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Menger curvature and Lipschitz parametrizations
in metric spaces

by

Immo Hahlomaa (Jyvéskyld)

Abstract. We show that pointwise bounds on the Menger curvature imply Lipschitz
parametrization for general compact metric spaces. We also give some estimates on the
optimal Lipschitz constants of the parametrizing maps for the metric spaces in Q(g), the
class of bounded metric spaces E such that the maximum angle for every triple in F is
at least m/2 + arcsine. Finally, we extend Peter Jones’s travelling salesman theorem to
general metric spaces.

1. Introduction. In this paper E is always a metric space and d :
E x E — R is a metric on . We define

d(E) = sup{d(z,y) : 7,y € E},
and for x € E and r > 0,
B(z,r)={y€ E:d(y,z) <r}.

Let {x,y, 2z} be three distinct points in a metric space and ¢ an isometry
from {z,y,2} to R% For {z,y, 2} the angle at x, denoted by <yxz, is the
angle at vertex i(x) of the planar triangle whose other vertices are i(y) and
i(z). Using the cosine formula we can write

d(fL’, y)2 + d(xa 2)2 - d(y7 2)2

2d(z,y)d(z, 2)
We also denote the maximum angle of {z,y,2} by max<{x,y,z}. The
Menger curvature of the triple {z,y, z}, denoted by c(z,y, z), is the inverse

of the radius of the circle passing through i(x), i(y) and i(z). By elementary
plane geometry

<{Yrz = arccos

2sin <xyz
1 -t
( ) C(x7 y7z) d(fL‘,Z) Y
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from which we easily get

\/(dl + dy + dg)(dl +dy — dg)(dl —dy + d3)(—d1 + dy + d3)
didods ’

where d; =d(z,y), do=d(y,z) and d3=d(x, z). The condition ¢(z,y,z)=0
means that the maximum distance in {z,y, z} is the same as the sum of the
other two distances.

Karl Menger introduced this definition of curvature in [10]. In his termi-
nology a metric space F has at a point p the curvature K/ (p) if c¢(z,y, z) —
Ky (p) as the distinct points z, y and z converge independently and simul-
taneously to p. He proved that a simple metric arc I" such that Ky;(p) =0
for all p € I' and such that each subset of four points of I is isometric with
a subset of R? is isometric with a segment of R. Schoenberg showed in [12]
that the latter condition in this statement can be replaced by the weaker
condition that for any four points of I" the so-called ptolemaic inequality is
satisfied.

Menger curvature has turned out to be a useful tool for studying relations
between rectifiability, Cauchy integral and analytic capacity. For 21, z9, 23
€ C we have

(2) c(z1, 22, 23)° = Z

=~ (201) = 20(3)) (Zo(2) — Z0(3))

c(x,y,2) =

1

where o runs through all six permutations of {1, 2, 3}. This relation between
Menger curvature and the Cauchy kernel 1/z, z € C, was found by Melnikov
in [8]. We say that F' C C is 1-regular if there exists C' < oo such that
C~lr < HY(F N B(x,7)) < Cr whenever x € F and r € ]0,d(F)[, where
H! is the 1-dimensional Hausdorff measure. In [7] Mattila, Melnikov and
Verdera proved that for a compact 1-regular set F' C C the Cauchy singular
integral operator is bounded in L?(F) with respect to the restriction of !
to F' if and only if F' is contained in a 1-regular curve. They first proved, by
using earlier work of David and Semmes (see [4]) that the latter condition
is satisfied if and only if there exists M < oo such that

“S c(z1, 22, 23)2 dH 21 dH 2o dH 25 < Md(B)
(FNB)3

for every ball B in C. Using the identity (2) they obtained the final conclu-
sion.
David and Léger have proved that if ' C C with H!(F) < oo and

S S S c(z1,22,23)2 dH 'z dH 2o dH 23 < o0,
FFF
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then there are rectifiable curves I, s, ... such that

Hl(F\ Dr) = 0.
=1

We say that a set is a rectifiable curve if it is the image of a bounded interval
under a Lipschitz map. Léger’s proof can be found in [6]. David used this
theorem when he proved in [3] that if F C C is compact with H!(F) < oo
and HY(F N I") = 0 for every rectifiable curve I', then F is removable for
bounded analytic functions. This last conclusion means that for every open
set U containing F' every bounded analytic function in U \ F' has an analytic
extension to U or, equivalently, every bounded analytic function in C\ F is
constant. In [13] Tolsa proved that a compact set F' C C is not removable
for bounded analytic functions if and only if F' supports a positive Radon
measure 4 such that p(B) < d(B) for every ball B in C and

“Sc(zlv 29, 23)° dpz dpzs dpzs < oo.

We say that E has the complete property Q if max <t{z,y,z} > /2 for
every triple {z,y,z} C E. If there is a > 0 such that max <{x,y, 2z} >
m/2 + « for every triple {z,y,2z} C E, we say that E has the complete
property * (with a constant «). This means that

(3) d(z,2)* > d(z,y)? + d(y, 2)* + 2d(x, y)d(y, z) sina

for {x,y,2} C E whenever d(z,z) = d({z,y,2}). We also denote by §2(¢),
0 < ¢ < 1, the set of bounded metric spaces which have the complete
property * with the constant arcsine. We say that FE has the property Q*
at a point x € E if there exists 0, > 0 such that B(x,d,) has the complete
property Q*. If E has the property Q* at each of its points, we say that E
has the property *.

Compact connected metric spaces with properties 2 and 2* have been
studied in [2]. In this paper we prove that pointwise bounds on the Men-
ger curvature imply Lipschitz parametrization for general compact metric
spaces. We also give rather sharp estimates on the Lipschitz constants of
the parametrizing maps. In Theorem 3.7 we show that for E € (e) there
exist A C [0,1] and a surjective map f: A — E such that

A(B) S |s — 1) < d(7(s), /(6) < d(B) -] —

for all s,t € A.
For FF C R™ and a cube Q C R™ set
Br(Q) =infd(Q)~" sup{d(y, L) : y € F N3Q},

where the infimum is taken over all lines in R™ and 3@ is the cube with the
same center as () and sides parallel to the sides of (), but whose diameter
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is 3d(Q). A cube Q C R™ is dyadic if Q = [[1—,[ki27%, (k; + 1)27F], where
ke€Zand k; € Z for i = 1,...n. P. W. Jones proved in [5] that a compact
F C R" is contained in a rectifiable curve if

(4) S 8r(Q)%(Q) < o,
Q

where the sum is taken over all dyadic cubes in R™. F. Ferrari, B. Franchi
and H. Pajot have extended this result to geodesic metric spaces of a certain
type. Theorem 5.3 is some kind of an analog in the setting of general metric
spaces.

In fact, Jones proved in the case n = 2 that for a compact F' C R the
condition (4) is satisfied if and only if F' lies in a rectifiable curve. In [11]
Okikiolu extended this result to general n € N.

2. Order. We say that an injective map j : E — R is an order on E
if for all x,y, 2 € F the condition j(x) < j(y) < j(z) implies that d(z,z) >
max{d(z,y),d(y, 2)}.

If j: E — Ris an order on E and E' C E, clearly the restriction
jlgr + B/ — Ris an order on E’. For A C R a function j : A — R is an order
if and only if j is strictly increasing or decreasing. If j; and jo are orders on
E then js = so ji, where s = jo ojl_1 : j1(E) — R is an order on j1(E). On
the other hand, if j is an order on F and s: j(E) — R is strictly increasing
or decreasing, then soj is also an order on F. If E has an order, by the next
proof we can construct one in the following way: Choose a,b € E, a # b,
and set, for all x € F,

5) i) = {;d(l‘, a) if d(z,b) > max{d(z,a),d(a,b)},

For {z1,...,zp} C E, n € N, we will use the notation zxs ...z, if there
is an order j on {z1,...,2,} such that j(z;) < j(zig1) fori=1,...,n—1.
In particular, zyz will symbolize the relation d(x, z) > max{d(z,y),d(y, 2)}.

(z,a)  elsewhere.

PROPOSITION 2.1. Let E be a metric space such that each subset of E
of at most four points has an order. Then the whole space E has an order.

Proof. Choose a,b € E, a # b, and define j : E — R by (5). We check
first that j is injective. Let x,y € F with x # y. Clearly j(z) # 0 = j(a) for
x # a and j(z) # j(y) when d(x,a) # d(y,a). Hence we can assume that
z,y # a and d(z,a) = d(y,a). Let ¢ be an order on {a,b,z,y} C E. Since
d(z,a) = d(y, a), we have either i(x) < i(a) < i(y) or i(y) < i(a) < i(z). We
can assume that i(z) < i(a) < i(y) is true. If now i(b) < i(a), then d(x,b) <
d({z,a,b}) and yab. Thus j(z) = d(z,a) # —d(x,a) = —d(y,a) = j(y). If
i(b) > i(a), we conclude similarly that j(x) < 0 and j(y) > 0.
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We next show that every subset of E which consists of five points has an
order. Let {1, x9,x3, 24,25} C E be such a set and let i : {1, 29, z3, 24} —
R be an order such that i(xy) = k for k = 1,2, 3,4. Choose I, m € {1,2,3,4},
I < m, such that d(xs5, ;) < d(zs,2,) and d(zs5, ) < d(zs,2,) for n €
{1,2,3,4} \ {l,m}. Then m = [ + 1. Indeed, otherwise | < n < m with
some integer n and 2, Z,,. Therefore for any order i' on {x;, Xy, T, x5}
either i/ (z;) < i/ (zy,) < () or ¢/ (zm) < i (zy) < ¢/ (27). Thus d(xs5, x,) <
max{d(xs, z;),d(x5, zm)}, which contradicts the choice of I and m.

If x5zy2y41, set p = 1—1/2. If ;pwsxp4 1, set p = [+1/2. Finally, if x52;41 2,
set p =14 3/2. Define h : {x1, z2,x3, 24,25} — R by setting h(zy) = i(xy)
=k for k =1,2,3,4 and h(zs) = p. We claim that h is an order. Clearly h
is injective. We have to show that for every triple {k,m,n} C {1,2,3,4,5}
the condition h(xy) < h(zy) < h(xy,) implies that zgzmy,z,. For {I,1+ 1,5}
this is true by the definition of h. Obviously, it suffices to check the triples
of indices which contain 5.

If | =1, then h(zs) < 1+ 3/2 < h(z3) < h(xy4). Since i is an order
on {x1,x2,x3, x4}, we have zix324. Thus for any order ¢ on {z1,x3, x4, 25}
either ¢/(x1) < #'(x3) < i'(x4) or i'(x4) < i'(x3) < i'(x1). Since d(zs5,z1) <
d(x5,x3) and i’ is an order, necessarily x5x324.

If | = 2, then h(xy) < 1 —1/2 < h(zs) < 1+ 3/2 < h(x4). Since i
is an order on {x1,x9,x3,24}, we have xjz9x4. Thus for any order ¢’ on
{1, 2,24, 25} either i'(z1) < i'(x2) < i'(x4) or V'(z4) < ' (x2) < i'(21).
Since d(z5,z2) < d(xs,21) and d(zs,z2) < d(xs,24) and ' is an order,
necessarily ri1x5x4.

If | = 3, then h(xs) > 1 —1/2 > h(x2) > h(x1). Since ¢ is an order
on {x1,x2,x3, x4}, we have z1xox3. Thus for any order i’ on {z1,x2, x3, x5}
either #/(x1) < ¢'(z2) < i/'(x3) or ¢'(x3) < i'(x2) < i'(x1). Since d(zs5,x3) <
d(x5,x9) and i’ is an order, necessarily x5xox1.

Suppose that [ < 2, k € {l 4+ 2,4} and we have x5x;x;41 Or T]T5T)41.
Then h(zs) < 1+ 1/2 < h(x;41) < h(zy). Since ¢ is an order on {x1, z9,
x3, 24}, we have x;x;12,. Thus for any order i on {x;, 11, zk, x5} either
i'(zy) < "(x131) < @ (xg) or i (xg) < i'(x141) < i'(x;). Since d(zs,z;) <
d({xs5, 111, 2}) and ' is an order, necessarily x5x;1Ty.

Suppose that [ < 2, k € {l + 2,4} and we have x;x52111 or T5T1117.
Then h(x;) < 1+ 1/2 < h(zs) < 1+ 3/2 < h(zy). Since ¢ is an order on
{1, 29,3, 24}, we have x;x;1 2. Thus for any order i’ on {x, z;11, T, x5}
either i’ (z;) < @' (x141) < @' (xx) or i’ (x) < @' (x141) < @' (27). Since d(x5, x141)
< d({zs,x;,2141}) and d(xs5, x141) < d(x5, 7)) and ¢’ is an order, necessarily
TIT5T.

Suppose that | <2, k € {l + 2,4} and zszx;41. Then h(zs) < h(x;) <
h(zy). Since i is an order on {x1,x2,x3,24}, we have x;x; 2. Thus for
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any order i’ on {x;, x;11,xk, x5} either i’ (x;) < @' (z01) < ¢/ (xg) or ' (zy) <
i'(x131) < i'(xp). Since x5zyx141 and @' is an order, necessarily xzxxy.

Suppose that | <2, k € {{+2,4} and z5x;112;. Then h(x;11) < h(xs) =
I +3/2 < h(xg). Since i is an order on {x1,x2, 3,4}, we have x;z112k.
Thus for any order i’ on {x;, x;41, x, x5} either i’ (z;) < ¢’ (x141) < () or
i'(zk) < ' (x141) < ' (x7). Since d(z5, x141) < d(z5,x)), 5214127 and 7 is an
order, necessarily x;41T5%.

Suppose that [ > 2, k € {1,] — 1} and we have x;z5x;41 or x5x1417).
Then h(zs) > 1+1/2 > h(x;) > h(zy). Since 7 is an order on {z1, x2, 3,24},
we have xpziz;y1. Thus for any order i/ on {wzy,z;,xi11,25} either
i'(z) < i'(x1) < @'(x1341) or '(x41) < ¥ (x;) < '(xg). Since d(xs,z141)
< d({xs,x;,2141}) and i’ is an order, necessarily x5x ;.

Suppose that I > 2, k € {1,] — 1} and we have xsx;x;11 or x;T5x141.
Then h(zi41) > 1+ 1/2 > h(zs) > 1 —1/2 > h(xy). Since 7 is an order on
{1, 22, 73,24}, we have xpx;z; 1. Thus for any order ¢’ on {xzy, 7, xj11, 25}
either ¢/ (x) < #/(x;) < i'(xy41) or ' (zy1) < i'(x;) < '(xy). Since d(xs,x;)
< d(wzs,x141,2;) and d(zs,2;) < d(xs,z) and i’ is an order, necessarily
LpI5T141-

Suppose that I > 2, k € {1,1—1} and z5x;12;. Then h(xg) < h(z11) <
h(xs). Since ¢ is an order on {x1, x9, x3, x4}, we have zyx;x;+1. Thus for any
order ¢ on {xg,x;, x111, x5} either i/ (zy) < ' (x;) < i'(x141) or V' (x141) <
i'(z;) < ' (xy). Since x5z and @ is an order, necessarily x5z 2.

Suppose that [ > 2, k € {1,] — 1} and x5z2;11. Then h(xg) < h(zs) <
h(z;). Since i is an order on {x1, x2,x3, x4}, we have xx;z11. Thus for any
order ¢ on {xg,x;, x111, x5} either i (zy) < ' (x;) < ' (x141) or V' (x141) <
i'(x;) < i'(zk). Since zszyx;4q and d(xs,2;) < d(zs,xp) and @' is an order,
necessarily rirsr;.

So we have shown that every subset of F which consists of five points
has an order. Let now z1,z2,23 € F and 0 < j(z1) < j(z2) < j(x3). Let
i be an order on {a,b,x1,x2,x3} such that i(a) < i(b). Since d(xg,b) <
max{d(xy,a),d(a,b)} for k = 1,2, 3, necessarily i(xy) > i(a) for k = 1,2, 3.
Since d(z1,a) < d(z2,a) < d(acg, a), we further have i(x1) < i(z2) < i(z3).
This implies that z1zox3.

Let next z1,z2,23 € F and j(z1) < 0 < j(z2) < j(x3) and let ¢
be an order on {a,b,x1,x2,x3} such that i(a) < i(b). Since d(zy,b) <
max{d(zg,a),d(a,b)} for k = 2,3, necessarily i(xy) > i(a) for k = 2,3.
Since d(z2,a) < d(z3,a), we have i(xa) < i(x3). Moreover, i(z1) < i(a),
because xiab. So i(z1) < i(a) < i(x2) < i(xz), which implies zjz2x3.

Let next x1, 22,23 € E and j(z1) < j(z2) < 0 < j(x3) and let ¢ be an
order on {a,b, z1,x2, 23} such that i(a) < i(b). Since zyab for k = 1,2, nec-
essarily i(xg) < i(a) for k = 1,2. Since d(z2,a) < d(z1,a), we have i(z1) <
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i(z2). Moreover i(z3) > i(a), because d(z3,b) < max{d(zs,a),d(a,b)}. So
i(z1) <i(z2) <i(a) <i(xs), which implies z1xox3.

Finally, let z1, 29,23 € E and j(z1) < j(z2) < j(x3) < 0 and let i be
an order on {a, b, x1,x2, r3} such that i(a) < i(b). Since xpab for k = 1,2, 3,
necessarily i(x) < i(a) for k = 1,2,3. Since d(z3,a) < d(x2,a) < d(z1,a),
we have i(z1) < i(x2) < i(z3). This implies z12223. »

The following two lemmas will be used in Section 5.

LEMMA 2.2. Let K > 1 and e > K/(K +1). Suppose that E is a metric
space of four points such that d(z,y) < Kd(z,w) for all z,y,z,w € E,
z # w, and d(x,z) > d(z,y) + ed(y, z) whenever x,y,z € E are such that
d(z,z) = d({z,y,2}). Then either E has an order or E = {x1,x9,x3,24},
where x1T2T3, TaT12y, ToT3T4, T17473, ed(x1, 22) < d(23,74) < e 1d(21, 22)
and ed(x1,14) < d(w2,23) < e (w1, 24).

Proof. Let E = {x1,x2,23,24} be such that xjzox3. We define §
d(E)/K and d;; = d(x;,xj) for 4,5 = 1,...,4. If x;xj21, we have d;j
dir — Edjk < 5(K — 6).

Suppose first that z1xox4 and z1x3x4. Then dog — dog > di1g4 —di2 —do3
dy3 + edsg — dig — dog > dig + edag + edsy — d12 — daz > 6((e — 1)K + ¢)
> 0 and dog — d3g > dig — dia — (dia — ediz) > e(dia + edaz) — diz >

IA I

Y

(e —1)(K —e)+¢e%) =d((e — 1)K +¢) > 0. Thus we have z1x02374.

If x129x4 and xyx4x3, then dog — dog > doz — (d14 — edi2) > dog — (d12 +
d23 — 8d34 - €d12) > 5((6 - 1)K -f-S) > 0 and d23 - d34 > d23 - (d12 + d23 —
edyy) > e(dig + edag) — dig > 6((e = 1)(K —¢) + 62) > 0, which implies
T1X2X4X3.

If x12429 and xyx4x3, then dsg — dog > dio + edog — d1g — (d12 — edyg) >
(e =1)K +¢€) >0 and d3g — do3 > d12 + edaz — d14 — do3 > d14 + edas +
edog — d14 — dog > 5((6 - 1)K + 6) > 0, which implies z1z4x2x3.

If XoX1X4 and T3T124, then d34 — d24 Z d13 + Ed14 — (d12 + d14) Z
dio + edos + ed14 — (d12 + d14) > 5((8 — I)K +¢e) > 0 and d3g — do3z >
dyo + edog + edig — daz > 0((e — 1)K + 1 + &) > 0, which implies z4x12973.

Assume now that xox114 and x12473. Since dog+edss —doz > dio+edig+
E(d12+8d23—d14) —d23>(5((62—1)K+1+€):5((8—1)K+1)(1+€) >0 and
dog+edoz—dgs > dio+edis+edoz— (d12+d23 —€d14) > 5((5— 1)K+2€) > 0,
we must have zox3xs. Now dog = d34 + c1dagz = diz2 + €2d14 and d3q =
dyo + e4da3 — £3dy4 for some € < £1,e9,e3,e4 < 1. This gives (e2 + e3)d14 =
(€1 + €4)da3, from which we get ediy < doz < e 'dyy.

No other alternatives are possible because of the triangle inequality.
Namely, zi1zoxs and z3zzix4 would imply dsqs — dog — dog > dio + edos +
ediy — (d14 — €d12) — dog > 5(2(6 — 1)K + 1+ E) > 0. If zyx429 and
x1x3%4, then dog — dog — dza > doz — (d12 — ed1a) — (d1a — e(di2 + eda3)) >
5(2(6 — I)K + 1+ 82) > 0. If z1x429 and x3x124, then dgg — dog — dog >
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dio + edog + edig — <d12 — €d14) —dog > 5((8 — I)K + 22’5) > 0. If x9z124 and
T12374, then doy — d3g — dog > dig + edi2 — (d14 — e(d1a + eda3)) — daz >
5((2—=1)K +2)>0. m

LEMMA 2.3. Let K > 1 and ¢ > (4K —1)/(4K +1). Suppose that E is
a metric space such that #E # 4, d(x,y) < Kd(z,w) for all x,y,z,w € E,
z # w, and d(x,z) > d(z,y) + ed(y, z) whenever x,y,z € E are such that
d(z,z) =d({z,y,z}). Then E has an order.

Proof. We assume that there are at least five points in £. We need to
show that every quadruple of E has an order. Suppose that this is not
true and let {z1,z9,x3, 24,25} C E be a subset of five points such that
{x1, 2, 23,24} has no order. By the previous lemma we can assume that
T1X2x3, ToT124, Lox3x4 and z1z4x3. We set 6 = d(E)/K and d;j = d(x;, x;)
fori,j=1,...,4. If x;zx), we have d;; < dijg, — edj, < 6(K —¢€).

Applying the proof of Lemma 2.2 to the quadruples {z1,x9, 3, 25} and
{x1, 24,23, 25}, we see that the following eight cases are not possible:

rixoxs and x3x1TH,
rixsre and xix3TH,
r1x5r9 and x3x1Ts,
rox1xs and T1x3Ts,
rixgrs and x3x1TH,
rixsrs and xix3TH,
r1x514 and x311Ts,

r4x1x5 and T1x3Ts.

Furthermore, zox125 and z12523 implies edis < dog < e 'dys. Similarly, if
zaz1zs and z1xs523, we have edis < dsq < e 'dys.

The next three alternatives are not possible by the triangle inequality:
If T1X5T9 and T1T5T4, then d24 — d25 - d45 Z d12 + €d14 - (dlg — €d15) —
(dig —edys) > 0((e — 1)K + 2¢) > 0. Similarly, if 212529 and z1x425, then
d24—d25—d45 > d12+5d14—(d12—8d15)—(d15—€d14) > 5((6—1)K+2€) >0
and if zjxows and zixs54, We have doy — dos — dys > dig + edia — (dis —
edig) — (d1g — edys) > 6((e — 1)K + 2¢) > 0. The alternative zozq1xs and
r4T1T5 is impossible, because in that case dog + edos — dgs > dig + edio +
e(dys + edi2) — (dig + dis) > 6((e = 1)K + ¢ + 82) > 0, dog + €dys — dos >
dis + edyg + €(d15 + Ed14) — (d12 + d15) > (5((6 — 1)K + e+ 62) > 0 and
dos+edys —doyg > d12+€d15+€(d14+8d15)—(d12+d14) > 5((5—1)K+E+52)
> 0.

By the above examination not more than the following six cases are
possible:
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(6) TaX1T5, T1T5T3, T1T4T5,
(7) TaT1T5, T1T5T3, T1T5T4,
(8) T1T2T5, T1T5T3, T4T1T5,
9) T1T5T2, T1T5T3, T4T1T5,
(10) T1T2x5, T1T3T5, T1T4T5,
(11) r1Toxs5, r1T5x3, T1X4X5.

From (6) it follows that d45 S d15 — €d14 S d15 - €2d23 S d15 - €3d15 <
(1—¢3)(K —¢)d < §, which is a contradiction. In the case (7) we would have
dys < dyg — edys < dig — €2doz < d14 — €3dy4 < 8. Similarly, in the case (8),
dos < di5 — edis < dis5 — 62d34 < di5 — 63d15 < 6, and (9) would imply
d25 S d12 - Ed15 S d12 - €2d34 S d12 - €3d12 < 0. Thus we must have (10)

T (11). Since doy + edos — dys > dio + edig + 6(d15 —dy2) — (di5 — €d14) >
0((e=1)K+14¢€) >0 and dog + edys — das > di2 + edyg + e(d15 — d14) —
(dis — edi2) > d((e — 1)K +1+¢) > 0, we further have zox5z4. Thus
dig + e1dis = dos = dus + e2das = di5 — e3d1s + €2(d15s — €4d12) for some
€ <€1,€9,€3,64 < 1, from which we get

2(d12 + d14)
1+e

Now it follows from (10) that dss < di5 — edig < 2(1 + E)_l(dlg + d14) —
€(d12 —|—€d23) <2(1 +6)71(d12 + d14) — 6(d12 +€2d14) < (4(1 +€)71 —€— 83)
(K —£)6 < (4(14¢)71 =2e2)(K —£)§ < 6, and (11) yields d35 < di3 —edy5 <
di2 4 das —52(d12 +d14) < dy2+dog —62(d12 —G—Sdgg) < (2 — g2 —63)(K—€)5
<di. =

e(di2 +dia) < dis <

If ¢(z,y,z) = 0 for every triple {z,y, 2z} C E, we can apply the previous
lemmas to finite subsets of E. Further by using Proposition 2.1 we easily
get the following result.

PROPOSITION 2.4. Let E be a metric space such that c(x,y,z) = 0 for
any pairwise distinct points x,y,z € E. Then E is isometric with a subset
of R or, alternatively, for some positive numbers a and b, isometric with
a set {(0,0),(a,0),(0,b),(a,b)} C R? equipped with the metric di, where
di(z,y) = |z1 —y1| + |22 — yo| for x = (21,22),y = (y1,92).

In fact, Menger proved in [9] that a metric space of more than n + 3
points for which each of its subsets of n+ 2 points is isometric with a subset
of R™, is isometric with a subset of R". He also showed that for each n there
is a metric space of n + 3 points for which each of its subsets of n + 2 points
is isometric with a subset of R™, but which is not isometric with a subset
of R™. For the proof see also [1].
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3. Metric spaces with the property Q*. We will first show that a
compact metric space with the property Q* is a Lipschitz image of a compact
set of real numbers.

LEMMA 3.1. Let E be a metric space which has the complete property 0*
with a constant a > 0, and let

d(E)V1+sina
2(v2+ /1 +sina)

Then for alla € E and r < R there exist A C [0,1] and a bijection f : A —
B(a,r) such that

d(B(a,r))|s —t] <d(f(s), f(t)) <
for all s,t € A.
Proof. Let a€ E, r<R and e=sin« (>0). For every triple {z,y,2} CFE
we have by the assumption d(z,y)? > d(z,2)? + d(y, 2)? + 2ed(x, 2)d(y, 2)
whenever d(z,y) = d({x, z,y}). Set
d = ( V2 + 1>r.
Vi+te

Since d’ < d(E)/2, there exists b € E such that d(a,b) > d’. Define a
function

g: B(a,r) — [d(a,b) — r,d(a,b) + 7]
by setting g(z) = d(x,b). Let x,y € B(a,r). Now
d(z,b)? + d(y,b)? + 2ed(z, b)d(y, b) > 2(d(a,b) — r)* + 2(d(a,b) — r)*
>2(1+¢e)(d —r)? =4r* > d(z,9)?,
and thus d(x,y) < d({z,b,y}). Suppose d(x,b) > d(y,b). Since
d(z,b)* > d(y,0)* + d(z,y)* + 2ed(y, b)d(z,y) > (d(y, b) + ed(z,y))?,
we get
ed(x,y) < d(x,b) —d(y,b) = |g(x) — g(y)| < d(z,y)
and further for s,t € g(B(a,r)),
s =1l < dlg™ ()97 (1) < Zls— 1,

where g~ : g(E) — E is the inverse of g. If B(a,r) contains at least two

points, we take A = h=(g(B(a,r))) C [0,1] and f =g toh: A — B(a,r),
where h(s) = d(B(a,r))s + inf g(B(a,r)). m

Now we get immediately the following result.
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PROPOSITION 3.2. Let E be a compact metric space with the property (2.
Then there exist A C [0, 1] and a Lipschitz surjection f : A — E. (Moreover,
[ and A can be chosen such that A =J;_, A;, where n € N, the sets A; are
compact and the restrictions f|a, are bi-Lipschitz maps.)

By the proof of Lemma 3.1 it is clear that we do not have to suppose so
much in the previous proposition.

PROPOSITION 3.3. Let E be a compact metric space and suppose that for
all a € E there arer >0, a >0 and b € E'\ {a} such that max <{b,c,d} >
7/2 + « for all ¢,d € B(a,r). Then there exist A C [0,1] and a Lipschitz
surjection f: A — E.

Further we get the following corollaries.

COROLLARY 3.4. Let E be a compact metric space and suppose that for
all a € E there is v > 0 such that c(x,y, 2)d(z,y) < V/3 for x,y,z € B(a,r).
Then there exist A C [0,1] and a Lipschitz surjection f: A — E.

Proof. By (1), the condition ¢(z,y, z)d(z,y) < v/3 implies that sina <
V/3/2, where « is the angle at z for the triple {z, v, z}. So by the assumption,
for every a € E there is r > 0 such that max <t{x,y, 2z} > 27/3 whenever
x,y,z € B(a,r). Since E has the property Q% the corollary follows from
Proposition 3.2. =

COROLLARY 3.5. Let E be a compact metric space and suppose that
there is M € R such that c(x,y,z) < M for all z,y,z € E. Then there exist
A C [0,1] and a Lipschitz surjection f: A — E.

Now we are going to show that every bounded metric space with the
complete property 2% is a Lipschitz image of a bounded set of real numbers.
We also try to estimate the optimal Lipschitz constant. For that purpose we
use the following lemma.

LEMMA 3.6. Let E be a bounded metric space which has the complete
property Q* with a constant a > 0, and let

d(E)
V2V/1 +sina
and a € E. Then d(z,y) < R for all z,y € E \ B(a, R).
Proof. Let a € E and z,y € E\ B(a, R). Suppose d(z,y) > R. Then
max{d(z,a),d(y,a),d(x,y)} > V21 +sina R = d(E),

which is a contradiction. m

THEOREM 3.7. If a bounded metric space E has the complete property 0*
with a constant o > 0, then there exist A C [0,1] and a bijective map
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f:+A— E such that

sin «v 9

|s = t] < d(f(s), f(t)) < d(E)

d(E) |s — 1|

2sina
for all s,t € A.
Proof. Let a € E, d=d(FE), ¢ = sina and
1 V2
V1 + 4de + 22 \/3+s+2\/§a\/m}7

)\:max{

d
B V2/1+e
For » > 0 define
Ary/1
E,={z € E: )\ <d(z,a) <r}, 5,,:%.

Let r > 0 and x1, 22, x3 € E,.. We shall first show that one of the distances
d(x1,x2), d(x1,z3) and d(ze,z3) must be less than ¢,. Set d; = d(z;,a) and
dij = d(x;,x;) for i,j = 1,2, 3, and suppose di < dp < d3. Then at least one
in each of the following three pairs of inequalities is true:

(12) d3 > d3 + d2y + 2edydy,
(13) d2y > d? + d3 + 2ed1dy,
(14) d3 > d? + d25 + 2edydy3,
(15) A5 > d? + d3 + 2edyds,
(16) d% > d% + d%3 + 26d2d23,
(17) d35 > d3 + d2 + 2edyds.

At least one of inequalities (12), (14) and (16) must be true. Otherwise,
we would have (13), (15) and (17). In that case, the smallest distance in
{1, 29,23} would be at least \/d% + d% + 2ed;dy and another one at least

\/ d? + d% + 2edyds. The third distance is, of course, not more than ds + ds.
Now we have

di + d3 + 2edids + di + d3 + 2ed1ds
+ 25\/61% + d% + 2€d1d2\/d% + dg + 2edqds — (dg + d3)2
= Qd% + 2edids + 2edqds + 26\/d% + d% + 2edqdy \/d% + d% + 2ed1ds — 2dads
> 2((Ar)? + 2e(Ar)? 4+ 2¢(1 + &) (Mr)? — 12)
=2r%((1 +4e +2e%)N% — 1) > 0,
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and thus we would have max <t{z1, z2, x3} < 7/2 + «, which is a contradic-
tion. If z,y € E, are such that d(z,y) < max{d(z,a),d(a,y)}, then

Ayl +¢
V2

by (3) and the choice of A\. Thus min{dy2,d13,d23} < 0,. If 2,y € E, are
such that d(z,y) = d({x, a,y}), then

d(z,y) > \/d(x,a)? + d(y,a)? + 2ed(x, a)d(y, a) > /2(Mr)2 + 2e(\r)2
=MV2V1 +e.

This means that for all » > 0 and x,y € E, either d(x,y)
> 20, or d(x,y) < 0, and in the latter case d(z,y) < min{d(z,a),d(y,a)}.
Further E, has a unique decomposition into two sets A, and B, such that
d(A;) < oy, d(By) < 6, and d(A4,,B,) > 2§,. (If E. # () we can choose
z € E, and take A, = {x € E, : d(z,z) < ,} and B, = E, \ A;.)

Set -1 = E\ B(a,R) and G_; = (. For all k define sets Fj, and Gy,
inductively as follows. Let £ € N and suppose that we have defined Fj_1
and Gy_; such that Eyx-15 = Fi_1 U Gg_1. Suppose first that there exists
MR <7, < NF71R such that E,, NEye-1p # 0 and E,, N E\kp # 0. Choose
2p—1 € Ep, N Eyk-1p and wy € Ep, N Eyxp. Then we have the following
alternatives:

dz,y) <r(v/(e2—=1X2+1—-¢e)) <

(18) 2k—1 € Fr—1 and  d(2zk—1,wk) < 0py,
(19) 2k—1 € Fr—1 and  d(zk—1,wr) > 20y,,
(20) 21 € Gp—1 and  d(zgp—1,wg) < Or,,
(21) 2p—1 € Gp—1 and  d(zg—1,wg) > 20,

If (18) or (21) is true, we set F, = {x € E\ig : d(z,w;) < dyvp} and
G = E\xg \ F). Otherwise we put G, = {z € Exp : d(z,wi) < dysp} and
Fi = By p\Gr. I E,NEye 15 = D or EyNEyep = O for all \FR < 7 < \F1R,
we define F), and Gy arbitrarily so that E\kp = Fi, U Gk, d(Fi) < Oyep,
d(Gk) < (5)\kR and d(Fk,Gk) > 25}\kR.

Set F' = Upe_; Fi and G = |J,—( Gk. Then E = F UG U {a}. Define a
function ¢ : E — [—R, d] by setting

[ —d(z,a) forxe€ G,
9(@) = {d(az,a) for x € FU{a}.

We now show that g is bi-Lipschitz.
If z,y € Fy, or z,y € Gy, for some k € N, we have, by (3),

(22) ed(z,y) < |d(z,a) — d(y,a)| = [g(x) — g(y)| < d(z,y),
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because d(x,y) < dyxp implies d(z,y) < d({z,a,y}). The same is true for
x,y € F_1 by Lemma 3.6. If x € F}, and y € G}, for some k € N, we have

| < Wa) +dy,a) _ lg@@) —gly)l 2R _ V2
- d(z,y) d(z,y) ~ 20uwp MW1l+e
From now on we suppose that z,y € E are such that d(y,a) < d(z,a) and

x # a.

If d(y,a) < Ad(z,a), then
1-X _d(z,a)—d(y,a) _|9(z) —g(y)| _ d(z,a)+d(y,a) 1+
1+)\<d(x,a)—i—d(y, O dmy) S dma) —dya) ST1-x

Suppose d(y,a) > Ad(x,a). Then either x,y € F_; or x,y € Exx-1p U E\kp
for some £ € N. We have to check the case z € E\x-1p and y € Eyxp for
some k. Since d(y,a) < d(z,a) < d(y,a)/\, we have x € E,, ory € E,, . We
may assume that z € E,, . Then z,y, wy € Ej;.q)-

Suppose first that d(x, z;_1) < dye-1g, d(y, wr) < Oyrg and d(zp—1,wy)
< 0r,. Then we have either x € Fj,_1, y € Fj, and (18), or x € Gi_1, y € Gi
and (20). Since dyr-1p < 20y, we have d(x, zp_1) < Op,. Thus d(z,wy) <
d(x, zp—1) + d(zk—1, wg) < 20y, and so d(x,wy) < o, , because x,wy, € E, .
Since 0p, < 204(z,q) and x, Wy € Eyyq), we further have d(z,wy) < dg(z,q)-
Therefore d(x,y) < d(x,wg) + d(y,wr) < d4(z,a) + Oakp < 204(z,q)- Since
T,y € Ey(z,q), we have d(z,y) < dg(z,4) and (22).

Suppose now that d(x, zx—1) < Oye-1p, d(y, wx) < Oykp and d(zx—1, wi)
> 20,,. Then we have either x € Fj_;, y € Gy and (19), or z € Gj_1,
y € Fj and (21). Since dyk-15 < 20,,, we have d(z,z5—1) < dp,. Thus
d(x,w) > d(wg, zk—1) — d(z, 2x,—1) > dr, and so d(x,wy) > 20,,, because
z,wy, € By, . Therefore d(x,y) > d(z,wy) — d(y, wg) > 20, — Sxrg > O4(z,a)-
Since x,y € Eq(y.q), We have d(z,y) > 204(y,q) and

| < Y@ a)+dy.a) _lg@) —g(y)| _ 2d(x,a0) V2
B d(ZL‘,y) d(ﬂj,y) N 25d(r,a) AV1 ‘|—6'

The other cases can be treated similarly. The inequality

L=A_lg(@) —g(y)] _ 1+
1+X—  dx,y) ~— 1=\

holds for all z,y € E. Thus we get aset A C [0, 1] and a surjection f : A — E
such that

d(E)

1+vV2y/1+e1-\
V2yT+e 1+

s —t] <d(f(s), f(1))

1+v2V/T+e 1+
V2 T+e 1—-2A

< d(E) s — ¢
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and further the estimate

A(E) S ls 1] < d(f(s), f(1)) < d(E) - |s — 1

for all s,t € A. =

We now give an example of a compact and connected metric space which
has an order and the complete property €2, but which is not a Lipschitz image
of a bounded set of real numbers.

EXAMPLE 3.8. Let 1 <p <2and z € P\, x = (z5)2,, where 2, > 0
for every k. Set

n
E = {Zxkek—f—ten_H :neN te [0,$n+1]} U{x} C P,
k=1

where {ej, : k € N} is the standard basis of 7. Now j : y — ||ly||, is an order
on E and maps E onto [x1, ||z||p]. We check that every triple in E contains
an obtuse angle. Let

ni ng n3

ay = Zxkek, az = Zxkek +leny+1, a3z = Zzﬂkeka
k=1 k=1 k=1

where |la1]|, < [laz|lp < ||laz|lp, n1 < no < ng < oo, and t € [0, Zp,41]. Set

n9 n3
A= Z $£, B = Z :cz.

k=ni1+1 k=no+2
Now
d(ay,a3)® — d(ay, a2)® — d(az, a3)® = |la1 — as|Z — llar — az|? — ||laz — as]|}

— (Al 1 + B = (A+ 027 — ((@nyr = O + B

> (A, +B)YP — (A4 )P0 — (a7, — P + B)’/? >0,

because (a+0b)® > a®+b° for a,b > 0 and s > 1. So for {a1, as, ag} the angle
at as is obtuse. However, even

E':{Zxkek:nEN}CE

k=1

cannot be a Lipschitz image of a bounded set of real numbers when = & /.
Namely, if A C [0,1] and f: A — E’ is a Lipschitz map such that

{zn:xkek:nzl,...,no} C f(A),
k=1

the Lipschitz constant of f must be at least > %, xy.
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4. Connected, ordered and ptolemaic spaces. Let M be the class
of all bounded metric spaces. For £ € M we define

[(F) =inf{Lip(f): f : A— E is a surjection and A C [0, 1]},
where Lip(f) € [0, o0] is the Lipschitz constant of f. For A C M we set
L(A) = sup{l(E)/d(E) : E € A}.

Further for 0 < ¢ < 1 and A € M we put L(e, A) = L(Q(e) N A). Clearly
e — L(e, A) is a decreasing function on ]0, 1] for fixed A € M, and L(e, A) <
L(e,B) if A C B C M. By Proposition 2.4 we have L(1, M) = 3/2, and
L(e, M) < C/e with some constant C' > 0 by Theorem 3.7.

We denote by C the class of connected metric spaces, and by O the
class of metric spaces which have an order. We next show that L(e,C) =
L(e,0)=1/efor 0 <e < 1.

LEMMA 4.1. Let E be a connected metric space such that max <t{z,y, z}
> 7/2 for every triple {x,y,z} C E. If f : E — R is a homeomorphism
onto its image, then f is an order.

Proof. We can of course assume that F contains more than one point.
Suppose that f is not an order. Then there exists {x,y, 2z} C E such that

(23) flx) < fly) < f(2)

and d(z, z) < max{d(z,y),d(y, z)}. We can assume zzy, as max <\{z,y, z}
> /2. Define g : f(E) — R by setting g(a) = d(z, f~(a)), where f~! is the
inverse of f. Now g is continuous. Since f(E) is connected, [f(x), f(y)] C

f(E). Let b € [f(x), f(y)] be such that g(b) = max{g(a) : a € [f(x), f(y)]}-
Now b € |f(x), f(y)[ because of (23). Now

d(z, f7(c)) = g(c) 1 g(b) = d(=, (b))
ascTband
d(z, f7'(e)) = gle) 1 g(b) = d(z, f71(1))
as e | b, where d(z, f ( )) > 0. Further by the continuity of f~! we simul-
“(e)

taneously have d(f~!(c), f~'(e)) | 0. From this we conclude that E contains
a triple whose maximum angle is less than 7/2, which is a contradiction. =

PROPOSITION 4.2. L(e,C) = L(e,0) = 1/e for all € €]0,1].

Proof. Let 0 < e < 1. By Theorem 3.7 and Lemma 4.1 we have L(e,C)
< L(e, 0). Clearly L(e,0) < 1/e. Namely, if E € Q(¢) N O, it follows from
Theorem 3.7 that the completion of E is compact. Since clearly also the
completion of F is in Q(¢) N O, we may assume that E is compact. Take
a,b € E such that d(a,b) = d(E) and define g : E — [0,d(FE)] by setting
g(z) = d(z,a). As before, we see by (3) that the inverse of g is 1/e-Lipschitz
from d(F) to E.
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We are left to show L(g,C) > 1/e. We define a metric d on an interval
[0, N], N € N, as follows: Define real numbers r;, k = 0,1,..., by setting

ro = 0 and
Th+1 = V 7’,% + 1 4 2erg.

Let z,y € [0, N] with z < y. If NN [z,y] = 0, we set d(z,y) = |z — y|. Else
we put m = inf(NN[z,y]), M =sup(NNJ[z,y]), s = min{y — M, m —z} and
t = max{y — M, m — z}. Then we set

d(z,y) = Vu? + s? + 2eus,

where

U= \/r%/[_m + 12+ 2erp_mt.

Denote this metric space by En. Then Enx € Q(e) NC. Since rgy1 — 7 — €
as k — oo, we have

By N 1

d(EN) rN 13

as N —oo. m

We say that a metric space E has the four-point property if any subset
of four points of E is isometric with some subset of R3. E is called ptolemaic
provided for all z,y, z,w € E the inequality d(z,y)d(z,w)+d(z, z)d(y, w) >
d(z,w)d(y, z) is true. Denote the class of metric spaces with the four-point
property by F, and the class of ptolemaic metric spaces by P. Since R? is
ptolemaic, we have F C P. It is easy to construct metric spaces which are
ptolemaic but which do not have the four-point property. For example we
can take a quadruple such that one distance between points equals 2 while
the other five distances are 1. Since F N Q(v/3/2) C O, we have at least
L(e,F) < 1/e for v/3/2 < e < 1. We now show that L(e,P) | 1ase T 1.

LEMMA 4.3. Let E be a ptolemaic metric space with the complete prop-
erty Q. Then min{d(x,y),d(z,w)} < max{d(z,z),d(x,w),d(y,z),d(y,w)}
for any four pairwise distinct points x,y,z,w € E.

Proof. Otherwise

d(z,y)%d(z,w)* > (d(z,2)? + d(y, w)® ‘Zd(ﬂfa w)? + d(y, 2)?)?

. (@d(a, 2)d(y, w) + 2w, w)d(y, 2))°
- 4
= (d(w, 2)d(y, w) + d(x, w)d(y, 2))*.

which means that E is not ptolemaic. m

PROPOSITION 4.4. L(¢,P) | 1ase 1.



160 1. Hahlomaa

Proof. Let E € Q(e)NP. It follows from Theorem 3.7 that the completion
of E is compact. Since clearly also the completion of E is in Q(g) NP, we
can assume that E is compact. Let a,b € E be such that d(a,b) = d(F). We
define g : E — [0,d(E)] by setting g(z) = d(z,a). Let x,y € E\ {a,b}. If
d(z,y) < max{d(z,a),d(a,y)}, then |g(x) —g(y)| > ed(x,y) by (3). Suppose
zay. By the previous lemma, d(z,y) < max{d(z,b),d(b,y)}. We may assume
that d(y,b) > d(x,b). Set d = d(E), p = d(z,a), ¢ = d(y,a), r = d(z,y),
s =d(y,b) and t = d(x,b). Then d? > ¢® + s? + 2e¢s, which gives

s <Ad*+ (2 —1)¢% — eq.

We also have t > d — p and r2 > ¢ + p? + 2e¢p. Thus we get

22,2
<d?4+ (262 = 1)g? — 2eq\/d? + (€2 — 1)@2 — d*> — p* + 2dp — ¢* — p* — 2eqp

=22 = 1) —p* +dp —eqp — eq /2 + (2 — 1)¢2] < 2p(d — p)
and further
242 .2
S t r < D ‘

2rt 2+ p2 + 2eqp
This yields p > e(eq + p), which gives ¢ < p(1 — ¢)/e2. Thus

9(x) —9W)| _p—q_p-gq_e+e-1
d(z,y) r Tptq e2—e+l’

e <

and we get
2 2
ee—e+11 ef—e+1
Le,P) <max{ ——~— ~\L_ = — -7~
(&P) < aX{€2+E—1 E} e2+e—-1

when (v/5 —1)/2 < & < 1. Therefore L(g,P) | lase 1. u

5. Travelling salesman theorem. Let E be a bounded metric space

and let C; > Co > 960. For any x € E and ¢t > 0 we set
B(x,t) = sup{c(z1, 22, 23) : 21, 22, 23 € B(x,t), d(2;, 2j) > C’flt Vi #£ g}

We say that an increasing sequence (Ay)kez of subsets of E is a net of E if
for all k € Z,

(i) for any distinct x,y € Ay, d(z,y) > 27F,

(ii) for any = € E there exists y € Ay such that d(z,y) < 27F.
Now we define

B(E) = inf { 33 Bla, 0272 (27F)% : (Ag)y s a net of E}
keZ xe Ay,

For a bounded set F' C R" the conditions B(F') < oo and (4) are equiv-
alent. We now sketch a proof for this. Let F' be a bounded set in R™. First,
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assume that G(F) < oco. Then, by Theorem 5.3 below, we find A C [0, 1]
and a Lipschitz surjection f : A — F such that Lip(f) < C(B(F) + d(F)),
where C' > 0 is an absolute constant. By the Kirszbraun theorem f has an
extension f : [0,1] — R”™ such that Lip(f) = Lip(f). Thus the result of
Okikiolu (see [11]) gives

S 6r(Q)%A(Q) < Ay Lip(f) < AiC(B(F) + d(F)),

QeD
where A; is a constant depending on n and D is the set of all dyadic cubes
in R”.
If @ C R" is a cube and A > 1, we define

Br(Q) = inf d(Q) ™ sup{d(y, L) : y € F NAQ},

where the infimum is taken over all lines in R™ and AQ is the cube with the
same center as () and sides parallel to the sides of (), but whose diameter is
Ad(Q). It is not difficult to show that there exists a constant Ay = Aa(n, \)
such that

(e}

43030 ANQPAQ) < § | Bt ) e < 42 3 AHQPAQ),

QeD R™ 0 QeD
where L is the Lebesgue measure on R" and

Boo(x,t, F) = i%f t~tsup{d(y, L) : y € F N B(x,1)},

where the infimum is taken over all lines in R™. In particular, for all Ai, Ao
> 1 there exists a constant A = As(n, A1, A2) such that

(24) 3T AMQ)%Q) < A3 Y AR (Q)%(Q).

QeD QeD

For k € Z let Dy, be the set of all dyadic cubes in R™ of side length 27%.
Choose A4 € Z such that (2log2)A4 > logn and define A = 0244+ 4 1,
Let (Ag)r be a net of F' and fix k € Z. Then #(Q N Ay) < 1 for any
Q € Dyya,. Fix x € A and let Q € Dy 4, be such that x € Q. Further
let 21, 29, 23 € B(m,CQQ_k) be such that d(z;, zj) > C]__ICQQ_k for all ¢ # j.

Since B(x, 0327%) C AQ, by using (1) and some plane geometry we get
gy _ Ad(ar, DAY
d(Zl, Z2)2d(2’1, 23)
4CH/md(z1, L)?

T C2Md(Q)
where L is the line passing through z, and z3 and As = As(n,C1,Cs) is a
constant. Using (24), for some constant Ag depending on n, C7 and Cy we

~ <4C1Cy (2, L)?2F

(21, 22, 23)(2

< A36p(Q)d(Q),
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get
BIF) <IN B, 0272273 <43 YT MQ)%Q)
keZ xe Ay, keZ QGDk+A3
< As > Br(Q)*d(Q).
QeD

Now we are going to show that for any bounded metric space E the
condition S(E) < oo implies that E is a Lipschitz image of a bounded set
of real numbers.

LEMMA 5.1. Let z,y,2 € R? be distinct points, L. the line passing
through y and z, and P : R? — L,. the orthogonal projection to L,.. Set
dye = ly—z|, dy. = |x—2| and dy, = |y—2z|. If dy. = |[y—P(z)|+|P(z) -z,
then

c(a:,y,z)2 < dys + dyz — dy. < c(m,y,z)2
8 T dypdyz(dye +dyz) 4 ’

Proof. Define s = |y — P(x)|, t = |P(z) — z| and h = |z — P(z)|. By the
Pythagorean theorem

= dl?m B 82 da%z B t2
dyz + 5 dypr + 1

1 1
= K2
<dym+3 * dmz+t>

Ayr +dyz —dy, = dyy — 5+ dz, — 1

and by (1),
2h
c(x,y,z) = .
dyxda:z

Hence

c(z,y,2)°dy,d3, (1 1

d T d:cz —d z = ud )
Y + Y 4 dyz+8+dzz+t

from which we get the conclusion. =

LEMMA 5.2. Let E be a bounded metric space. Suppose that there exist
L < o0 and a dense subset D C E such that there exist U C [0,1] and an
L-Lipschitz surjection g : U — F for every finite ' C D. Then there exist
A C [0,1] and an L-Lipschitz surjection f: A — E.

Proof. We can assume that D is countable. Let D = {z1,x9,3,...}
and define D, = {x1,...,2,} and N} = N,, = {1,...,n} for n € N.
By the hypothesis we have for every n a permutation o} of N, such that
Z?;ll d(Tg1(5), ol (i41)) < L. Since for any n there are only a finite number
of permutations of N,,, we can inductively choose sequences (o) : NJ* —

n
N™),, of permutations such that for every m € N the sequence (o7*1),, is
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a subsequence of (o77")y, N, € N{™ and for every n € N and 4,5 € N, the
condition (¢7")71(i) < (o7)~1(j) implies (6™)~1(i) < (6™)~1(j). For each

n let o, be the permutation of N,, such that for 7,7 € N,, the condition
(00) 7 (4) < (04) 7" (j) implies (o7) ' (i) < (o7) ' (4).

For every n set A, = {af,...,a}'}, where a}} = Zf:_l d(Tg, (i) Toy (i41))
for kK = 1,...,n. Define a 1-Lipschitz bijection f, : A, — D, by setting
fu(a}) = x4, ) for k =1,...,n. Note that A, C [0, L] for every n and the
sequence (a}!) is increasing. Now there exists a compact A C [0, L] such that
A,, — A in the Kuratowski sense:

(i) If @ = limy,_0 @)’ for some subsequence (a") of a sequence (ay,)
such that a, € A, for any n, then a € A.

(ii) If @ € A, then there exists a sequence (a,) such that a, € A, for
any n and a = lim,, . a,.

Let a € A and let (a,,) be a sequence such that a,, € A, for any n and a,, — a
as n — 00. Let m > n > 1. Then there is b € A,, such that f,,(b) = fn(an)
and |a, — b| < a — al. Using this we get

d(fm(am)a fn(an)) = d(fm(am)afm(b)) S |(Im - b| § |am - CLn| + |an - b’

<|am — an| +ap —an.

So (fn(ayn)) is a Cauchy sequence in E. Thus we can define f : A — E,

where E is the completion of F, by setting, for a € A,
f(a) = lim fn(an)7
n—oo

where (a,,) is a sequence such that a,, € A, for all n and a,, — a as n — oc.
Clearly f(a) does not depend on the choice of the sequence (ay). Let a,b € A
and let a, — a and b, — b be such that a,,b, € A, for all n. Then, since
fn is 1-Lipschitz for each n,

d(f(a), (b)) < d(f(a), falan)) + d(fn(an), fn(bn)) + d(fn(bn), f())
< d(f(a), fnlan)) + |an = bn| + d(fn(bn), £(b)) = |a = b|

as n — 00. So f is 1-Lipschitz. It is also surjective. To check this let x € Dy,
for some k. Then we have a sequence (¢,) such that ¢, € A, and f,(c,) =«
for any n > k. Since the sequence (c;),>k is increasing and bounded, there
is ¢ € [0, L] such that ¢, — ¢. Then ¢ € A by (i) and =z = lim,, 00 frn(cn) =
f(c). Thus D C f(A). Since D C E is dense and f(A) is compact, we have
E C f(A) = E. Finally, we restrict f to f~1(FE). u

THEOREM 5.3. Let E be a bounded metric space such that B(E) < oo.
Then there exist A C [0,1] and a Lipschitz surjection f : A — E. Moreover,
f can be chosen such that Lip(f) < C(B(E) + d(E)), where C > 0 is an

absolute constant.
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Proof. Let (Ag)rez be a net of E such that

>0 Bla, C27F)2(27M)? < oo
k l‘GAk
and let C3, Cy and g be positive constants with C3 > 9, Cy > 24(1 + Cs),
Cy > 4Cy and 204(1 + 204)80 < 4Cy + 1.

Suppose that B(z,Co27%)27% < ¢ < V/3/4 for some z € D, 1, where
y€ E, keZand Dy, = B(y,27*t1) N Ay. Since C; > Co > 4, we have
d<21,22) > 6'1_16'2271C for all 21,29 € Dy,k C B(.%',CQQik). By (1),
d(Dng) Sin <(z1 2923 < d(Dy,k)

d(zl, 2’3) - 2
V3

<2e < —
_5_2

for any triple {z1, 22, 23} C Dy, . From this we conclude D, ;, € Q(v1 — 4¢2).
If now 289(1 — 4¢2)3 > 225, by Lemma 2.3 and Proposition 4.2 we have

_ d(D, 1) 2 k+2
D, —1)27F< Y2l < ,
(#Dyr —1)27" < T— 42 — V1422

from which we get #D, 1, < 4/v1—4e? +1 < 6. In particular, Ay, is finite
for each k. Let

sin <(z12923 < (21,22, 23) < 2871d(Dy p)e

U Ak = {21, 22,23,... }

keZ
so that for all k € Z,

Dyn, = Ag,
d(zjq1, D) =max{d(z,D;):x € Ay} forj=1,...,#A, -1,

where D; = {x1,...,z;} for j € N.

We are going to construct a sequence (G;) of connected weighted graphs
with no cycles. For each j we denote by V; and E; the sets of vertices and
edges of G;. For each j we will have D; C Vj. For all x,y € D; such that
{z,y} € E; we will have w;({z,y}) = d(z,y), where w; : E; — ]0,00[ is the
weight function on the graph G;. We define I(G;) = ZeeEj wj(e) and for
y € D; we will use the notation

Nj(y) = {z € Dj : {y, 2} € Ej}.
Each vertex in V; \ D; will have only one neighbour. Thus the subgraph
of G induced by D; will also be connected. We will denote this graph
and the set of its edges by G} and E7. In our construction the number
UGT) = > e B wj(e) will remain bounded, from which we get the final

conclusion.
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We define a graph Go with 4 vertices and 3 edges as follows. Put V5 =
{1, 22,b1,b2}, where {b1,b2} N E = (), and set Fy = {{x1,x2},{x1,b1},
{za,b2}}, wa({x1,22}) = d(z1,22) and wo({x;,b;}) = Csd(w1,2z2) for
i =1,2. Then
(25) I(G2) < (14 2C3)d(E).

Let now j > 2 and assume by induction that we have constructed a
graph G = (V}, E;), w; : E; — ]0,00[ such that D; C V;. We also assume
that G; has the following property:

(x) Letye Dj;. If d(y,z1) < Cad(xjt1,Dj) and d(z1,22) < d({z1,y, 22})
for all 21,22 € Nj(y), then there is b € V; \ D; such that {y,b} € E;.

We set © = xj41. Let y be a nearest neighbour of z in D; and let £ be the
smallest integer such that x € Ag. In other words, #A4,_1 < j < #A.

CASE 1: B(x,Co27)27F > 5. We set Vj41 = V; U {z,b}, where b ¢
V; U E, and define

Ej+1 = Ej U {{yax}v {:Ev b}}
and wji1 : Ej41 — |0, 00[ by setting
d(y,z)  for e={y,z},
wjt1(e) =< Czd(y,x) for e = {x,b},
wj(e) for e € ;.

Now G+1 has the property (*) and

(26) I(Gj+1) — UGj) = (1+ Cs)d(y,x) < (1+ C5)2~*=1)
201+ C _ _

< 2L C5) 5 k(e k.

€0
For the remaining cases we assume that 3(z, C227%)27% < .
CASE 2: There ezists z € Nj(y) such that Cyd(y,z) < d(y,z). We define
Gjy1 as in Case 1. Now

14+ Cs
d .
h (y, 2)

(27) HGj1) = UG5) = (1 + C3)d(y, x) <

By the construction {y, z} € EZ, for all m > j.

For the rest of the cases we assume that d(y,z) < Cud(y,x) for all
z € Nj(y).

CASE 3: There exists z € Nj(y) such that d(x,z) < d(y,z). We set
Vis1 = V; U {z} and define

Ej = (B \ {{y, 21H) U {{y, 2}, {z, 2}}
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and wjt1 : Ej41 — |0, 00[ by setting
d(y,xz) for e={y,z},
wjti(e) =< d(z,z) fore={x,z},
wile) for e € B\ ({2}

By Lemma 5.1,
(28) l(G]-‘rl) _Z(GJ) = d(:l/vx) —i—d(ac,z) _d(yvz)
& X,z 2
< 2D gy, ), 2)(dly,2) + d(z, )
< M cly, 2)2(2—(k—1))3

< 204(1 + Cy) Bz, C227%)*(27%)°,

The last inequality holds, because C1 > Cs > 2C}.

We next show that G4 has the property (x) at z. Suppose that {z,b} &
Ejq forallb € Vji1\Djq1, which implies that {z,b} & E; for all b € V;\ D;.
Suppose further that d(z,v) < Cud(xjt2, Djs1) for all v € Njyq1(2). Then,
since d(y, z) < Cad(y, x), we have d(z,v) < Cad(xj41,D;) for all v € N;(2).
Thus by () there exist ¢, 2z’ € Nj(z) for which d(v/,2') = d({y/, z,7'}). If
y &{y,2'}, then v/, 2’ € Nj;1(z) and the property (x) is satisfied at z. Thus
we may assume y' = y. Now 27% < d(y,z) < 2=¢=1 d(z,2) < d(y,2) <
Cyd(y, z) and max{d(y, 2"),d(z,2")} < d(y,z) + d(z,2") < 2C4d(y, z). Since
C1 > Cy > 4Cy and 4C4e0 < /3, we have {y,z,z,2'} € Q(6), where

§>V1—4C 2 > 2

20, +1°
Since now yzz and yzz', {y,z,z,2'} has an order by Lemma 2.2. Thus
d(z,?) = d({z, 2,2'}) and (x) is satisfied at z. Similarly we see that it is
satisfied at y.

CASE 4: d(y,z) < d(z,z) for all z € Nj(y). We first show that there
exists b € V; \ D; such that {y,b} € E;. Suppose this fails. Now d(y,v) <
Cud(y,z) = Cyd(zj41, Dj) for all v € Nj(y). Thus by (k) there are 21,29 €
Nj(y) such that d(z1,22) = d({z1,y,22}). Since C; > Cy > 2(1 + C4) and
4C4e0 < V'3, we have {z,z,y, 20} € Q(6), where

204
§>\1—4C3ed > .
= CI%0 2 50,11

Since now zyz; and zyzs, it follows from Lemma 2.2 that yzi1z9 or yzoz1,
which is a contradiction.
We set Vi1 = V; U {z} and define

Ejr = (B \ {{y;0}}) U {{y, =}, {=, b}}
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and wjt1 : Ej41 — |0, 00[ by setting

d(y, x) for e = {y, z},
wjt1(e) = ¢ wi({y,b}) for e = {z,b},
wj(e) for e € E;\ {y, b}.

Now

(29) UGjs1) — UGy) = d(y,z) < 22

Cs

Since d(z, z) = d({z,y, z}), the property (x) is satisfied at y. For all m > j
there is z € Dy, such that {z,b} € E,, and wn,({z,b}) = w;({y,b}) by the
construction.

By iterating the above algorithm, we construct a sequence (G;) of graphs.
Let ngp be the smallest integer such that #A,,, > 2. For all n > ng we define
Th =Gy,

Since 289(1 — 4¢3)3 > 225, for any y € F and k Case 2 applies at most
to four points in B(y,27%*1)N Ay by the calculation at the beginning of the

proof. Thus by (27) and the remark after it,

Gy Y Y we<2(1 +Z2 NS
JEYm e€B\Ej_1
24(1 4+ C3) N
for all m > 3, where Y, = {j € {3,...,m} : Case 2 applies to z;}.

We now show that for any fixed b € |J;(V; \ D;) for all k Case 4 can
occur at most for three points in Ax. Suppose this fails for some k and let
#HAp_1 <11 <y <ig < iy < #Ap and iy < iy be such that {z;,b} € E;,
for I =0,...,4. Now z;z;,, v; , for [ =0,1,2. Namely, if this is not true
for some I € {0,1,2}, there exists a nonempty set {y1,...,y,} C Di ,—1
such that y,zi,, 7i,,, 12, and yeygr17i,, for ¢ =1,...,p— 1. Since
27F < d(z1,22) < 2773 for all 21,20 € {@i, Tiy, Tiy, Tig, Tigs Y1, - Yp)y C
B(x4,,27%%2), B(x,,Co27F)27F < g9, C; > Cy > 4 and 8¢y < V/3, we
have {Ziy, Ti,, Tiy, Tigs Tigs Y1, - - Yp} € Q(J), where § > /1 — 163. Since
83 > 31/33, {wiy, Tiy, Tig, Tig, Tig, Y1, - - -, Yp} has an order by Lemma 2.3,
from which we conclude x;x;,, z; ,. Since max{d(x,D;, 1) : © € Ax}
= d(xiy,xiy) < d(xiy,xiy), there is z € Dy, 1 \ {xi,} such that d(z,, z)
< d(mi,,xiy). As above, {x;,,%;,,Tiy, Tis, Tiy, 2} has an order by Lem-
ma 2.3. Since d(zj,,z;,_,) = d(x;, D;;—1) for I = 1,...,4, we must have
TiyTi, TiyTigTiy 2. From this we get d(xi,,z) > d(mm,xm) + 0d(xiy, x4i,) +
6d(x,,2) > (14 20)27% > 2=*=D > d(x;,, x;,), which is a contradiction.
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Thus by (29) and the remark after it,

0o ~ 3 .
B) Y Y we) < (14227 S G — UG
JEZm e€E;\Ej_1 i=0 3
9 .
= G ~ UG
for all m > 3, where Z,, = {j € {3,...,m} : Case 4 applies to z;}.
Using the estimates (25), (26), (28), (30) and (31), we get for all n > ng,

I(T,) < (1+2C3)d(E)
+max{@ 204( 1+C4}Z Z Bla, Cr27F)?(27F)3
0

k=ng IEEA]C\A]C,1

n M I(T,) + Ci [[(Gya,) = UTn)] = [[(Gya,) — UTH))-
4 3

Since C3 > 9, Cy > 24(1 4+ C3) and the net (Ag)y is arbitrary, we have
an absolute constant C' such that 2/(G}) < C(B(E) + d(E)) for all j > 2.
This means that for every j we have a 1-Lipschitz surjection from A; to Dj,
where A; C [0,C(B(E) + d(E))]. Using Lemma 5.2 we get the result. =
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