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Generic sets in definably compact groups

by

Ya’acov Peterzil (Haifa) and
Anand Pillay (Urbana, IL, and Leeds)

Abstract. A subset X of a group G is called left generic if finitely many left translates
of X cover G. Our main result is that if G is a definably compact group in an o-minimal
structure and a definable X ⊆ G is not right generic then its complement is left generic.

Among our additional results are (i) a new condition equivalent to definable com-
pactness, (ii) the existence of a finitely additive invariant measure on definable sets in
a definably compact group G in the case where G = ∗

H for some compact Lie group
H (generalizing results from [1]), and (iii) in a definably compact group every definable
subsemi-group is a subgroup.

Our main result uses recent work of Alf Dolich on forking in o-minimal stuctures.

1. Introduction. In his paper [9], the second author formulated a con-
jecture on definably compact groups in (saturated) o-minimal structures.
The conjecture says, roughly, that such a group G has a smallest type-
definable subgroup G00 of bounded index, and that G/G00, when equipped
with the “logic topology”, is a compact Lie group whose dimension equals
the o-minimal dimension of G. In [2] the existence of the smallest type-
definable subgroup of bounded index G00 was established, as well as the
fact that G/G00 is a compact Lie group. However, it remains open whether
G00 is at all different from G and, in particular, if the Lie group G/G00

and G have the same dimension. When restricted to commutative G, the
second (as yet unproved) part of the conjecture is equivalent to “G00 is
torsion-free”.

One of the missing ingredients towards establishing the full conjecture
seems to be a good understanding of “generic” definable sets in definably
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compact groups, where the definable set X ⊆ G is said to be generic if
finitely many group translates of X by elements of G cover G. In the context
of ω-stable groups X ⊆ G is generic if and only if it has the same Morley rank
as G. The obvious analogue, in the case of groups in o-minimal structures,
immediately fails as every bounded open interval in 〈R, +〉 has full dimension
but it is clearly not generic. It might seem at first that the only obstacle is
the fact the group is not definably compact, as in compact Lie groups every
open set is generic. However, even if we assume that G is a definably compact
group it is not true that subsets of G of full dimension are generic, once we
leave the context of the real numbers. Indeed, if we take G to be S1, in a
nonarchimedean extension of 〈R, <, +, ·〉, then an “infinitesimal interval” in
G has dimension 1 but is not generic.

In this note we present some new basic properties of generic sets in de-
finably compact groups. We concentrate on the case of commutative groups
and show that the union of two nongeneric sets in a definably compact group
is nongeneric. Our results rely on the work of Dolich (see [4]) on forking in
o-minimal structures (we include in an appendix a complete proof of the
needed results). We then present some corollaries regarding definable semi-
groups in definably compact groups, and a conjecture on generic sets which,
as we show, implies the full group conjecture mentioned above.

We also study the case where our saturated o-minimal structure M is
an expansion of an elementary extension of an o-minimal structure M0 =
〈R, <, +, ·, . . .〉, and the definably compact group G is the interpretation
in M of a formula defining a compact Lie group G(R) in M0. We relate
genericity of definable (in M) subsets X of G to genericity of st(X) (the
image of X under the standard part map) in G(R) and develop a “Haar
measure” for definable subsets of G.

Acknowledgements. The first author would like to thank the Depart-
ment of Mathematics and the logic group at the University of Illinois at
Urbana-Champaign for their hospitality during the 2003–2004 academic
year.

The second author would like to thank Alessandro Berarducci, Margarita
Otero, and Ludomir Newelski for various discussions and communications
which influenced and motivated some of the work presented in this paper.

1.1. Assumptions. We work in a saturated o-minimal structure M ex-
panding a real closed field. Let us say a few words about this assumption.

As is shown in [5], every definable regular space in an o-minimal expan-
sion of a real closed field (see Chapter 10 in [5] for definitions) is definably
homeomorphic to a subset of Mn for some n. Such a space is called affine.
It was pointed out in [6] that every definable manifold which is Hausdorff
is necessarily regular, and therefore every definable group in M, equipped
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with its group topology (see [8]), is affine. Namely, we may assume that the
underlying set of the group is a definable subset of Mn, for some n, and the
topology induced from Mn makes the group into a topological group.

This is our only use of the assumption that M is an expansion of a real
closed field. Moreover, even though the proofs (mainly of Dolich’s results)
make use of the fact that the group is affine, most of the statements themselves
which we prove can be formulated for any definable group. Thus, the main
results (such as Corollary 3.9) will still be true under the weaker assumption
that Th(M) can be expanded to an o-minimal expansion of a real closed
field. For example, if M is an ordered vector space over an ordered field.

2. Dolich’s work and some corollaries. Our results depend heavily
on Alfred Dolich’s work [4], where he analyzes the notions of dividing and
forking in o-minimal structures. We are going to use the following theorem,
which is a straightforward corollary of his work (the results in his paper are
substantially stronger).

Theorem 2.1. Suppose X is a definable closed and bounded subset

of Mn, and M0 is a model (small elementary substructure of M). Then

the following are equivalent :

(1) The set of M0-conjugates of X is finitely consistent.

(2) X has a point in M0.

Since Dolich’s paper does not contain the precise formulation of the
above theorem, we include in an appendix to our paper a direct proof (which
is extracted from Dolich’s paper). Moreover, even though Dolich’s original
assumptions are that M expands a real closed field (or some equivalent
assumption), it turns out that the proof of the theorem does not require
this assumption. It actually follows from Dolich’s work that for a closed and
bounded set X, the above two properties are equivalent to X not forking
over M0, but we will not make use of this fact here.

The following results on definable families of sets follow from Theo-
rem 2.1 by compactness and by taking complements.

Corollary 2.2.

(i) Assume that F = {Fs : s ∈ S} is a definable family of closed and

bounded sets (S is now a definable set), with the finite intersection

property. If F is definable over M0 then there are finitely many el-

ements a1, . . . , ak ∈ M0 such that every Fs contains one of the ai’s.

(ii) Assume that U = {Us : s ∈ S} is a definable family of open subsets

of a closed and bounded set X, with the property that every finite

subset of X is contained in one of the Us’s. Then U has a finite

subcover.
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2.1. Some corollaries for definably compact sets. In [7] the notion of
a definably compact space was introduced. A space X is called definably

compact if every definable map γ : (0, 1) → X has a limit in X as γ tends
to 0. It was shown there that if X is affine then it is definably compact if
and only if it is closed and bounded. Using Dolich’s work we can now state
an equivalent definition, in the language of covers.

For a definable set X ⊆ Mn, we say that a family {Us : s ∈ P} of
definable open subsets of X is a definable open cover of X parameterized by

a complete type over A if the family is uniformly definable, covers X, and
P is the set of realizations of a complete m-type over A. Said differently,
there is a formula φ(x, y), with lengthx = n and length y = m, and there is
a complete type p ∈ Sm(A), such that

(i) for every a ∈ p(M), φ(x, a) defines an open subset of X,
(ii) for every element x ∈ X there is a ∈ P such that φ(x, a) holds.

Corollary 2.3. Let X ⊆ Mn be a definable set , definable over a model

M0 say. Then the following are equivalent :

(1) X is definably compact.

(2) If {Us : s ∈ P} is a definable open cover of X parameterized by a

complete type over M0, then it contains a finite subcover of X.

Proof. (1)⇒(2) is immediate from Theorem 2.1, by taking complements.

For the opposite direction, assume that X is not definably compact, and
let γ : (0, 1) → X be a definable continuous map such that limt→1 γ(t) does
not exist in X (we can always assume that γ is continuous, by o-minimality).
In particular, γ is not a constant function. It follows that for every s ∈ (0, 1),
the set Fs = γ([s, 1)) is closed in X and we have Fs ( Ft whenever t < s.

Let p(y) be the complete type of s over M0 where s < 1 and s >
M0 ∩ (−∞, 1). Then the family {Us = X \ Fs : s ∈ P} is a definable open
cover of X parameterized by a complete type over M0. It is easy to see that
it has no finite subcover.

Example. Let M0 be a nonarchimedean elementary extension of
〈R, +, ·〉 and let α > 0 be an infinitesimal element of M0. For a, b ∈ [0, 1],
let X(a, b) = [0, 1] \ ((a − α, a + α) ∪ (b − α, b + α)). The family {X(a, b) :
a, b ∈ [0, 1]} has the finite intersection property. If we take a1, a2, a3 to be
any elements of [0, 1]∩R then every X(a, b) must contain one of those. No-
tice that we need at least three such elements since for any two elements of
[0, 1] there is X(a, b) which does not contain any of those.

Applying compactness again to Corollary 2.3, we obtain the following
corollary. It is not clear to us, even if we work in the structure 〈R, +, ·〉, how
to get a direct proof of this result, without using Dolich’s work.
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Corollary 2.4. Assume that we are given a definable family of fam-

ilies of definably compact sets. Namely , the following collection of sets is

uniformly definable:

{Ft = {Fs,t : s ∈ St} : t ∈ T},

where each Fs,t is a closed and bounded set.

Then there are L and K such that for every t ∈ T , if the family Ft is

L-consistent then there are K elements in dcl(t) such that every set in Ft

contains one of these elements.

Proof. We consider the partial type p(s, t) determined by: t ∈ T , s ∈ St,
“Ft has the finite intersection property” and

{f(t) /∈ Fs,t : f is 0-definable}.

By Theorem 2.1, the type p(s, t) is inconsistent, from which the corollary
follows.

3. Properties of generic sets. Recall the conventions from Section 1.
In particular we work in a saturated o-minimal structure M; M0 will denote
a small elementary substructure.

Throughout this section we assume that G is a subset of Mn, whose
group topology is induced from Mn. We also assume G to be definably
connected.

Note that although the proofs of most of the results will require this em-
bedding assumption, the main statements proven do not involve the topology
of G at all, and thus will hold for any definable G which, in some expansion,
can be embedded into Mn.

We will often specialize to the case where G is also definably compact,
in which case we assume G is a closed bounded subset of Mn.

Definition 3.1. X ⊆ G is left (right) generic if finitely many left (right)
translates of X cover G. When G is commutative we will just say generic.

We will use the following fact from [8]:

Fact 3.2. If X is definable and dim(G \ X) < dim(G) then X is both

left and right generic.

Remark 3.3. Suppose G = (M, +). Then a definable X ⊆ M is generic
if and only if it is coinitial and cofinal in M . So there exist two nongeneric
definable subsets of G whose union is G.

Lemma 3.4.

(i) If X is (left or right) generic in G then dim(X) = dim(G).
(ii) X is left (right) generic in G if and only if ClG(X) is left (right)

generic in G (by ClG(X) we mean the closure of X in G).
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Proof. (i) Suppose dim(X) < dim(G). Then dim(gX) < dim(G) for all
g ∈ G. Hence finitely many translates of X could not cover G.

(ii) Suppose ClG(X) is generic. Let Y be the frontier of X, that is,
ClG(X)\X. Let G = g1 ClG(X)∪· · ·∪gm ClG(X). Then Z = g1Y ∪· · ·∪gmY
has dimension < dim(G). So by Fact 3.2, finitely many translates of G \ Z
cover G. So clearly finitely many translates of X cover G.

Lemma 3.5. Assume that G is an M0-definable group and X an M0-

definable subset of G. Then X is left generic in G if and only if every right

translate of X contains a point in G(M0).

Proof. Assume that X is left generic. Then there are g1, . . . , gk ∈ G(M0)

such that G =
⋃k

i=1
giX. It is immediate that every right translate of X

contains one of the g−1

i ’s.
Assume now that X is not left generic. Then for every h1, . . . , hk ∈ G

there is g ∈ G such that hi /∈ Xg for i = 1, . . . , k. By compactness, there is
g ∈ G such that Xg has no point in G(M0).

The main ingredient of our work here is the following corollary to The-
orem 2.1.

Lemma 3.6. Assume that G is a definable group, X a definably compact

subset of G, both defined over M0. Assume that , for some g ∈ G, Xg does

not contain any element from G(M0). Then there are g1, . . . , gk, all realizing

the type of g over M0, such that Xg1 ∩ · · · ∩Xgk = ∅. In particular , G \X
is right generic.

Proof. Let p = tp(g/M0), and apply Theorem 2.1 to the family {Xg′ :
g′ |= p}.

Theorem 3.7. Assume that G is a definable group, and X ⊆ G a de-

finable set whose closure in G is definably compact. If X is not left generic

then G \ X is right generic.

Proof. By Lemma 3.4(ii), we may assume X to be closed in G and hence
definably compact. Suppose X and G are defined over M0. Now Lemmas 3.5
and 3.6 imply the desired result.

Corollary 3.8. If G is not definably compact , X ⊆ G is definable, and

ClG(X) is definably compact then G \ X is both right and left generic.

Proof. Since G is not definably compact, ClG(X) cannot be generic in G
(since a finite union of definably compact sets is definably compact as well),
and hence X itself can be neither left or right generic in G. By the last
theorem G \ ClG(X) is generic, and hence G \ X is.

Corollary 3.9. If G is definably compact and commutative then the

union of two nongeneric definable subsets of G is also nongeneric.
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Proof. Suppose X1, X2 are definable subsets of G, and that X = X1∪X2

is generic. So
⋃m

i=1
giX = G for some g1, . . . , gm ∈ G. But

⋃m
i=1

giX =
⋃m

i=1
giX1 ∪

⋃m
i=1

giX2. By Theorem 3.7, we may assume that
⋃m

i=1
giX1 is

generic, so clearly X1 is generic.

Remark. Note that the converse to 3.8 is false. If G = 〈R2, +〉 then
{(x, y) ∈ R2 : |y| > 1} is a generic set whose complement is not even
bounded.

Also, Corollary 3.9 fails without the assumption on G. Indeed, take G =
〈R, +〉. Then G itself is the union of the negative and nonnegative elements,
none of which is generic in G.

Corollary 3.10. If G is definably compact and commutative then there

is a complete generic type p(x) ∈ S(M) of G. That is, there is a type p(x)
in G such that every formula in p defines a generic subset of G.

3.1. Stabilizers

Definition 3.11. Let X be a definable subset of G. By Stab(X) we
mean {g ∈ G : X △ (gX) is nongeneric}.

Lemma 3.12. If G is definably compact and commutative then Stab(X)
is a type-definable subgroup of G.

Proof. First, g ∈ Stab(X) if and only if for each m < ω, for all g1, . . . , gm

∈ G,
m
⋃

i=1

gi(X △ (gX)) 6= G.

Hence Stab(X) is type-definable. Clearly Stab(X) is closed under inversion.
By Corollary 3.9 it is also closed under multiplication, hence is a group.

Proposition 3.13. If G is commutative then for every n there is a de-

finable set X ⊆ G such that Stab(X) does not contain any point of order n.

Proof. Recall that we are assuming G to be definably connected. It is
well known that G has only finitely many elements of order n for all n < ω.
Hence G is also divisible. Fix n. Let f : G → G be f(x) = nx. So f
is finite-to-one, say r-to-one, from G onto G. So we can find a definable
function h : G → G such that for any a ∈ G, f(h(a)) = a. Let X be the
image of h. Thus for every a ∈ G, X contains a unique b such that nb = a.
Let c1, . . . , cr be the points in G of order n (where c1 = 0, say). Then we
see that the sets X, X + c2, . . . , X + cr partition G. Let H = Stab(X). Then
clearly ci /∈ H for i = 2, . . . , r.

It follows that to prove that for G commutative, G00 is torsion-free, it
will suffice to prove that for any definable set X, Stab(X) has bounded index
in G. However, we were not able to prove that so far. We end this section
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with a conjecture, which is a strong version of Lemma 3.5 and if true, will
imply the required result.

Conjecture A. Assume that G is a definably compact commutative

group defined over some model M0. If X ⊆ G is generic in G (but not

necessarily definable over M0) then X ∩ G(M0) is nonempty.

The above conjecture, if true, taken together with the observations in
(the proof of) Lemma 3.5 will imply the following analogue to a known result
in the theory of stable groups:

If G is a definably compact commutative group, defined over a model
M0, and X ⊆ G is definable then X is generic in G if and only if every
translate of X does not fork over M0.

Lemma 3.14. Assume that Conjecture A is true. Suppose G is commu-

tative and definably compact. Then for every definable set X ⊆ G, the group

Stab(X) has bounded index in G.

Proof. Suppose G and X to be definable over M0. Assume that g, h ∈ G
realize the same type over M0. Then, clearly, Xg∩G(M0) = Xh∩G(M0),
and hence (Xg △ Xh) ∩ G(M0) = ∅. But, assuming Conjecture A, this
implies that Xg △ Xh is not generic in G and hence gh−1 ∈ Stab(X).

Thus the number of cosets of Stab(X) in G is at most |S(M0)|.

Recall that G00 is the minimal type-definable subgroup of bounded index
in G. By [2], this group indeed exists, it is divisible and the group G/G00 is
then a Lie group.

Lemma 3.15. Assume Conjecture A to be true. Let G be a definably

compact commutative group. Then G/G00 is a Lie group whose dimension

equals dim(G).

Proof. By Proposition 3.13 and Lemma 3.14, the group G00 is torsion-
free. Since G00 is divisible (see [2]) the number of n-torsion points of G/G00,
for every n, equals that of G. By Edmundo’s theorem (see [6]) if k = dim(G),
then the number of n-torsion points of G equals the number of such points
in (S1)k. Thus, G/G00 must equal (S1)k.

4. Nonstandard compact Lie groups, Haar measure, and gener-

ics. In this section we study generic sets in the special case where G al-
ready “comes from” a compact Lie group. More precisely, we let M0 =
〈R, <, +, ·, · · ·〉 be an o-minimal expansion of the real field, and H a con-
nected compact Lie group definable in the structure M0. By the discussion
in 1.1 and definable compactness we may assume H to be a definable closed
subset of [−1, 1]m for some m such that the group operation is continuous
when H is equipped with the induced topology. Assume that dim(H) = n.
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By [5] there is a covering of H by finitely many open definable subsets
U1, . . . , Uk and there are definable homeomorphisms φi : Ui → Vi where
each Vi is an open definable subset of [−r, r]n (for some fixed r ∈ R), the
“transition maps” between the relevant open definable subsets of the Vi

are differentiable, and the group operation is differentiable when read in
the Vi.

Now let M be a saturated o-minimal expansion of an elementary exten-
sion M1 of M0, and let (G, ·) be the interpretation in M of the formulas
defining the group H in M0. Then G is a definably compact group defin-
able in M. Let us write H as G(R). We have at our disposal the standard
part map st : G → G(R). This is a surjective homomorphism whose ker-
nel µ(e) is the infinitesimal neighbourhood of the identity e ∈ G. Namely
µ(e) = {x ∈ G : d(x, e) < 1/n for all n ∈ N}. We want to relate genericity of
M-definable subsets X of G to genericity of st(X) in G(R). We will use the
existence of a Haar-like measure for definable subsets of G, which is maybe
of interest in its own right. This was accomplished in the special case where
G = ([0, 1), +(mod1))n by Berarducci and Otero in [1], and their results
almost immediately yield our generalization.

Before doing this it is worth recording that the conjectures of the second
author from [9] hold for G in the expected fashion. The proof when G is
definably simple (Proposition 3.6 of [9]) can be modified appropriately, but
we give a brief proof. By a “torus” we mean here a connected compact
commutative Lie group. (It is a basic fact about a compact Lie group H
that if T is a maximal torus in H, i.e. T is a closed subgroup of H which is
a torus and maximal such, then T is a maximal abelian subgroup of H and
moreover the conjugates of T cover H.)

Fact 4.1. Let G be as above. Then:

(i) G/µ(e) equipped with the logic topology is homeomorphic (as a topo-

logical group) to the compact Lie group G(R).
(ii) The o-minimal dimension of G equals the Lie group dimension of

G(R).
(iii) µ(e) is the smallest type-definable subgroup of G of bounded index

(so equals G00).

Proof. We only need to prove (iii). Let T be a maximal torus of G(R).
Then T is a maximal abelian subgroup of G(R) so is definable in M0 as
Z(C(T )) (using the DCC on definable subgroups). Let T (M) be the inter-
pretation of T in M. As G(R) is covered by the conjugates of T , and M1 is
an elementary extension of M0, G is covered by the conjugates (by elements
of G) of T (M).
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Now both G00 and µ(e) are normal subgroups of G and G00 ⊆ µ(e). As
µ(e) ∩ T (M) is torsion-free, by Corollary 1.2 of [2] we have

(∗) µ(e) ∩ T (M) = T (M)00 and thus µ(e) ∩ T (M) = G00 ∩ T (M).

Now if x ∈ µ(e), then x ∈ T (M)g for some g ∈ G, so as µ(e) is normal in G,
x ∈ (µ(e) ∩ T (M))g. By (∗) and the normality of G00, x ∈ G00. We have
shown that µ(e) = G00.

We now recall the Haar measure. As G(R) is a compact group it has a
(both left and right) invariant countably additive measure m, normalized so
that m(G(R)) = 1. For compact Lie groups (such as G(R)) this Haar mea-
sure is given by an invariant differential n-form ω where n is the dimension
of the group. (See for example Section VII, Chapter V of [3].)

Now for X a definable subset of G, define h(X) = m(st(X)). Note that
st(X) is closed so h(X) is defined.

Proposition 4.2. h is a finitely additive real-valued invariant measure

on the Boolean algebra of definable subsets of G.

In order to prove the proposition, it suffices, as pointed out in [1], to show
that if X, Y are disjoint definable subsets of G then m(st(X) ∩ st(Y )) = 0.
We proceed to prove this now. We need a couple of facts. Our notation
(H, Ui, φi, Vi, . . .) is as given above, and | · | stands for Lebesgue measure.
First:

Fact 4.3. Let X ⊂ H be closed and assume that |φi(X ∩ Ui)| = 0 for

each i = 1, . . . , k. Then m(X) = 0.

Proof. By [3] again, m(X ∩Ui) is given by integrating a suitable contin-
uous function on Rn over φi(X ∩Ui). As the latter has Lebesgue measure 0,
m(X ∩ Ui) = 0, hence m(X) = 0.

Secondly, we require the following results from [1] (Theorem 4.3 and
Corollary 4.4 there):

Fact 4.4. Let X, Y ⊂ Mn be definable sets in M. Assume that both X
and Y are contained in the closed box [−r, r]n for some r ∈ R. Then:

(i) |st(X)| > 0 if and only if X contains a rectangular box whose vertices

have rational coordinates.

(ii) If X ∩ Y = ∅ then |st(X) ∩ st(Y )| = 0.

We now conclude:

Lemma 4.5. Let X, Y be definable (in M) subsets of G with X ∩Y = ∅.
Then m(st(X) ∩ st(Y )) = 0.



Generic sets in definably compact groups 163

Proof. Assume that m(st(X) ∩ st(Y )) > 0. Then by Fact 4.3 there is i
such that

(∗) |φi(st(X) ∩ st(Y ) ∩ Ui)| > 0.

Note that as φi is defined over R, φi (when interpreted in M) commutes with
st(−). So it follows from (∗) that |st(φi(X∩Ui(M)))∩st(φi(Y ∩Ui(M)))|>0.
It follows from Fact 4.4(ii) that φi(X∩Ui(M))∩φi(Y ∩Ui(M)) is nonempty,
which implies that X ∩ Y 6= ∅.

Lemma 4.5 yields Proposition 4.2.

Proposition 4.6. Let X ⊂ G be definable (in M). Then the following

are equivalent :

(i) h(X) > 0,
(ii) st(X) has nonempty interior in G(R).
(iii) X contains a nonempty open set which is definable over M0.

(iv) X is (left and right) generic in G.

(v) st(X) is (left and right) generic in G(R).

Proof. (i)⇒(ii). By definition m(st(X)) > 0. By Facts 4.3 and 4.4(i),
st(X) contains an open subset of G(R).

(ii)⇒(iii). By abuse of notation we also use Ui, φi, Vi to denote the in-
terpretation of these symbols in M when appropriate. As st(X) contains
an open subset of G(R), |st(φi(X ∩ Ui))| > 0 for some i. By Fact 4.4(i),
φi(X ∩ Ui) contains a rectangular open box with rational vertices. As φi is
M0-definable it follows that X ∩ Ui and hence X itself contains an open
M0-definable subset of G.

(iii)⇒(iv). Suppose that Y is an M0-definable open (in G) subset of X.
Then Y (R) is an open subset of G(R) so by compactness of G(R), Y (R) is
generic in G(R). By transfer, Y is generic in G, hence X is generic in G.

(iv)⇒(v). This is immediate as st is a group homomorphism.

(v)⇒(i). This follows by additivity of Haar measure.

Note that Proposition 4.6 implies among other things that Conjecture A
from Section 3 is true in the above setting.

We complete this section with the following:

Questions.

(i) Suppose G is a definably compact group in a saturated o-minimal
structure and that the second author’s conjecture is true for G. Does
the list of equivalences in Proposition 4.6 hold for definable subsets
X of G (when G(R) is replaced by G/G00 and the standard part
map by the quotient map)?
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(ii) Under the same assumptions, here is a special case of (i): Suppose X
is a definable subset of G which meets every translate of G00. Is X
generic in G?

5. Semigroups in definably compact groups. We work here in an
o-minimal expansion of a real closed field (it is again sufficient to assume
that G is an affine group, with respect to its topology).

Theorem 5.1. Let G be a definable group, S ⊆ G a definable semigroup

in G (i.e., a definable subset of G closed under multiplication). If ClG(S)
is definably compact then S is necessarily a subgroup of G.

In particular , if G is definably compact then every definable semigroup

in G is a subgroup of G.

Proof. We first prove the theorem in the case that G is commutative.
We further assume that S is closed in G and that G is embedded in Mn as
a topological group. Consider the family F = {gS : g ∈ S}. We claim that
⋂

g∈S gS is nonempty.
Indeed, F is a definable family of nonempty closed and bounded subsets

of Mn, which is also directed. Namely, for every g, h ∈ S, the set (gh)S
is contained in both gS and hS. Therefore, F has the finite intersection
property and we may apply to it Corollary 2.2. Thus, there are finitely
many elements of G such that each gS, g ∈ S, contains one of those. But,
since F is directed, one of these elements must be contained in all gS, g ∈ S.

So, we assume that g0 ∈ gS for all g ∈ S, or equivalently,

∀g ∈ S ∃h ∈ S g0 = gh.

In particular, if we take g = g2
0, then we may conclude that g−1

0
∈ S.

Now, given any g ∈ S, we may write g = g0h
−1 for some h ∈ S, and

hence g−1 = hg−1

0
is also in S, proving that S is a subgroup of G.

Assume now that S is not closed in G. Then, by continuity, ClG(S) is also
a semigroup, which, by the above, must be a group. But now, S is a large
subset of the group ClG(S), and hence (see [8]), we must have S ·S = ClG(S).
Since S is a semigroup, it equals ClG(S), hence it is a group.

Consider now an arbitrary definable group G (not necessarily commuta-
tive) and assume that S is a definable semigroup in G such that ClG(S) is
definably compact. We will show that every element of S has its inverse in S.
Indeed, if g ∈ S has finite order then the group generated by g is contained
in S. If g has infinite order then consider the definable commutative group
H = Z(CG(g)). Its intersection with S is a nontrivial semigroup and hence
by the above, S contains H. In particular, g−1 ∈ S.

Remark. Clearly, if G is not definably compact then it may have many
definable semigroups. See, for example, the ray of positive elements in 〈R, +〉,
or the semigroup of 〈R2, +〉 defined by {(x, y) ∈ R2 : x ≥ 0 & |y| < x2}.
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We now obtain the following curious corollaries.

Corollary 5.2. Let G be a definable group, X ⊆ G a nonempty defin-

able set such that ClG(X) is definably compact.

(i) If g ∈ G and gX ⊆ X then necessarily gX = X.

(ii) If g ∈ G and dim(gX \ X) ≤ r for some r, then dim(gX △ X) ≤ r.

Proof. (i) Let S = {h ∈ G : hX ⊆ X}. Then S is a definable semigroup
in G, containing g. Moreover, if x ∈ X then Sx ⊆ X and therefore ClG(S)
is definably compact. By Theorem 5.1, S is a subgroup of G, which easily
implies that hX = X for every h ∈ S.

(ii) Similarly, let S = {h ∈ G : dim(hX \X) ≤ r}. It is easy to see that S
is a semigroup and therefore a group. Now, given h ∈ S, if dim(hX \X) ≤ r
then also dim(h−1X \ X) ≤ r, which implies that dim(X △ hX) ≤ r.

Corollary 5.3. Let G be definably compact and commutative (written

additively). Let X ⊆ G be a definable 2-generic set and assume that for

some a ∈ G we have dim((a + X) ∩ X) < dim(X). Then:

(i) There is a torsion element h ∈ G such that dim(G\ (X ∪ (h+X)) <
dim(G).

(ii) Every translate of X contains an element from M0.

Proof. Let n = dim(G) = dim(X) and assume that X ∪ b + X = G.
By our assumptions, dim((a + X) \ (b + X)) < n = dim(G), and hence
dim((a− b + X) \X) < n. By Corollary 5.2, dim((a− b + X)△X) < n. Let

H = {h ∈ G : dim(h + X △ X) < n}.

Clearly H is a definable subgroup of G.
Now, since dim(a+X△b+X) < n and dim(X∩a+X) < n we also have

dim(b+X∩X) < n and therefore dim(2b+X∩b+X) < n. But b+X ⊇ Xc,
hence dim(2b+X ∩Xc) < n, or equivalently dim(2b+X \X) < n. It follows
from 5.2 that 2b ∈ H and therefore there is a natural number k > 1 such
that kb ∈ H0 (where H0 is the definably connected component of H).

Since H0 is divisible, there is h ∈ H0 such that g = b − h is a torsion
element of G and we have dim(h + X △ X) < n. It follows that dim(G \
(X ∪ g + X)) < n.

(ii) Let Y = X ∪ h + X. By dimension considerations, every translate
of Y contains an element from M0. In particular Y itself contains an element
from M0. But if h + X contains such an element then so does X (since
h ∈ M0).

6. Appendix: A proof of Theorem 2.1. For the sake of complete-
ness, we present here a full proof of Theorem 2.1, extracted from Dolich’s
paper [4]. (6.1 and 6.3 are just Lemmas 4.5 and 4.6 from that paper, with
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somewhat extended proofs. Our 6.4 is a variation on Corollary 4.7 from his
paper, and our Theorem 6.5 provides a direct proof of the theorem we need,
based on the ideas from [4].)

Even though Dolich states his theorems under the assumption that the
theory is “nice” (e.g. expands a real closed field), it is sufficient to assume
for our purpose that M is an o-minimal structure with definable choice
functions (e.g. an expansion of an ordered group).

Suppose p(x) is a complete n-type (of dimension n) over A and q(y) is
a complete 1-type over A. We will let P, Q denote the sets of realizations
of p, q respectively. Note that if a ∈ P , and b ∈ Q and b ∈ dcl(aA), then
this is witnessed by an A-definable function f such that f(a) = b, and that
f is continuous and monotone (or constant) in each coordinate on some
A-definable cell which contains P . We write f : P → Q.

Lemma 6.1. Let p(x), q(x) be complete nonalgebraic 1-types over a set A.

(a) Then either

(i) all A-definable f : P → Q are increasing (i.e. order-preserving :
x < y implies f(x) < f(y)), or

(ii) all A-definable f : P → Q are decreasing.

(b) In case (i) whenever B ⊇ A, a ∈ P and a > dcl(B) ∩ P , then

dcl(aA) ∩ Q > dcl(B) ∩ Q.

In case (ii), whenever B ⊇ A, a ∈ P and a < dcl(B) ∩ P , then

dcl(aA) ∩ Q > dcl(B) ∩ Q.

Proof. (a) Suppose for contradiction that there are f : P → Q and
g : P → Q with f increasing and g decreasing. Let h = g−1f . Then h :
P → P is decreasing (and is clearly a bijection). Now either x < h(x) for
all x ∈ P or x > h(x) for all x ∈ P . We suppose the first possibility and get
a contradiction. (Likewise the second possibility will give a contradiction.)
Fix a ∈ P . So a < h(a). Let c ∈ P be such that h(c) = a. So h(c) < h(a) and
as h is decreasing, a < c. But then c > h(c), contradicting our hypothesis.

(b) We assume case (i) of (a) holds. Suppose that c ∈ dcl(aA) ∩ Q,
so this is witnessed by some A-definable f : P → Q with f(a) = c. Now
f is order-preserving and also gives a bijection between dcl(B) ∩ P and
dcl(B) ∩ Q. By choice of a we see that c > dcl(B) ∩ Q.

In part (b) of the lemma we chose a to realize one of two possible “canon-
ical” extensions of p to a complete type over B. We will generalize this notion
to n-types.

Definition 6.2. Suppose p(x1, . . . , xn) is a complete n-type over A of
dimension n. Fix some sequence η = (η(1), . . . , η(n)) where each η(i) is 1
or 0. Let B ⊇ A. We will define an extension pη

B ∈ Sn(B) of p.
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For i = 1, . . . , n let pi(x1, . . . , xi) be the restriction of p to the variables
x1, . . . , xi. Let (b1, . . . , bn) be chosen as follows: b1 ∈ P1 and if η(1) = 1 then
b1 > dcl(B) ∩ P1, while if η(1) = 0, then b1 < dcl(B) ∩ P1.

Given b1, . . . , bi (which will realize Pi) let bi+1 ∈ Pi+1(b1, . . . , bi) (the
set of realizations of pi+1(b1, . . . , bi, xi+1)) be such that, if η(i + 1) = 1,
then bi+1 > dcl(B, b1, . . . , bi) ∩ Pi+1(b1, . . . , bi), and if η(i + 1) = 0, then
bi+1 < dcl(B, b1, . . . , bi) ∩ Pi+1(b1, . . . , bi).

Note (by o-minimality) that tp(b1, . . . , bn/B) is an extension of p which
depends only on the choice of η. We define pη

B(x1, . . . , xn) to be this type.

Proposition 6.3. Let p(x1, . . . , xn) be a complete n-type over A of

dimension n. Let q(y) be a complete 1-type over A. Then there is η as

in Definition 6.2 such that for any B ⊇ A and any realization a of pη
B ,

dcl(aA) ∩ Q > dcl(B) ∩ Q.

Proof. For simplicity we assume A = ∅. For i = 1, . . . , n, let pi(x1, . . . , xi)
be the restriction of p to x1, . . . , xi. Let (a1, . . . , an) realize p. Let Pi be the
set of realizations of pi, and Pi+1(a1, . . . , ai) be the set of realizations of
pi(a1, . . . , ai, xi+1). We let ai denote (a1, . . . , ai). So if i = 0, then ai = ∅.

We first define η and then show it works. Fix 1 ≤ i+1 ≤ n and we want to
define η(i+1). Let qai(y) be the complete extension of q over ai, determined
by “y < dcl(ai)∩Q”. (So if i = 0, we just get the complete type q.) Let Q(ai)
be the set of realizations of qai(y). Now if case (i) of Lemma 6.1(a) holds
for Pi+1(a

i) and Q(ai) (namely if all ai-definable functions between these
two types are increasing) then define η(i + 1) = 1. Note that this does not
depend on the choice of ai, only the fact that it realizes pi. Otherwise, put
η(i+1) = 0. (Note it is possible that there are no such functions, increasing
or decreasing, in which case any value for η(i + 1) will work.)

Now let (b1, . . . , bn) realize pη
B . We prove by induction on i=1, . . . , n that

(∗) dcl(b1, . . . , bi) ∩ Q > dcl(B) ∩ Q.

For i = 1, this is given by Lemma 6.1(b). Now for the inductive step.
Our inductive hypothesis is (∗). Let bi denote (b1, . . . , bi). Suppose that
c ∈ dcl(bi, bi+1). If c > d for some d ∈ dcl(bi) ∩ Q then by the inductive
hypothesis (∗), c > dcl(B) ∩ Q. Otherwise, clearly c realizes Q(bi). But
then bi+1 ∈ Pi+1(b

i), and bi+1 > dcl(Bbi) ∩ Pi+1(b
i) if η(i + 1) = 0, and

bi+1 < dcl(Bbi)∩Pi+1(b
i) if η(i+ 1) = 1. So by Lemma 6.1(b), and the way

we chose η(i+1), it follows that c > dcl(Bbi)∩Q(bi). But then, by the defini-
tion of Q(bi) and the inductive hypothesis (∗), we see that c > dcl(B)∩Q.

Examples. We work in the structure M = 〈R, +, ·〉.

(1) Let

P (x, y) = {x > n : n ∈ N} ∪ {y > f(x) : f is 0-definable}
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and Q(x) = {x > n : n ∈ N}. Then the associated η can be either
(1, 0) or (1, 1).

(2) Let

P (x, y) = {x > n : n ∈ N} ∪ {y > n : n ∈ N}

∪ {y < f(x) : f is 0-definable and lim
t→+∞

f(t) = +∞}

and Q(x) as above. Then the associated η must be (1, 1).

The next step is the following version of Corollary 4.7 from Dolich’s
paper.

Lemma 6.4. Let X(a) be a closed and bounded subset of Mn+1, defined

over an independent tuple a ∈ Mm, and assume that X(a) ∩ dcl(∅) = ∅.
Let p = tp(a/∅), and for η ∈ 2m, let aη |= pη

a. Let π : Mn+1 → Mn be the

projection on the first n coordinates. Then the set

π
(

X(a) ∩
⋂

η∈2m

X(aη)
)

does not contain any element of dcl(∅) ∩ Mn.

Proof. Fix c ∈ dcl(∅) ∩ Mn and consider the set I(a) = {x ∈ M : cx ∈
X(a)}. It is a finite union of closed intervals, I1(a) < · · · < Ik(a), none
containing a point in dcl(∅). Thus each Ij is contained in the realization set
of a complete nonalgebraic type qj ∈ S1(∅).

For each j = 1, . . . , k, choose ηj as given by Proposition 6.3, for the
types P and Qj . For simplicity, write aj = aηj

.
The endpoints of the interval Ij(a) are in dcl(a)∩Qj, while the endpoints

of Ij(aj) are in dcl(aj) ∩ Qj . Hence, by Lemma 6.1 (with a for B), the
endpoints of Ij(aj) lie above the endpoints of Ij(a). Moreover, if qi = qj

then the endpoints of Ij(aj) lie above the endpoints of Ii(a) as well. In
particular, Ij(aj) ∩ I(a) ∩ Qj = ∅. Clearly, if qi 6= qj then Ij(aj) ∩ I(a) = ∅,
and thus I(aj) ∩ I(a) ⊆

⋃

i6=j Qi.
Doing that for every j, one has I(a) ∩

⋂

η∈2m I(aη) = ∅ and thus c /∈
π(X(a) ∩

⋂

η∈2m X(aη)).

Theorem 6.5. Assume that {X(a) : a ∈ S} is an M0-definable family

of closed and bounded subsets of Mn. Let p(x) ∈ Sm(M0) be a type of some

a ∈ S, let P = p(M). Then {X(a) : a ∈ P} has the finite intersection

property if and only if there is c ∈ M0 such that c ∈ X(a) for every a ∈ P .

Proof. The “if” direction of the theorem is obvious.
Consider {X(a) : a ∈ P}, a family of closed and bounded subsets of

Mn with the finite intersection property. Clearly, one may assume that p
is an open type (by just considering the independent coordinates in p). By
extending the language we may assume that M0 = dcl(∅).
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The proof is done by induction on n. The case n = 1 will be reduced in
this way to the case n = 0, in which X(a) clearly contains a single point.

Fix a ∈ P and assume towards a contradiction that X(a) ∩ dcl(∅) = ∅.

For ηi ∈ 2m let ai |= pηi
a . Consider the type P = tp(a, a1, . . . , a2m/∅),

and the family

{

π
(

X(b) ∩
2m
⋂

i=1

X(bi)
)

: (b, b1, . . . , b2m) |= P
}

.

This is a family of closed and bounded subsets of Mn−1, with the finite
intersection property (since so was our original family). By induction each
such set contains an element of dcl(∅).

However, by Lemma 6.4, the set π(X(a)∩
⋂

η∈2m X(aη))∩dcl(∅) is empty,
a contradiction.

Remark. Notice that the proof of Dolich’s theorem gives an upper
bound on the needed N such that N -consistency of {X(a) : a ∈ P} im-
plies the existence of a point in M0 ∩ X(a).

Namely, for every m, n ∈ N, there is N = N(m, n) such that for every
complete type p over M0 of dimension m and for every definable family
{X(a) : a ∈ P} of closed and bounded subsets of Mn, if the family is
N -consistent then it is finitely consistent.

Indeed, as the proof shows, if X(a) does not contain a point in M0 then
one can produce a family of closed and bounded subsets of Mn−1 using
the projection of 1 + 2m sets from the original family, such that none of
the sets contains a point in M0. This new family is parameterized by a
type of dimension at most 2m. Proceeding in this way, we may get N =
(1 + 2m) · (1 + 22m

) · · · , where the product has length n.
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