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The equivariant universality and
couniversality of the Cantor cube

by

Michael G. Megrelishvili (Ramat-Gan) and Tzvi Scarr (Jerusalem)

Abstract. Let (G, X, a) be a G-space, where G is a non-Archimedean (having a local
base at the identity consisting of open subgroups) and second countable topological group,
and X is a zero-dimensional compact metrizable space. Let (H({0,1}%°),{0,1}%, 7) be
the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor
cube. Then

(1) there exists a topological group embedding ¢ : G — H({0,1}}°);
(2) there exists an embedding ¢ : X — {0, 1}N0, equivariant with respect to ¢, such
that ¢(X) is an equivariant retract of {0, l}NO with respect to ¢ and .

1. Introduction. The Cantor cube C = {0,1}% is a universal space
in the class of zero-dimensional, separable, metrizable spaces, that is, every
such space can be topologically embedded into C. In particular, every com-
pact, zero-dimensional, metrizable space is homeomorphic to a closed subset
of C. Sierpinski [15] showed that every non-empty closed subset of C is a
retract of C. This gives us the following well-known fact.

Fact 1.1. Every non-empty, compact, zero-dimensitonal, metrizable
space is homeomorphic to a retract of C.

Our Main Theorem 3.5 is an equivariant generalization of Fact 1.1 for
non-Archimedean acting groups. A topological group is non-Archimedean if
it has a local base at the identity consisting of open subgroups. The class of
non-Archimedean groups includes:
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e the prodiscrete (in particular, the profinite) groups;

e the groups arising in non-Archimedean functional analysis [14] (for
example, the additive groups of the fields of p-adic numbers);

e the group Is(X, d) of all isometries of an ultrametric space (X, d), with
the topology of pointwise convergence;

e the locally compact, totally disconnected groups [3];

e the symmetric group So, on a countably infinite set, with the topology
of pointwise convergence;

e the full group H(X) of autohomeomorphisms of X, with the compact-
open topology, where X is a compact Hausdorff zero-dimensional space (see
Lemma 3.2 below).

In fact, a topological group G is non-Archimedean iff G is a topological
subgroup of H (X) for some appropriate compact Hausdorff zero-dimensional
space X. This complete characterization of the non-Archimedean groups is
a part of Theorem 3.3 below. It is easy to show that the class of all non-
Archimedean groups is a variety in the sense of [12]. That is, this class is
closed under the formation of topological subgroups, products and quotient
groups.

Note that the transformation groups having zero-dimensional (in par-
ticular, ultrametric) phase spaces have many applications in descriptive set
theory [1, 6, 7.

2. Preliminaries and conventions. All topological spaces in this
paper are assumed to be Hausdorff. The neutral element of a group G
is denoted by eq. The weight w(X) of a topological space X is defined
to be 7(X) - Ny, where 7(X) denotes the minimal cardinality of a base
for X.

For information on uniform spaces, we refer the reader to [4]. If p is a
uniformity for X, then the collection of elements of p which are finite cov-
erings of X forms a base for a uniformity for X, which we denote by ugy. If
(X, p) is a uniform space, the uniform completion (X, fia,) of (X, ugin) is a
compact uniform space known as the Samuel compactification of (X, u). A
partition of a set X is a covering of X consisting of pairwise disjoint subsets
of X. Following [14], we say that a uniform space (X, ) is non-Archimedean
if it has a base consisting of partitions of X. Equivalently, u is generated by a
system {d;} of ultrapseudometrics, that is, pseudometrics, each of which sat-
isfies the strong triangle inequality d;(x, z) < max{d;(z,y),d;(y, z)}. Clearly,
a non-Archimedean uniform space is zero-dimensional in the uniform topol-
ogy. A topological group is non-Archimedean iff its right uniformity is non-
Archimedean.

The following result is well known (see, for example, [4] and [5]).
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LEMMA 2.1. Let (X, p) be a non-Archimedean uniform space. Then both
(X, pan) and the uniform completion (X, i) of (X, ) are non-Archimedean
uniform spaces.

A topological transformation group, or G-space, is a triple (G, X, a),
where G is a topological group (called the acting group), X is a topolog-
ical space (called the phase space), and a : G x X — X is a continuous
action. For each g € G, the g-transition map is the function o9 : X — X,
ad(z) = gx.

DEFINITION 2.2. Let (G1, X7, 1) be a Gi-space, and let (G, X2, ag) be
a Ga-space. Suppose that ¢ : G; — G> is a topological group embedding.

(1) A continuous function ¢ : X1 — Xy is equivariant with respect to ¢
(or, simply, equivariant, if ¢ is clear from the context) if, for all g € G and
z € X1, ¥(gz) = p(9)¢(2).

(2) Let ¥ : X1 — X5 be an equivariant embedding with respect to .
We say that (X1) is an equivariant retract of Xy (with respect to ¢ and
) if there is a continuous retraction r : Xo — ¢(X;) which is equivariant
with respect to =1 : p(G1) — Gj.

Let (G, X, a) be a G-space. If (G,Y,~) is a compact Hausdorff G-space
and ¢ : X — Y is equivariant, then Y is called a G-compactification
of X. If, in addition, v is a topological embedding, then Y is a proper
G-compactification of X. A G-space (G, X,«) is G-Tikhonov if it has a
proper G-compactification. Not every Tikhonov G-space is G-Tikhonov [8].
De Vries [19] proved that if G is locally compact, then every Tikhonov G-
space is G-Tikhonov. For every G-space X there exists a (possibly improper)
mazimal G-compactification B¢ X (see [18]). For more information on G-
compactifications, as well as for a general method of constructing Tikhonov
G-spaces which are not G-Tikhonov, see [11].

Let G be a topological group. Recall [2] that the collection of coverings
{Uz : = € G}, where U is a neighborhood of eg, forms a base for the
right uniformity pgr for G. In 1957, Teleman [16] proved that for arbitrary
Hausdorff G, the Samuel compactification G of G with respect to its right
uniformity is a proper G-compactification of the G-space (G, G, ay,), where
ar, is the usual left action of G on itself. In fact, G is isomorphic to BgG
and is called the greatest ambit (see, for example, [20]). B¢ G is the maximal
proper G-compactification of (G, G, ar,).

To the best of our knowledge, very little is known about the dimension
of BcX. Some special results can be found in [8, 9]. The dimension of the
greatest ambit SoG may be greater than the topological dimension of G
(simply take a cyclic dense subgroup G of the circle group; then dim G = 0
and dim SgG = 1). However, in the case of the Euclidean group G = R",
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we have dim G = dimG. This follows from Theorem 5.12 of [4]. By a
result of Pestov [13], one has dim 8¢G = 0 iff G is non-Archimedean. An
alternative proof of this will be given in Theorem 3.3 below.

3. Proof of the main results

Fact 3.1 ([9]). Every G-Tikhonov G-space X has a proper G-compact-
ification Y such that w(Y) < w(X) - w(G) and dimY < dim S X.

LEMMA 3.2. If X is a compact Hausdorff zero-dimensional space, then
H(X) is a non-Archimedean group.

Proof. For each two-element compact clopen partition {K7, Ko} of X,
define

B(K1, K2) ={p € H(X) : (K1) = K1, ¢(K2) = Ka}.

Let B = {B(K1, K3) : {K1, K>} is a compact clopen partition of X}. Then
B is a local base at ep(x) consisting of clopen subgroups, and, hence, H(X)
is non-Archimedean. m

The following theorem provides a useful characterization of non-Archim-
edean groups. (As noted before, the equivalence of (i) and (ii) was established
by Pestov [13].)

THEOREM 3.3. The following assertions are equivalent:

(i) G is a non-Archimedean topological group;
(ii) dim fBeG = 0;
(iii) G is a topological subgroup of H(X) for some compact Hausdorff
zero-dimensional space X such that w(X) = w(G).

Proof. (i)=-(ii). Suppose G is non-Archimedean. Then the right unifor-
mity pur for G is a non-Archimedean uniformity. By Lemma 2.1, the pre-
compact uniformity (ugr)an for G is also a non-Archimedean uniformity. Let
(G,7i) be the uniform completion of (G, (tr)gn). Then, again by Lemma
2.1, is a non-Archimedean uniformity, and, hence, G is zero-dimensional.
But (G, 1) is exactly ScG.

(ii)=-(iii). By Fact 3.1, there exists a zero-dimensional proper G-compact-
ification (G, X, af) of (G, G, ar,) such that w(X) = w(G). Let ¢ : G — X
be the corresponding equivariant embedding.

We will show that the map ¢ : G — H(X) defined by ¢(g) = (of)¢
is a topological group embedding. Observe that ¢ is one-to-one because aj
extends the action «ar,. To prove the continuity of ¢, suppose a9 € O = {f €
H(X): f(K) C U}, where K C X is compact and U C X is open. Using
the compactness of K and the continuity of af , we can find a neighborhood
V of g such that (V) C O. Hence, ¢ is continuous.
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It remains to show that if O C G is open, then ¢(O) is open in p(G).
Let O C G be open. Then 9(0) is open in ¥(G). Let W C X be open such
that ¢(0) = W Ny(G). Define B = {f € H(X) : f(¢(eg)) € W}. Then B
is open in H(X) and ¢(O) = BN ¢(G). Hence, ¢(0) is open in ¢(G).

(iii)=(i) follows directly by Lemma 3.2. m

FAcT 3.4 (Brouwer). The Cantor cube {0,1}"0 is the unique (up to
homeomorphism) non-empty, compact, metrizable, zero-dimensional, per-
fect space.

Now we are ready to prove our main result.

THEOREM 3.5. Let G be a non-Archimedean and second countable group,
and let X be a compact, metrizable, zero-dimensional G-space. Then

(1) there exists a topological group embedding ¢ : G — H(C);
(2) there exists an embedding ¢ : X — C, equivariant with respect to ¢,
such that ¥(X) is an equivariant retract of C with respect to ¢ and 1.

Proof. By Theorem 3.3, there exists a compact, second countable (and
thus metrizable) zero-dimensional space Y such that H(Y') contains G as a
topological subgroup. We may as well assume that all homeomorphisms of
Y corresponding to elements of G transform a certain base point yg € Y
onto itself (if not, replace Y with a disjoint union Y U {yo} and redefine
those homeomorphisms in an obvious way).

Let us identify the action of G on X with a homomorphism w : G —
H(X), and let D be a copy of the Cantor set. By Brouwer’s theorem, the
space C = X x Y x D is homeomorphic to the Cantor set, and, clearly, the
map ¢ : G — H(C),

g— (w(g),g9,idp) € H(X) x H(Y) x H(D) C H(C),

is a continuous homomorphism, thus turning C into a G-space. This ho-
momorphism is also an embedding, for its composition with the projection
onto H(Y') is the identity mapping, so it is one-to-one and the inverse is
continuous.

We define ¢ : X — C by = +— (z,y0,dy), where dy € D is any base point,
and the retraction r : C — ¥ (X) by r(z,y,d) = (z,y0,dp). Then ¢ and r
are equivariant, and the proof is complete. m

THEOREM 3.6. H(C) is universal in the class of all non-Archimedean,
second countable groups, that is, every such group is topologically isomorphic
to a subgroup of H(C).

FINAL REMARKS. (1) By Theorem 1.5.1 of [1], the group S is also
universal in this class.

(2) The group H(IY0) is universal in the class of all second countable
topological groups, where I is the closed interval [0, 1] (see [17]). Moreover,
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by [10], the topological transformation group (H(I™°), ") is universal in
the class of all compact, metrizable G-spaces with second countable acting
group G.

(3) The action on C which we defined in the proof of Theorem 3.5 intrin-
sically depends on the original action of G on X, as the following example
shows.

ExaAMPLE 3.7. Let a : So X C — C be the natural “permutation of
coordinates” action

a(g, (zn)) = (Tg(n))-

Consider H as an Ss.-subspace of C.

CrLAIM. H is not an equivariant retract of C with respect to ¢ = idg_
and ¢ =idg.

Proof. The Cantor cube C is an Sy.-ambit under the action «, that is, it
contains a point whose orbit is dense in C. In fact, all points which contain
infinitely many 0’s and infinitely many 1’s have dense orbits. Hence, every
image of C under an equivariant map is also an S..-ambit. However, H is
not an Seo-ambit. m
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