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The equivariant universality and
couniversality of the Cantor cube

by

Michael G. Megrelishvili (Ramat-Gan) and Tzvi Scarr (Jerusalem)

Abstract. Let 〈G,X,α〉 be a G-space, where G is a non-Archimedean (having a local
base at the identity consisting of open subgroups) and second countable topological group,
and X is a zero-dimensional compact metrizable space. Let 〈H({0, 1}ℵ0), {0, 1}ℵ0 , τ〉 be
the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor
cube. Then

(1) there exists a topological group embedding ϕ : G ↪→ H({0, 1}ℵ0 );

(2) there exists an embedding ψ : X ↪→ {0, 1}ℵ0 , equivariant with respect to ϕ, such
that ψ(X) is an equivariant retract of {0, 1}ℵ0 with respect to ϕ and ψ.

1. Introduction. The Cantor cube C = {0, 1}ℵ0 is a universal space
in the class of zero-dimensional, separable, metrizable spaces, that is, every
such space can be topologically embedded into C. In particular, every com-
pact, zero-dimensional, metrizable space is homeomorphic to a closed subset
of C. Sierpiński [15] showed that every non-empty closed subset of C is a
retract of C. This gives us the following well-known fact.

Fact 1.1. Every non-empty , compact , zero-dimensional , metrizable
space is homeomorphic to a retract of C.

Our Main Theorem 3.5 is an equivariant generalization of Fact 1.1 for
non-Archimedean acting groups. A topological group is non-Archimedean if
it has a local base at the identity consisting of open subgroups. The class of
non-Archimedean groups includes:
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• the prodiscrete (in particular, the profinite) groups;
• the groups arising in non-Archimedean functional analysis [14] (for

example, the additive groups of the fields of p-adic numbers);
• the group Is(X, d) of all isometries of an ultrametric space (X, d), with

the topology of pointwise convergence;
• the locally compact, totally disconnected groups [3];
• the symmetric group S∞ on a countably infinite set, with the topology

of pointwise convergence;
• the full group H(X) of autohomeomorphisms of X, with the compact-

open topology, where X is a compact Hausdorff zero-dimensional space (see
Lemma 3.2 below).

In fact, a topological group G is non-Archimedean iff G is a topological
subgroup ofH(X) for some appropriate compact Hausdorff zero-dimensional
space X. This complete characterization of the non-Archimedean groups is
a part of Theorem 3.3 below. It is easy to show that the class of all non-
Archimedean groups is a variety in the sense of [12]. That is, this class is
closed under the formation of topological subgroups, products and quotient
groups.

Note that the transformation groups having zero-dimensional (in par-
ticular, ultrametric) phase spaces have many applications in descriptive set
theory [1, 6, 7].

2. Preliminaries and conventions. All topological spaces in this
paper are assumed to be Hausdorff. The neutral element of a group G
is denoted by eG. The weight w(X) of a topological space X is defined
to be τ(X) · ℵ0, where τ(X) denotes the minimal cardinality of a base
for X.

For information on uniform spaces, we refer the reader to [4]. If µ is a
uniformity for X, then the collection of elements of µ which are finite cov-
erings of X forms a base for a uniformity for X, which we denote by µfin. If
(X,µ) is a uniform space, the uniform completion (X̂, µ̂fin) of (X,µfin) is a
compact uniform space known as the Samuel compactification of (X,µ). A
partition of a set X is a covering of X consisting of pairwise disjoint subsets
of X. Following [14], we say that a uniform space (X,µ) is non-Archimedean
if it has a base consisting of partitions of X. Equivalently, µ is generated by a
system {di} of ultrapseudometrics, that is, pseudometrics, each of which sat-
isfies the strong triangle inequality di(x, z) ≤ max{di(x, y), di(y, z)}. Clearly,
a non-Archimedean uniform space is zero-dimensional in the uniform topol-
ogy. A topological group is non-Archimedean iff its right uniformity is non-
Archimedean.

The following result is well known (see, for example, [4] and [5]).
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Lemma 2.1. Let (X,µ) be a non-Archimedean uniform space. Then both
(X,µfin) and the uniform completion (X̂, µ̂) of (X,µ) are non-Archimedean
uniform spaces.

A topological transformation group, or G-space, is a triple 〈G,X,α〉,
where G is a topological group (called the acting group), X is a topolog-
ical space (called the phase space), and α : G × X → X is a continuous
action. For each g ∈ G, the g-transition map is the function αg : X → X,
αg(x) = gx.

Definition 2.2. Let 〈G1,X1, α1〉 be a G1-space, and let 〈G2,X2, α2〉 be
a G2-space. Suppose that ϕ : G1 ↪→ G2 is a topological group embedding.

(1) A continuous function ψ : X1 → X2 is equivariant with respect to ϕ
(or, simply, equivariant, if ϕ is clear from the context) if, for all g ∈ G1 and
x ∈ X1, ψ(gx) = ϕ(g)ψ(x).

(2) Let ψ : X1 → X2 be an equivariant embedding with respect to ϕ.
We say that ψ(X1) is an equivariant retract of X2 (with respect to ϕ and
ψ) if there is a continuous retraction r : X2 → ψ(X1) which is equivariant
with respect to ϕ−1 : ϕ(G1)→ G1.

Let 〈G,X,α〉 be a G-space. If 〈G,Y, γ〉 is a compact Hausdorff G-space
and ψ : X → Y is equivariant, then Y is called a G-compactification
of X. If, in addition, ψ is a topological embedding, then Y is a proper
G-compactification of X. A G-space 〈G,X,α〉 is G-Tikhonov if it has a
proper G-compactification. Not every Tikhonov G-space is G-Tikhonov [8].
De Vries [19] proved that if G is locally compact, then every Tikhonov G-
space is G-Tikhonov. For every G-space X there exists a (possibly improper)
maximal G-compactification βGX (see [18]). For more information on G-
compactifications, as well as for a general method of constructing Tikhonov
G-spaces which are not G-Tikhonov, see [11].

Let G be a topological group. Recall [2] that the collection of coverings
{Ux : x ∈ G}, where U is a neighborhood of eG, forms a base for the
right uniformity µR for G. In 1957, Teleman [16] proved that for arbitrary
Hausdorff G, the Samuel compactification Ĝ of G with respect to its right
uniformity is a proper G-compactification of the G-space 〈G,G,αL〉, where
αL is the usual left action of G on itself. In fact, Ĝ is isomorphic to βGG
and is called the greatest ambit (see, for example, [20]). βGG is the maximal
proper G-compactification of 〈G,G,αL〉.

To the best of our knowledge, very little is known about the dimension
of βGX. Some special results can be found in [8, 9]. The dimension of the
greatest ambit βGG may be greater than the topological dimension of G
(simply take a cyclic dense subgroup G of the circle group; then dimG = 0
and dimβGG = 1). However, in the case of the Euclidean group G = Rn,
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we have dimβGG = dimG. This follows from Theorem 5.12 of [4]. By a
result of Pestov [13], one has dimβGG = 0 iff G is non-Archimedean. An
alternative proof of this will be given in Theorem 3.3 below.

3. Proof of the main results

Fact 3.1 ([9]). Every G-Tikhonov G-space X has a proper G-compact-
ification Y such that w(Y ) ≤ w(X) ·w(G) and dimY ≤ dimβGX.

Lemma 3.2. If X is a compact Hausdorff zero-dimensional space, then
H(X) is a non-Archimedean group.

Proof. For each two-element compact clopen partition {K1,K2} of X,
define

B(K1,K2) = {ϕ ∈ H(X) : ϕ(K1) = K1, ϕ(K2) = K2}.
Let B = {B(K1,K2) : {K1,K2} is a compact clopen partition of X}. Then
B is a local base at eH(X) consisting of clopen subgroups, and, hence, H(X)
is non-Archimedean.

The following theorem provides a useful characterization of non-Archim-
edean groups. (As noted before, the equivalence of (i) and (ii) was established
by Pestov [13].)

Theorem 3.3. The following assertions are equivalent :

(i) G is a non-Archimedean topological group;
(ii) dimβGG = 0;
(iii) G is a topological subgroup of H(X) for some compact Hausdorff

zero-dimensional space X such that w(X) = w(G).

Proof. (i)⇒(ii). Suppose G is non-Archimedean. Then the right unifor-
mity µR for G is a non-Archimedean uniformity. By Lemma 2.1, the pre-
compact uniformity (µR)fin for G is also a non-Archimedean uniformity. Let
(Ĝ, µ̂) be the uniform completion of (G, (µR)fin). Then, again by Lemma
2.1, µ̂ is a non-Archimedean uniformity, and, hence, Ĝ is zero-dimensional.
But (Ĝ, µ̂) is exactly βGG.

(ii)⇒(iii). By Fact 3.1, there exists a zero-dimensional properG-compact-
ification 〈G,X,α∗L〉 of 〈G,G,αL〉 such that w(X) = w(G). Let ψ : G → X
be the corresponding equivariant embedding.

We will show that the map ϕ : G → H(X) defined by ϕ(g) = (α∗L)g

is a topological group embedding. Observe that ϕ is one-to-one because α∗L
extends the action αL. To prove the continuity of ϕ, suppose αg ∈ O = {f ∈
H(X) : f(K) ⊆ U}, where K ⊆ X is compact and U ⊆ X is open. Using
the compactness of K and the continuity of α∗L, we can find a neighborhood
V of g such that ϕ(V ) ⊆ O. Hence, ϕ is continuous.
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It remains to show that if O ⊆ G is open, then ϕ(O) is open in ϕ(G).
Let O ⊆ G be open. Then ψ(O) is open in ψ(G). Let W ⊆ X be open such
that ψ(O) = W ∩ ψ(G). Define B = {f ∈ H(X) : f(ψ(eG)) ∈ W}. Then B
is open in H(X) and ϕ(O) = B ∩ ϕ(G). Hence, ϕ(O) is open in ϕ(G).

(iii)⇒(i) follows directly by Lemma 3.2.

Fact 3.4 (Brouwer). The Cantor cube {0, 1}ℵ0 is the unique (up to
homeomorphism) non-empty , compact , metrizable, zero-dimensional , per-
fect space.

Now we are ready to prove our main result.

Theorem 3.5. Let G be a non-Archimedean and second countable group,
and let X be a compact , metrizable, zero-dimensional G-space. Then

(1) there exists a topological group embedding ϕ : G ↪→ H(C);
(2) there exists an embedding ψ : X ↪→ C, equivariant with respect to ϕ,

such that ψ(X) is an equivariant retract of C with respect to ϕ and ψ.

Proof. By Theorem 3.3, there exists a compact, second countable (and
thus metrizable) zero-dimensional space Y such that H(Y ) contains G as a
topological subgroup. We may as well assume that all homeomorphisms of
Y corresponding to elements of G transform a certain base point y0 ∈ Y
onto itself (if not, replace Y with a disjoint union Y ∪ {y0} and redefine
those homeomorphisms in an obvious way).

Let us identify the action of G on X with a homomorphism w : G →
H(X), and let D be a copy of the Cantor set. By Brouwer’s theorem, the
space C = X × Y ×D is homeomorphic to the Cantor set, and, clearly, the
map ϕ : G→ H(C),

g 7→ (w(g), g, idD) ∈ H(X)×H(Y )×H(D) ⊆ H(C),
is a continuous homomorphism, thus turning C into a G-space. This ho-
momorphism is also an embedding, for its composition with the projection
onto H(Y ) is the identity mapping, so it is one-to-one and the inverse is
continuous.

We define ψ : X → C by x 7→ (x, y0, d0), where d0 ∈ D is any base point,
and the retraction r : C → ψ(X) by r(x, y, d) = (x, y0, d0). Then ψ and r
are equivariant, and the proof is complete.

Theorem 3.6. H(C) is universal in the class of all non-Archimedean,
second countable groups, that is, every such group is topologically isomorphic
to a subgroup of H(C).

Final Remarks. (1) By Theorem 1.5.1 of [1], the group S∞ is also
universal in this class.

(2) The group H(Iℵ0) is universal in the class of all second countable
topological groups, where I is the closed interval [0, 1] (see [17]). Moreover,
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by [10], the topological transformation group 〈H(Iℵ0), Iℵ0〉 is universal in
the class of all compact, metrizable G-spaces with second countable acting
group G.

(3) The action on C which we defined in the proof of Theorem 3.5 intrin-
sically depends on the original action of G on X, as the following example
shows.

Example 3.7. Let α : S∞ × C → C be the natural “permutation of
coordinates” action

α(g, (xn)) = (xg(n)).

Let 0 and 1 denote the two constant sequences of C. Let H = {0, 1} ⊆ C.
Consider H as an S∞-subspace of C.

Claim. H is not an equivariant retract of C with respect to ϕ = idS∞
and ψ = idH .

Proof. The Cantor cube C is an S∞-ambit under the action α, that is, it
contains a point whose orbit is dense in C. In fact, all points which contain
infinitely many 0’s and infinitely many 1’s have dense orbits. Hence, every
image of C under an equivariant map is also an S∞-ambit. However, H is
not an S∞-ambit.
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