‖∞, is bounded by ‖g‖2∞. One can show, moreover, that for
any fixed g, the sequence (Hn

g ∗Y f) has a rate of convergence that depends
only on a bound on ‖f‖∞. We will make use of this uniformity in Section 5.

The following fact is established in [7, 9, 8], and implicitly in [10]:

Lemma 2.3. Z(Y) is the space spanned by the set of elements of the
form Hg ∗Y f , as f and g range over L∞(X ).

Moreover, if X is not weak mixing relative to Y, then there are elements
Hg ∗Y f not in Y. Hence:

Lemma 2.4. If X is not weak mixing relative to Y, then Z(Y) ) Y.

Now define Y0 to be the trivial factor, consisting of the constant func-
tions. By transfinite recursion, define Yα+1 = Z(Yα) for every α, and define
Yλ to be the factor spanned by

⋃
γ<λ Yγ for every limit ordinal λ. Since

L2(X ) is separable, we have Yα+1 = Z(Yα) = Yα at some countable ordi-
nal α. By Lemma 2.4, X is weak mixing relative to Y. We call Y = Yα the
maximal distal factor.

Definition 2.5. Say that the factor Y is SZ if for every k and A in Y
with µ(A) > 0,

lim inf
n→∞

1
n

∑
i<n

µ
(⋂
l<k

T−ilA
)
> 0.

In particular, Szemerédi’s theorem follows from the statement “X is SZ”.
In [10], this is proved as follows:

• The trivial factor is SZ.
• If a factor Z is SZ, so is Z(Z).
• If each of a sequence Z0,Z1,Z2, . . . of factors is SZ, then so is the

factor spanned by
⋃
iZi.

• If a factor Z is SZ, and X is weak mixing relative to Z, then X is SZ.

The first three clauses imply that the maximal distal factor, Y, is SZ. The
last implies that X is SZ, as required.
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3. Main results. The set of countable ordinals can be given a quick
inductive definition: 0 is a countable ordinal; if α is a countable ordinal,
then so is α+ 1; and if α0, α1, α2, . . . is an increasing sequence of countable
ordinals, so is their least upper bound, which we will denote supn αn. Addi-
tion, multiplication, and exponentiation can be defined recursively (see, for
example, [15]), and ω is defined to be supn n.

It is common to identify each ordinal α with the set {β | β < α} of ordi-
nals less than it. The ordinals serve as representatives of the order types of
well-founded orderings, which is to say, if (X,≺) is any well-founded order-
ing, then (X,≺) is isomorphic to (α,<) for some ordinal α. The arithmetic
operations then have natural combinatorial interpretations. The ordinal ω
represents the order type of the natural numbers, and α+ 1 represents the
order type obtained by appending a single element to an ordering of type α.
The ordinal α+ β represents an ordering of type α followed by an order of
type β. The ordinal α · β represents β copies of an order of type α, that is,
the order type of β×α under lexicographic order. The interpretation of the
ordinal αβ is slightly more complicated: it represents the set of functions
from β to α that are nonzero at only finitely many arguments, where the
order is obtained by comparing the values at the largest input where they
differ. Of course, for natural numbers n, αn can be identified with the n-fold
product of α with itself. Many familiar properties of addition, multiplica-
tion, and exponentiation on the natural numbers hold for the extensions
to the ordinals, but not all. For example, addition and multiplication are
associative but not commutative, since 1 + ω = ω and 2 · ω = ω.

Our main theorem is that an approximation to the first property of
the maximal distal factor given in Lemma 2.2 holds fairly low down in the
Furstenberg–Zimmer tower.

Theorem 3.1. For every k, all functions f0, . . . , fk−1 in L∞(X ), and
every ε > 0, there are n and α < ωω

ω
such that for every m ≥ n,

1
m

∑
i<m

�(
E
(∏
l<k

T lifl

∣∣∣Yα)−∏
l<k

T liE(fl | Yα)
)2
dµ < ε.

In fact, our Lemma 6.8 proves something stronger, namely that given
f0, . . . , fk−1 and ε > 0 there is an n with “many” such α < ωω

ω
, in an

appropriate combinatorial sense. We obtain the following as a consequence
of this stronger fact:

Corollary 3.2. For every k, all functions f0, . . . , fk−1 in L∞(X ), and
every ε > 0, there are n and α < ωω

ω
such that for every m ≥ n,∥∥∥∥ 1

m

∑
i<m

(∏
l<k

T lnfl −
∏
l<k

T lnE(fl | Yα)
)∥∥∥∥

L2(X )

< ε.
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We emphasize that although Theorem 3.1 is new, Corollary 3.2 is not: us-
ing an altogether different argument, Furstenberg [7] showed that for each k,
Yk is characteristic for the averages with k-fold products. Our methods
are quite general, however, and work in other situations involving trans-
finite constructions of factors; see [21]. Moreover, our argument provides
some insight into the role of the maximal distal factor in the Furstenberg–
Katznelson argument, providing a general explanation as to why the full
strength of the construction is not needed to obtain the combinatorial re-
sult.

It is worth noting that for k = 2, Theorem 3.1 describes a weaker version
of relative weak mixing. In that case, the discussion at the end of Section 5
shows that the theorem holds with ω in place of ωω

ω
. It is not hard show

that here ω cannot be replaced by any finite ordinal K. Otherwise, fixing
f0 = f1 = f , we would see that for every ε > 0 there is an α < K such
that the conclusion of the theorem holds. By the pigeonhole principle, this
would imply that there is a single α < K that works for every ε, which is
to say, f is weak mixing relative to Yα. But, by the results of Beleznay and
Foreman [5], there are measure-preserving systems with functions f that
are not weak mixing relative to any finite level of the Furstenberg–Zimmer
hierarchy. So, for such functions, the least α satisfying the conclusion of
Theorem 3.1 must approach ω as ε approaches 0. Our proof gives an explicit
bound on α depending on k and ε; we do not know the extent to which that
bound is sharp.

For k > 2, the statement of Lemma 6.8 gives slightly more information,
in terms of a bound less than ωω

ω
depending on k. But, once again, we do

not know the extent to which this bound is sharp, nor even that a bound of
ω itself is insufficient.

Note that our corollary is even weaker than saying that some Yα, with
α < ωω

ω
, is characteristic for the limit in question. But, as we now show,

once we know that Yα is SZ for each α less than or equal to ωω
ω
, this

strictly weaker property is sufficient to obtain Szemerédi’s theorem. In fact,
the proof is only a slight modification of the usual Furstenberg–Katznelson
argument, e.g. [10, Theorem 8.3].

Theorem 3.3. X is SZ.

Proof. Suppose we are given a set A in B such that µ(A) > 0. Since

1
n

∑
i<n

µ
( k⋂
l=0

T−ilA
)

=
1
n

∑
i<n

�∏
l<k

T ilχA dµ,

our goal is to show that there is a δ such that the right-hand side is greater
than δ for sufficiently large n.
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For each j, let αj be the least ordinal such that for sufficiently large n,∥∥∥∥ 1
n

∑
i<n

( k∏
l=0

T ilχA −
k∏
l=0

T ilE(χA | Yαj )
)∥∥∥∥

L2(X )

< 1/j.

Set α = supαj ≤ ωω
ω
, so that Yα is the factor spanned by

⋃
j Yαj .

Since χA is nonnegative, so is E(χA | Yα). Let

B = {x | E(χA | Yα)(x) ≥ µ(A)/2}.

Since

µ(A) =
�

B

E(χA | Yα) dµ+
�

B

E(χA | Yα) dµ ≤ µ(B) + µ(A)/2,

it follows that µ(B) ≥ µ(A)/2. Since Yα is SZ, there is a δ such that

1
n

∑
i<n

µ
( k⋂
l=0

T−ilB
)
> δ

whenever n is sufficiently large.
For each j, set

Bj = {x ∈ B | E(χA | Yαj )(x) > µ(A)/4}.

Since Yα is the limit of the factors Yαj , we can make µ(B − Bj) as small
as we want by making j sufficiently large. We will choose j large enough so
that µ(B −Bj) < δ/2k, so that for any i we have

µ
(⋂
l<k

T−ilBj

)
≥ µ

(⋂
l<k

T−ilB
)
− k · (δ/2k) = µ

(⋂
l<k

T−ilB
)
− δ/2.

Then, since E(χA | Yαj ) ≥
µ(A)

4 χBj , we will have

1
n

∑
i<n

�∏
l<k

T ilE(χA | Yαj ) dµ ≥
µ(A)k

4k
1
n

∑
i<n

�∏
l<k

T ilχBj dµ

=
µ(A)k

4k
1
n

∑
i<n

µ
(⋂
l<k

T−ilBj

)
≥ µ(A)k

4k
1
n

∑
i<n

(
µ
(⋂
l<k

T−ilB
)
− δ/2

)
≥ µ(A)k

4k
(δ − δ/2) =

µ(A) · δ
22k+1

for sufficiently large n. Call the right-hand side η.
Choose j so that in addition to µ(B−Bj) < δ/2k, we also have 1/j < η/2.

Then, by the construction of the sequence (αj), we have
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1
n

∑
i<n

�∏
l<k

T ilχA dµ ≥
1
n

∑
i<n

�∏
l<k

T ilE(χA | Yαj )− η/2 ≥ η/2,

for sufficiently large n, as required.

We now turn to the proof of Theorem 3.1. Our proof tracks the usual
proof that X is weak mixing of all orders relative to the maximal distal
factor, Y; but wherever that proof asserts that X exhibits some behavior
relative to Y, we assert instead that X exhibits some approximation to that
behavior, relative to sufficiently many Yα. The following definitions provide
the notions of “sufficiently many” that we will need. If θ and η are ordinals,
(θ, η] denotes the interval {δ | θ < δ ≤ η}.

Definition 3.4. If α is an ordinal, say s is an α-sequence if s = (sβ)β≤α
is a strictly increasing sequence of ordinals indexed by ordinals less than or
equal to α. Say t is a β-subsequence of s if t is a β-sequence and a subsequence
of s. If s is an α-sequence, the span of s, written span(s), is (s0, sα].

Definition 3.5. If s is an α-sequence and P (δ) is any property, say P
holds for s-many δ if for every β < α, there is a δ in (sβ, sβ+1] such that
P (δ) holds.

In other words, P (δ) holds for s-many δ if, roughly speaking, there is an
element satisfying P between any two consecutive elements of s.

4. Approximating the mean ergodic theorem. Let H be any Hil-
bert space, T an isometry, and f any element of H. For every n ≥ 1, let
Anf = (1/n)

∑
i<n T

if . The mean ergodic theorem says that the sequence
(Anf) converges in the Hilbert space norm; in other words, for every ε > 0,
there is an n such that for every m ≥ n we have ‖Amf −Anf‖ < ε.

Now let (Hα)α∈S be a sequence of Hilbert spaces indexed by ordinals in
some set S, let (Tα) be a sequence of isometries, and let (fα) be a sequence
of elements. Given ε > 0, the mean ergodic theorem implies that for every α
there is an n as above, but, of course, different α’s may call for different n’s.

Here we will be concerned with the case where the spaces Hα are the
ones denoted by L2(X ×YαX ) in Section 2, and for some L∞(X ) function f ,
each fα is the element f ⊗ f in the corresponding space. Our goal is to
obtain for every ε > 0 a single n that works for sufficiently many α’s. In
Section 5, we will use this to show that approximate weak mixing behavior
occurs sufficiently often relative to the factors Yα.

Our original presentation relied on information extracted in [3] from the
proof of the mean ergodic theorem due to Riesz [16]. We are grateful to
Ulrich Kohlenbach for pointing out that the proofs of the results in this
section could be simplified considerably by using information extracted by
Kohlenbach and Leuştean [13] from a proof of the mean ergodic theorem
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by Garrett Birkhoff [6]. The following lemma is implicit in [13], and holds
more generally for nonexpansive mappings on a uniformly convex Banach
space. It says, roughly, that from a bound on k such that ‖Akf‖ is close
to its infimum, one can determine a value n beyond which the sequence of
ergodic averages is close to its limit.

Lemma 4.1. For every B and ε > 0 there is a γ > 0 with the following
property: for every i there is an n such that if f is any element of a Hilbert
space H with ‖f‖ ≤ B, T is an isometry, and there is a k ≤ i such that

(1) ‖Akf‖ ≤ ‖Ajf‖+ γ

for every j, then
‖Anf −Amf‖ < ε

for every m ≥ n.

Proof. Using the notation of [13], let M = 16B/ε, let n = Mi, and let
γ = (ε/16)η(ε/8b), where η is a modulus of convexity for Hilbert space.
The proof in [13, pp. 1913–1914] shows that if (1) holds for every j, then
‖Amf − Alf‖ < ε for all m and l greater than or equal to n. (The N in
[13] plays the role of our i, and P corresponds to our n. Because we are
assuming that (1) holds for all j, the conclusion of the argument in [13]
holds for arbitrary functions g.)

We now fix a sequence of Hilbert spaces (Hα)α∈S , where S is some set of
ordinals and each Hα comes equipped with its own inner product 〈·, ·〉α and
norm ‖ · ‖α. We also fix an isometry Tα on each Hα. The next theorem deals
with sequences (fα)α∈S , where each fα is in Hα. For readability, we will
adopt the practice of dropping the subscripted α on terms like fα and Tα
when the context makes it clear. Thus, for example, the expression ‖Anf‖α
really means ‖Anfα‖α.

Although the sequences (Anf) converge in each Hα, they may have very
different rates of convergence. The next lemma shows that, nonetheless, as
long as there is a uniform bound on the values ‖f‖α, for any ε > 0 there is
always an n large enough so that, for “many” α’s, ‖Anf −Amf‖ < ε holds
for all m ≥ n.

Theorem 4.2. Let ε > 0 and B > 0. Then there is a natural num-
ber K such that for every αK-sequence s and every sequence of elements
(fδ)δ∈span(s) bounded by B in norm, there are a natural number n and an
α-subsequence t of s such that the property

∀m ≥ n ‖Anf −Amf‖δ < ε

holds for t-many δ.
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Proof. For each i, write ai,δ = infj≤i ‖Ajfδ‖δ. According to the conven-
tion above, we will leave the subscripted δ’s off of fδ and ai,δ but keep the
dependence in mind. For each δ, the sequence ai is a decreasing sequence
bounded above by B and below by 0. Let γ be as guaranteed to exist by
Lemma 4.1.

Now let K = dB/γe+ 1, let s be any αK-sequence, and let (fδ)δ∈span(s)

be a sequence of elements bounded by B in norm. It suffices to show that
there are a natural number i and an α-subsequence t of s such that the
property

∀j > i ai ≤ aj + γ

holds for t-many δ, because then the hypotheses of Lemma 4.1, and hence
the conclusion, are satisfied for these δ’s.

Suppose otherwise. Then we have the following:

(∗) for every i and each α-subsequence t of s, there are j > i and β < α
such that for every δ ∈ (sβ, sβ+1], aj < ai − γ.

Start with i0 = 0, in which case ai0 = ‖f‖. Think of s as consisting of
α-many consecutive αK−1-subsequences, overlapping only at the endpoints,
so that the last element of one is the first element of the next. We can
then use (∗) to find an i1 > i0 and one of those subsequences such that
ai1 < ai0 − γ on its span. Then think of that subsequence as consisting of
α-many consecutive αK−2-subsequences, and use (∗) again to find an i2 > i1
and one of those sequences such that ai2 < ai1 − γ on its span. Continuing
in this way we ultimately find a δ and a sequence ai0 , ai1 , . . . , aiK such that
for each u < K we have aiu+1 < aiu − γ at δ. But this contradicts the fact
that, by the choice of K, aiu can decrease by γ at most K times.

We now specialize to the situation where each Hα is L2(X ×Yα X ), and
each fα is f ⊗ f , for some fixed L∞(X ) function f . This meets the re-
quirements of Lemma 4.1, because we have ‖f ⊗ f‖2α = 〈f ⊗ f, f ⊗ f〉α =	
E(f2 | Yα)2 dµ ≤ ‖f‖4∞ for each α. Thus we have a uniform approximate

version of the mean ergodic theorem for L2(X ×Yα X ).

Theorem 4.3. Let ε > 0 and B > 0. Then there is a natural number K
such that for every αK-sequence s and every f in L∞(X ) with ‖f‖∞ ≤ B,
there are a natural number n and an α-subsequence t of s such that the
property

∀m ≥ n ‖An(f ⊗ f)−Am(f ⊗ f)‖δ < ε

holds for t-many δ.

Notice that if s is the trivial 1-sequence δ, δ + 1, Theorem 4.3 simply
asserts that An(f ⊗ f) converges in X ×Yδ+1

X .
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5. Approximating weak mixing. Let g be in L∞(X ). Now notice
that the elements Hn

g of the spaces L2(X ×Yδ X ), defined in Section 2, are
none other than the elements An(g⊗g), where An is as in Section 4. Let f be
any element of L2(X ). As we observed in Section 2, the rate of convergence
of Hn

g ∗Yδ f to Hgf in L2(X ×Yδ X ) depends only on the rate of convergence
of Hn

g to Hg and on ‖f‖L2(X ).
We now use this to obtain our first main result, to the effect that X

exhibits approximate weak mixing behavior relative to the factors Yδ for
sufficiently many ordinals δ.

Theorem 5.1. For every ε > 0 and B > 0 there is a natural number
K such that for every α ≥ ω, every αK-sequence s, and every f and g with
‖f‖∞ ≤ B and ‖g‖∞ ≤ B, there are an n and an α-subsequence t of s such
that the property

∀m ≥ n 1
m

∑
i<m

�
[E(fT ig | Yδ)− E(f | Yδ)T iE(g | Yδ)]2 dµ < ε

holds for t-many δ.

Proof. For any δ, if we set hδ equal to f − E(f | δ), we have
1
m

∑
i<m

�
[E(fT ig | Yδ)− E(f | Yδ)T iE(g | Yδ)]2 dµ

=
1
m

∑
i<m

�
[E(hδT ig + E(f | Yδ)T ig | Yδ)− E(f | Yδ)T iE(g | Yδ)]2 dµ

=
1
m

∑
i<m

�
[E(hδT ig | Yδ)]2 dµ =

1
m

∑
i<m

�
E(hδT ig | Yδ)E(hδT ig | Yδ) dµ

=
�
E

(
hδ

1
m

∑
i<m

T igE(hδT ig | Yδ)
∣∣∣∣Yδ) dµ

=
�
E(hδ · (Hm

g ∗Yδ hδ) | Yδ) dµ =
�
hδ · (Hm

g ∗Yδ hδ) dµ.

Here is the idea: by Theorem 4.3, we can make Hm
g ∗Yδ hδ close to Hg ∗Yδ

hδ for sufficiently many δ. By the definition of the transfinite sequence of
factors (Yδ), Hg ∗Yδ hδ is in Yδ+1. On the other hand, hδ+1 is orthogonal to
Yδ+1, so

	
hδ+1 · (Hg ∗Yδ hδ) dµ is equal to 0. Thus, as long as

hδ+1 − hδ = E(f | Yδ+1)− E(f | Yδ)
is small,

	
hδ · (Hm

g ∗Yδ hδ) dµ will be close to 0, as required.
But now suppose we obtain a countable sequence δ0 < δ1 < δ2 < · · ·

of ordinals, where Hm
g ∗Yδi hδi is close to Hg ∗Yδi hδi for each i. Then since

(E(f | Yδi))i∈N is a sequence of projections of f onto increasing factors, for
some i we will find that E(f | Yδi+1

) − E(f | Yδi), and hence hδ − hδ+1, is
sufficiently small. Such a δi is then one of the ordinals we are after.
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The details are as follows. Given ε > 0, apply Theorem 4.3 to ε/2B, and
let K satisfy the conclusion of that theorem. We claim that 2K satisfies the
conclusion of Theorem 5.1.

Suppose we are given an α2K-sequence s, and f and g satisfying ‖f‖∞ ≤
B and ‖g‖∞ ≤ B. Since α ≥ ω, we have α2K = (α2)K ≥ (ω · α)K , and we
can restrict our attention to the initial (ω · α)K-subsequence of s. By our
choice of K, there is an ω · α-subsequence t such that the property

(∗) ∀m ≥ n ∀h with ‖h‖L2(X ) ≤ B ‖Hm
g ∗Yδ h−Hg ∗Yδ h‖ < ε/2

holds for t-many δ.
Let t′ be the α-sequence obtained by taking every ωth element of t; that

is, define t′β = tω·β for each β ≤ α. We claim that the property

(∗∗) ∀m ≥ n
�
hδ · (Hm

g ∗Yδ hδ) dµ < ε

holds for t′-many δ, as required.
To prove this, let β < α. We need to show that there is a δ satisfying

tω·β = t′β < δ ≤ t′β+1 = tω·β+ω

such that
	
hδ · (Hm

g ∗Yδ hδ) dµ < ε. By our choice of t, for every i there is a
δi ∈ (tω·β+i, tω·β+i+1] satisfying (∗) with δi in place of δ. Choose i such that

‖hδi+1 − hδi‖ = ‖E(f | Yδi+1)− E(f | Yδi)‖ < ε/2B2.

Now for δ = δi, we have

hδ · (Hm
g ∗Yδ hδ) = hδ · ((Hm

g ∗Yδ hδ)− (Hg ∗Yδ hδ))
+ (hδ − hδ+1) · (Hg ∗Yδ hδ+1) + hδ+1 · (Hg ∗Yδ hδ).

For every m ≥ n, by (∗), the first term is bounded in L2(X ) norm by
‖hδ‖∞ · ε/2B, which is less than ε/2, since ‖hδ‖∞ ≤ B. The second term
is bounded in L2(X ) norm by (ε/2B2) · ‖Hg ∗Yδ hδ+1‖∞, which is less than
ε/2, since ‖Hg‖∞ ≤ B2. The integral of the last term is 0, since hδ+1 is
orthogonal to Yδ+1 and Hg ∗Yδ hδ is an element of Yδ+1. Hence we have	
hδ · (Hm

g ∗Yδ hδ) dµ < ε, as required.

Notice that, in the previous proof, we did not really need an (ω · α)-
sequence t satisfying (∗); an (L·α)-sequence would have been sufficient, with
L > 4/ε2. Furthermore, if α is any limit ordinal, then L · α = α. Note also
that we could just as well have switched the two steps of thinning s: starting
with an (αK · L)-sequence s, we could have obtained an αK-subsequence t′

such that ‖E(f | Yγ)− E(f | Yδ)‖ < ε/2 for every γ and δ in the span of t′,
and then applied Theorem 4.3 to obtain an α-subsequence t such that (∗)
holds for t-many δ. In particular, any sequence of length L is sufficient to
obtain a 1-sequence t such that the conclusion of Theorem 5.1 holds for
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t-many δ, which is to say, for at least one δ in the span of t. This shows that
for k = 2, Theorem 3.1 holds with ω in place of ωω

ω
.

6. Approximating weak mixing of all orders. In this section, we
show how to approximate the property of being weak mixing of all orders
relative to the maximal distal factor below level ωω

ω
in the Furstenberg–

Zimmer tower. Our proof parallels the proof in [10] that the fact that X
is weak mixing relative to Y implies that it is weak mixing of all orders
relative to Y; but wherever that proof asserts that some property holds
relative to Y, we assert that a corresponding property holds relative to Yδ
for sufficiently many δ’s. Unlike the properties in the previous section, for
which sequences of length αK with integer K were sufficient, we will need
to consider sequences of length αθ, where θ is an ordinal less than ωω.

We start by proving three technical lemmas, which correspond to claims
that are trivial in the original proof, but become more complicated in our
modified version. To give a typical example, if both

1
m

∑
i<m

‖E(fT ig | Y)− E(f | Y)T iE(g | Y)‖ → 0

and
1
m

∑
i<m

‖E(f ′T ig | Y)− E(f ′ | Y)T iE(g | Y)‖ → 0,

then
1
m

∑
i<m

‖E((f + f ′)T ig | Y)− E((f + f ′) | Y)T iE(g | Y)‖ → 0,

and such inferences are used many times in the proof in [10]. In our “ap-
proximate” version, however, we typically wish to show that for each ε we
can find “many” δ such that the third average is less than ε with respect
to Yδ, using the fact that the first two averages are small with respect to
many Yδ. In particular, this requires finding many δ such that the first two
averages are small simultaneously at Yδ.

Since the same situation recurs during the proof with many different
choices of the precise averages being controlled, we will state the lemmas in
a very general form. We will work with properties ϕ(δ) which assert that a
quantity computed with respect to Yδ is small; for instance, in the example
above, the first choice of ϕ(f,m, δ) would be

1
m

∑
i<m

‖E(fT ig | Yδ)− E(f | Yδ)T iE(g | Yδ)‖ ≤ ε.

We will use the fact that such properties are continuous in the following
sense.
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Definition 6.1. A property ϕ(~x, δ) is continuous in δ if for any choice
of values ~t for ~x such that ϕ(~t, δi) holds for all i, also ϕ(~t, supi δi) holds.

The first lemma says that we can arrange for a pair of continuous prop-
erties to hold for many δ simultaneously by arranging for each property, in
turn, to hold sufficiently often.

Lemma 6.2. Suppose ϕ1(~x, δ) and ϕ2(~x, δ) are continuous in δ. Fix ~x.
Suppose there is a θ1 < ωp such that for every αθ1-sequence s with α ≥ ω
and every f with ‖f‖L∞ ≤ B, there are a natural number n1 and an α-
subsequence t of s such that the property

∀m ≥ n1 ϕ1(f,m, δ)

holds for t-many δ. Suppose that, additionally, there is a θ2 < ωq such that
for every αθ2-sequence s with α ≥ ω and every f with ‖f‖L∞ ≤ B, there are
a natural number n2 and an α-subsequence t of s such that the property

∀m ≥ n2 ϕ2(f,m, δ)

holds for t-many δ.
Then there is a θ < ωp+q−1 such that for every αθ-sequence s with α ≥ ω

and every f with ‖f‖L∞ ≤ B, there are a natural number n and an α-
subsequence t of s such that the property

∀m ≥ n ϕ1(f,m, δ) and ϕ2(f,m, δ)

holds for t-many δ.

Proof. Given θ1 and θ2 as in the hypotheses, let θ = 2 ·θ1 ·θ2. Let s be an
α2·θ1·θ2-sequence, and let f be given. Applying the hypotheses sequentially,
we obtain an α2-subsequence t′ and an n = max(n1, n2) such that both
the properties ∀m ≥ n ϕ1(f,m, δ) and ∀m ≥ n ϕ2(f,m, δ) hold for t′-
many δ. Since α ≥ ω, we can consider the α-subsequence t of t′ given by
setting tβ := t′β·ω for each β ≤ α. For any β < α and any n < ω, there
is a δ in (t′β·ω+n, t

′
β·ω+n+1] such that ∀m ≥ n ϕ1(f,m, δ) holds, so ordinals

with this property occur unboundedly below tβ+1 = t′(β+1)·ω. In particular,
∀m ≥ n ϕ1(f,m, t(β+1)·ω) and similarly for ϕ2, so the sequence t witnesses
the lemma.

We will often want to show that a property ϕ(f, δ) holds for sufficiently
many δ by decomposing f into E(f | Yδ) and f −E(f | Yδ). We will be able
do this by finding a long sequence such that E(f | Yδ) does not change much
over its span, and then dealing with each value, in turn. The next lemma
makes this precise.

Lemma 6.3. Suppose there is a θ < ωp such that for every αθ-sequence
s with α ≥ ω and every f with ‖f‖L∞ ≤ B, there are a natural number n
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and an α-subsequence t of s such that the property

∀m ≥ n ϕ(f,m, δ)

holds for t-many δ. Suppose also that ε > 0 is such that whenever
‖f − f ′‖L2 < ε and ϕ(f,m, δ) holds, also ϕ′(f ′,m, δ). Let ϕ be continuous
in δ.

Then there is a θ < ω2p−1 such that for every αθ-sequence s with α ≥ ω
and every f with ‖f‖L∞ ≤ B, there are a natural number n and an α-
subsequence t of s such that the property

∀m ≥ n ϕ′(E(f | Yδ),m, δ) and ϕ′(f − E(f | Yδ),m, δ)
holds for t-many δ.

Proof. Given θ as in the hypothesis, we claim the conclusion holds for
2θ2 +1. If s is an α2θ2+1-sequence, we may use the fact that α ≥ ω to divide
s into ω-many α2θ2-sequences given by snδ = s

α2θ2 ·n+δ
. For some n < ω,

‖E(f | Ysn0 )− E(f | Ysn
α2θ2

)‖ < ε.

As in the previous lemma, there is an α-subsequence t of sn such that

∀m ≥ n ϕ(E(f | Ysn0 ),m, δ) and ϕ(f − E(f | Ysn0 ),m, δ)

holds for t-many δ, and the conclusion immediately follows.

Our final technical lemma will give us the means to find many δ where
two properties are satisfied, where the second depends on a parameter that
is chosen to satisfy the first.

Lemma 6.4. Suppose there is a θ0 < ωp such that for every αθ0-sequence
s with α ≥ ω and every f with ‖f‖L∞ ≤ B, there are a natural number n0

and an α-subsequence t of s such that the property

∀m ≥ n0 ϕ0(f,m, δ)

holds for t-many δ.
Suppose that, additionally, for every d there is a θd < ωq such that for

every αθd-sequence s with α ≥ ω and every f with ‖f‖L∞ ≤ B, there is a
natural number nd and an α-subsequence t of s such that the property

∀m ≥ nd ϕd(f,m, δ)

holds for t-many δ.
If ϕi is continuous in δ for each i then there is a θ < ωp+q such that for

every αθ-sequence s with α ≥ ω and every f with ‖f‖L∞ ≤ B, there are an
n, an N , and an α-subsequence t of s such that the property

ϕ0(f,N, δ) and ∀m ≥ n ϕN (f,m, δ)

holds for t-many δ.
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Proof. Let θ be 2 · (supd>0 θd) · θ, and let s, f be given. By the first
assumption, there is an α2·supd>0 θd-subsequence s′ of s and an N such that
ϕ0(f,N, δ) holds for s′-many δ. Then there are an α2-subsequence s′′ and
an n such that both ϕ0(f,N, δ) holds for s′′-many δ, and for each m ≥ n,
ϕN (f,m, δ) holds for s′′-many δ. Since α ≥ ω, we may apply the method
of Lemma 6.2 to obtain an α-subsequence t such that the properties hold
simultaneously for t-many δ.

Recall that if X is a measure-preserving system and Y is a factor, X×YX
is again a measure-preserving system with factor Y. The space L2(X ×Y X )
and some of its properties were described in Section 2. The operation of
taking the relative square over Y can be iterated: for each r and δ, we define
the space X [r]

δ by induction on r, by setting X [0]
δ equal to X , and X [r+1]

δ

equal to X [r]
δ ×Yδ X

[r]
δ .

Each space L2(X [r]
δ ) can be represented as described in Section 2. In

particular, L∞(Yδ) can be identified as a subset of L2(X [r]
δ ), and if f and g

are elements of L∞(X [r]
δ ), then f ⊗ g is an element of L∞(X [r+1]

δ ). Thus the
most basic elements of L∞(X [r]

δ ) can be viewed as 2r-fold tensor products of
elements of L∞(X ). We define the simple elements of L∞(X [r]

δ ) to be those
that can be represented as finite sums of such basic elements.

The advantage of focusing on simple elements is that if f is such an ele-
ment, then f can be viewed as an element of L∞(X [r]

δ ) for each δ, simultane-
ously. More precisely, for each r, we define L∞0 (r) to be the set of finite formal
sums of such basic elements; then each element f of L∞0 (r) denotes an ele-
ment of L∞(X [r]

δ ) for each δ. Note that if f and g are elements of L∞0 (r) and
h is an element of L∞(Y), it makes sense to talk about f+g, hf , and E(f | Y)
as elements of L∞0 (r). We may define the L∞ bound of such a formal sum in
the natural way, taking ‖

∑
i<n cifi‖L∞ to be

∑
i<n |ci|·‖fi‖L∞ . Such a bound

is an upper bound for the true L∞ bound in L∞(X [r]
δ ) for any δ, and respects

the usual properties of the L∞ norm with respect to sums and products.
The next lemma shows that for each r, we can find many δ such that

the space X [r]
δ looks sufficiently weak mixing.

Lemma 6.5. For every ε > 0, B > 0, and r there is a K < ω such
that for every αK-sequence s with α ≥ ω and every f, g ∈ L∞0 (r) with
‖f‖L∞ ≤ B, ‖g‖L∞ ≤ B, there are a natural number n and an α-subsequence
t of s such that the property

∀m ≥ n 1
m

∑
i<m

�
[E(fT ig | Yδ)− E(f | Yδ)T iE(g | Yδ)]2 dµ(X [r]

δ ) < ε

holds for t-many δ.



260 J. Avigad and H. Towsner

Proof. By induction on r. When r = 0, this is simply Theorem 5.1.
Suppose the claim holds for r. It suffices to consider the case where f and g
in L∞0 (r + 1) are of the form f = f1 ⊗ f2 and g = g1 ⊗ g2, with f1, f2, g1, g2
in L∞0 (r). Using Lemma 6.3 and the subadditivity of the left-hand side, it
suffices to consider the cases where E(fi | Yδ) = 0 and where E(fi | Yδ) = fi;
the case where E(fi | Yδ) = fi for both i = 1 and i = 2 is trivial, so we may
further assume that for some i ∈ {1, 2}, E(fi | Yδ) = 0.

By the inductive hypothesis and Lemma 6.2, for any ε′ > 0 we can find
K large enough so that every αK-sequence s has an α-subsequence t such
that

1
m

∑
i<m

�
[E(f1T

ig1 | Yδ)− E(f1 | Yδ)E(T ig1 | Yδ)]2 dµ(X [r]
δ ) < ε′

and
1
m

∑
i<m

�
[E(f2T

ig2 | Yδ)− E(f2 | Yδ)E(T ig2 | Yδ)]2 dµ(X [r]
δ ) < ε′

for t-many δ. But then, for such δ,

1
m

∑
i<m

�
[E((f1 ⊗ f2)(T ig1 ⊗ T ig2) | Yδ)]2 dµ(X [r+1]

δ )

=
1
m

∑
i<m

�
[E(f1T

ig1 | Yδ)E(f2T
ig2 | Yδ)]2 dµ(X [r]

δ )

is close to
1
m

∑
i<m

�
[E(f1 | Yδ)T iE(g1 | Yδ)E(f2 | Yδ)T iE(g2 | Yδ)]2 dµ(X [r]

δ ),

which is 0 since either E(f1 | Yδ) = 0 or E(f1 | Yδ) = 0.

From this point on, our proof follows that of [10, Theorem 8.3] very
closely.

Lemma 6.6. Suppose that for every ε > 0, B > 0, k, and r there is a θ <
ωp such that for every αθ-sequence s with α ≥ ω and every f0, . . . , fk−1 in
L∞0 (r) with ‖fi‖L∞ ≤ B, there are a natural number n and an α-subsequence
t of s such that the property

∀m ≥ n 1
m

∑
i<m

�(
E
( k−1∏
l=0

T lifl

∣∣∣Yδ)− k−1∏
l=0

T liE(fl | Yδ)
)2
dµ(X [r]

δ ) < ε

holds for t-many δ. Then for every ε > 0, B > 0, k, r there is a θ < ωkp+k−1

such that for every αθ-sequence s with α ≥ ω and every f1, . . . , fk with
‖fi‖L∞ ≤ B, there are a natural number n and an α-subsequence t of s such
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that the property

∀m ≥ n
∥∥∥∥ 1
m

∑
i<m

( k∏
l=1

T lifl −
k∏
l=1

T liE(fl | Yδ)
)∥∥∥∥

L2(X [r]
δ )

< ε

holds for t-many δ.

Proof. Under the additional assumption that for some l0, E(fl0 | Yδ) = 0,
we will prove the claim with θ < ωp+1. Since

k∏
l=1

T lifl −
k∏
l=1

T liE(fl | Yδ)

=
k∑
j=1

(j−1∏
l=1

T lifl

)
T ji(fj − E(fj | Yδ))

( k∏
j+1

T liE(fl | Yδ)
)
,

we will then be able to apply Lemma 6.2 k−1 times to obtain the full result
with the stated bound.

So assume that E(fl0 | Yδ) = 0. By Lemma 6.5, Lemma 6.4, and the
assumption, we may choose a θ < ωp+1 so that for every αθ-sequence s and
every f1, . . . , fk with ‖fi‖L∞ ≤ 1, there are natural numbers N and H and
an α-subsequence t of s such that for some ε > 0, chosen small enough for
the argument below, the property

1
H

H−1∑
r=1−H

�
[E(fl0T

l0rfl0 | Yδ)− E(fl0 | Yδ)T l0rE(fl0 | Yδ)]2 dµ(X [r]
δ ) < ε/k

and for every m ≥ N and |r| < H,

1
m

∑
i<m

� [
E
( k∏
l=1

T (l−1)iflT
lrfl

∣∣∣Yδ)− k∏
l=1

T (l−1)iE(flT lrfl | Yδ)
]2
dµ(X [r]

δ )

< ε/k

holds for t-many δ. It will suffice to argue that these two properties, for
any δ, imply that for some n,∥∥∥∥ 1

m

∑
i<m

( k∏
l=1

T lifl −
k∏
l=1

T liE(fl | Yδ)
)∥∥∥∥

L2(X [r]
δ )

< ε.

The necessary n is max{N, cH} for some large constant c depending
on ε. Let m ≥ n be given. Then, since m is much larger than H, it suffices
to show that the properties above imply∥∥∥∥ 1

m

∑
i<m

1
H

i+H−1∑
h=i

k∏
l=1

T lhfl

∥∥∥∥
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is small. By the convexity of x2, it suffices to show that

1
m

∑
i<m

�( 1
H

i+H−1∑
h=i

k∏
l=1

T lhfl

)2

dµ(X [r]
δ )

is small. Expanding, this is bounded by

1
m

∑
i<m

1
H2

i+H−1∑
h,h′=i

� k∏
l=1

T lhflT
lh′fl dµ(X [r]

δ ).

But this may be rewritten as

1
H

H−1∑
r=1−H

(
1− |r|

H

)[
1
m

∑
i<m

� k∏
l=1

T (l−1)i(flT lrfl)
]
dµ(X [r]

δ ).

Since we have chosen m ≥ N , this is close to

1
H

H−1∑
r=1−H

(
1− |r|

H

)[
1
m

∑
i<m

� k∏
l=1

T (l−1)iE(flT lrfl | Yδ) dµ(X [r]
δ )
]
,

which is bounded by

1
H

H−1∑
r=1−H

(
1− |r|

H

)
‖E(fl0T

l0rfl0 | Yδ)‖L2(X [r]
δ )

∏
l 6=l0

‖fl‖2∞.

But we have chosen H large enough that ‖E(fl0T
l0rfl0 | Yδ)‖ is close to 0 for

almost every r, and since the terms are bounded by
∏
l ‖fl‖2∞, the average

is small as well.

Lemma 6.7. Suppose that for every ε > 0, B > 0, q, k, and r, there is
a θ < ωp such that for every αθ-sequence s with α ≥ ω and every f1, . . . , fk
in L∞0 (2r+1) with ‖fl‖L∞ ≤ B for each l ≤ k, there are a natural number n
and an α-subsequence t of s such that the property

∀m ≥ n
∥∥∥∥ 1
m

∑
i<m

( k∏
l=1

T lifl −
k∏
l=1

T liE(fl | Yδ)
)∥∥∥∥

L2(X [r+1]
δ )

< ε

holds for t-many δ.
Further, suppose that for every ε > 0, B > 0, q, k, and r, there is a

θ < ωq such that for every αθ-sequence s with α ≥ ω and every f0, . . . , fk−1

in L∞0 (2r) with ‖fl‖L∞ ≤ B for each l ≤ k, there are a natural number n
and an α-subsequence t of s such that the property

∀m ≥ n 1
m

∑
i<m

�(
E
( k−1∏
l=0

T lifl

∣∣∣Yδ)− k−1∏
l=0

T liE(fl | Yδ)
)2
dµ(X [r]

δ ) < ε

holds for t-many δ.
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Then for every ε > 0, B > 0, q, k, and r, there is a θ < ωp+q−1 such
that for every αθ-sequence s with α ≥ ω and every f0, . . . , fk in L∞0 (2r)
with ‖fl‖L∞ ≤ B for each l ≤ k, there are a natural number n and an
α-subsequence t of s such that the property

∀m ≥ n 1
m

∑
i<m

�(
E
( k∏
l=0

T lifl

∣∣∣Yδ)− k∏
l=0

T liE(fl | Yδ)
)2
dµ(X [r]

δ ) < ε

holds for t-many δ.

Proof. Once again, we apply Lemma 6.3 and subadditivity to reduce to
the two cases of where E(f0 | Yδ) = 0 and where E(f0 | Yδ) = f0.

In the former case, we may use the first hypothesis to choose witnesses
so that ∥∥∥∥ 1

m

∑
i<m

( k∏
l=1

T lifl −
k∏
l=1

T liE(fl | Yδ)
)∥∥∥∥

L2(X [r+1]
δ )

< ε/2.

Then it suffices to show
�
f0 ⊗ f0

1
m

∑
i<m

k∏
l=1

T li(fl ⊗ fl) dµ(X [r+1]
δ ) < ε.

But by the choice of witnesses, the left-hand side is within ε of

�
f0 ⊗ f0

1
m

∑
i<m

k∏
l=1

T liE(fl | Yδ) dµ(X [r+1]
δ )

and since

E

(
1
m

∑
i<m

k∏
l=1

T liE(fl | Yδ)
∣∣∣∣Yδ) =

1
m

∑
i<m

k∏
l=1

T liE(fl | Yδ)

and E(f0 | Yδ) = 0, it follows that this expression is 0.
In the latter case, we may use the second hypothesis to choose witnesses

so that

1
m

∑
i<m

�(
E
( k−1∏
l=0

T lifl+1

∣∣∣Yδ)− k−1∏
l=0

T liE(fl+1 | Yδ)
)2
dµ(X [r]

δ ) < ε.

Then the left-hand side of the desired conclusion is bounded by

‖f0‖2L∞
1
m

∑
i<m

�(
E
( k∏
l=1

T lifl

∣∣∣Yδ)− k∏
l=1

T liE(fl | Yδ)
)2
dµ(X [r]

δ )

and shifting each term by T−li shows this is equal to
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‖f0‖2L∞
1
m

∑
i<m

�(
E
( k−1∏
l=0

T lifl+1

∣∣∣Yδ)− k−1∏
l=0

T liE(fl+1 | Yδ)
)2
dµ(X [r]

δ ),

which is less than ε.

Lemma 6.8.

(1) For every ε > 0, B > 0, and k, there is a θ < ωk
2k

such that for
every αθ-sequence s with α ≥ ω and every f0, . . . , fk in L∞(X ) with
‖fl‖L∞ ≤ B for each l ≤ k, there are a natural number n and an
α-subsequence t of s such that the property

∀m ≥ n 1
m

∑
i<m

�(
E
( k∏
l=0

T lifl

∣∣∣Yδ)− k∏
l=0

T liE(fl | Yδ)
)2
dµ(X ) < ε

holds for t-many δ.
(2) For every ε > 0, B > 0, and k, there is a θ < ωk

2k−1
such that

for every αθ-sequence s with α ≥ ω and every f1, . . . , fk ∈ L∞(X 2r)
with ‖fl‖L∞ ≤ B for each l ≤ k, there are a natural number n and
an α-subsequence t of s such that the property

∀m ≥ n
∥∥∥∥ 1
m

∑
i<m

( k∏
l=1

T lifl −
k∏
l=1

T liE(fl | Yδ)
)∥∥∥∥

L2(X )

< ε

holds for t-many δ.

Proof. We will prove the stronger claim that these hold with any X [r]
δ in

place of X and L∞0 (r) in place of L∞(X ), simultaneously by induction on k.
For k = 1, (1) is Lemma 6.5 and (2) is trivial. Given (1) for k, (2) for k + 1
follows by Lemma 6.6. Given (2) for k+ 1 and (1) for k, (1) for k+ 1 follows
by Lemma 6.7.

Theorem 3.1 and Corollary 3.2 follow by taking s to be the αθ-sequence
with sβ = β for every β ≤ αθ.

7. Logical issues. We now turn to a discussion of the logical methods
behind the results just obtained. This paper is part of a broader effort to
understand the methods of ergodic theory and ergodic Ramsey theory in
more explicit computational or combinatorial terms [1], using a body of
logical techniques that fall under the heading “proof mining” (see [12, 14],
as well as [3, Section 6]). In particular, the results here were obtained by
employing a systematic rewriting of the Furstenberg–Katznelson proof [9,
8, 10], based on Gödel’s Dialectica functional interpretation [11, 2]. Here we
provide a “rational reconstruction” of the methods we used.

The first step was to rewrite the key definitions and lemmas in the
Furstenberg–Katznelson proof in a way that makes the logical structure
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of the assertions clear, and, in particular, distinguishes quantification over
ordinals from quantification over integers and other objects that have a
finitary representation. Limits and projections involving the maximal dis-
tal factor, Y, were expressed directly in terms of the hierarchy (Yα). For
example, the assertion that the projection E(f | Y) is within ε of g can be
expressed as ∃α ∀β > α ‖E(f | Yβ) − g‖ ≤ ε, which asserts that there is
a level α beyond which the projection stays within ε of g. But it can also
be expressed as ∀α ∃β > α ‖E(f | Yβ) − g‖ ≤ ε, which asserts that there
are arbitrarily large levels β at which the projection is within ε of g. The
statement that the sequence An(f ⊗ f) converges in X ×Y X can then be
expressed as follows:

(2) ∀ε > 0 ∃n ∀m ≥ n, α ∃β > α ‖Am(f ⊗ f)−An(f ⊗ f)‖L2(X×YβX ) < ε.

Other statements central to the proof were analyzed in similar ways.
The proof of the mean ergodic theorem is not constructive [3, 1], and, in

general, one cannot extract bounds on β in (2). The next step was therefore
to seek a “quasi-constructive” interpretation of the proof which yields more
explicit ordinal bounds. To that end, we employed a functional interpretation
roughly along the lines of the one described in [4] (which is, in turn, related
to a similar interpretation due to Feferman, described in [2, Section 9.3]).
For example, in (2), the dependence of β on m can be eliminated by choosing
a βm for each m, and then taking the supremum:

∀ε > 0 ∃n ∀α ∃β (β > α∧∀m ≥ n ‖Am(f ⊗f)−An(f ⊗f)‖L2(X×YβX ) < ε).

We can then make the dependence of β on α explicit:

(3) ∀ε > 0 ∃n, β ∀α (β(α) > α∧
∀m ≥ n ‖Am(f ⊗ f)−An(f ⊗ f)‖L2(X×Yβ(α)

X ) < ε).

It is still impossible to obtain an explicit description of β, but the Dialectica
interpretation involves one final move. If (3) were false, then for some fixed
ε > 0, there would be a function α(n, β) that provided a counterexample for
each n and β. Thus (3) is equivalent to the assertion that there is no such
counterexample:

(4) ∀ε > 0, α ∃n, β (β(α(n, β)) > α(n, β)∧
∀m ≥ n ‖Am(f ⊗ f)−An(f ⊗ f)‖L2(X×Yβ(α(m,β))

X ) < ε).

The logical methods now make it possible to extract an explicit description
of the function β that “foils” the purported counterexample α. Informally,
one obtains an algorithm for β which involves relatively explicit operations
with ordinals, such as taking maxima and suprema; application and itera-
tions of functions; and possibly noncomputable functions on the integers.



266 J. Avigad and H. Towsner

(The fact that transfinite induction is not used in the proof of the mean
ergodic theorem for X ×Y X translates to the fact that there are no transfi-
nite recursions in the algorithm. Allowing noncomputable functions on the
integers allows us to ignore, for example, the universal quantifier over m
in (4), and restrict focus to the parts of the informal proof that bear on the
ordinal bounds.) More formally, one obtains a term in the calculus denoted
TΩ in [4], involving only the operations just mentioned.

In the final result, Theorem 3.1, there is only an existential quantifier
over ordinals. Methods of Tait [18] (see also [2, Section 4.4]) suggest that the
explicit witnessing term extracted from the proof should be bounded below
the ordinal ε0, which is the limit of the ordinals ωω, ωω

ω
, . . . . The final step

of our analysis was to seek a more direct route to obtain such a conclusion,
both to improve the bound and avoid relying on metamathematical con-
siderations. For example, if one is interested in bounds rather than explicit
witnesses in (4), one can assume that the function β is increasing and con-
tinuous. Given any such function, β, there are unboundedly many ordinals
γ that are closed under β. Inspection of the translated proof of (4) showed
that it was possible to think of the counterexample function, α, as taking
such a sequence of closure ordinals, and returning a sequence of bounds
on counterexamples; the proof showed that the original sequence could be
thinned to obtain a subsequence along which α fails. Once the decision was
made to cast the central results in those terms, it was fairly easy to describe
the algorithms extracted by the functional interpretation in that way.

The analysis not only yields the additional information provided by The-
orem 3.1, but also shows that the argument does not use the full axiomatic
strength needed to carry out the transfinite iteration. The transfinite con-
struction of the Furstenberg–Zimmer structure theorem requires an impred-
icative theory, like ID1 or Π1

1-CA, which is, from a proof-theoretic stand-
point, quite strong; in contrast, the construction of the hierarchy up to stage
ωω

ω
requires only a principle of iterated arithmetic comprehension along

that ordinal, which can be obtained, for example, in the predicative theory
Σ1

1-CA. See [1, 2, 17] for more information about the relevant theories.
It is interesting to note, however, that the logical considerations drop

out of the final results. The metamathematical results provide a deeper un-
derstanding of the role that strong nonconstructive principles play in ordi-
nary mathematical reasoning, and provide a guide to interpreting particular
mathematical proofs in more explicit terms. But if one is only interested
in the latter, at the end of the day, one is left with a purely mathematical
proof.
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on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.
[8] —, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton

Univ. Press, Princeton, NJ, 1981.
[9] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting
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