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Club-guessing and non-structure of trees
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Tapani Hyttinen (Helsinki)

Abstract. We study the possibilities of constructing, in ZFC without any additional
assumptions, strongly equivalent non-isomorphic trees of regular power. For example, we
show that there are non-isomorphic trees of power ω2 and of height ω ·ω such that for all
α < ω1 ·ω ·ω, E has a winning strategy in the Ehrenfeucht–Fräıssé game of length α. The
main tool is the notion of a club-guessing sequence.

In this paper we study the problem of constructing strongly equivalent
non-isomorphic models. In the 60’s, the problem was studied in connection
with the arising interest in infinitary languages. The idea was to study the
relation between isomorphism and elementary equivalence in infinitary log-
ics. Well known contributions were made e.g. by C. Karp and M. Morley.
These studies were continued in the 70’s, e.g. by M. Nadel and J. Stavi.
See [NS] for more on the early history. In the 80’s, the infinitary languages
were revisited in Helsinki and the question was raised again (see e.g. [Hu]).
By this time, S. Shelah had come to the field with his non-structure theo-
rems, in which the conclusion was that the theory has rather equivalent but
non-isomorphic models. Because of this, the question was revised. We want
to know under what conditions a given class of structures has very equiva-
lent non-isomorphic models and how equivalent the models can be; see e.g.
[HT] (complete first-order theories), [MO] (p-groups) or [EFS] (ℵ1-separable
groups). Here the idea is to show that one cannot find simple invariants for
the models in the class. Thus, when we are able to show that in the class
there are very equivalent non-isomorphic models, the result is called a strong
non-structure theorem. In these results the equivalence is usually measured
by the length of the Ehrenfeucht–Fräıssé games in which E has a winning
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strategy (see e.g. [HS]). We write A ≡λt B if E has a winning strategy in
the Ehrenfeucht–Fräıssé game of length t in which the player A chooses se-
quences of length < λ. In the strongest non-structure theorems we had to
assume that κ<κ = κ to get a required pair of models in cardinality κ and
we were able to show that at least some assumptions are needed in such
theorems (see [HST]). Weaker, but still strong, non-structure theorems were
obtained under weaker cardinal arithmetical assumptions (see e.g. [HS]).
However, it was soon noticed that without the assumption κω = κ, strong
non-structure theorems were hard to get. Explicitly this was pointed out in
[Tu], where the following two propositions were proved:

(i) there are non-isomorphic models A and B of power ω1 such that
A ≡2

α B for all α < ω · ω,
(ii) if the majorant property holds, then there are non-isomorphic models

A and B of power ω1 such that A ≡2
α B for all α < ω · ω · ω.

Here the majorant property is the same as ∗ω1
ω (see Section 1 below).

Then ten years passed without any improvements concerning the problem.
In this paper we try to improve the two propositions above. First, we

want the models to be structures familiar from other connections; in fact,
we are interested in trees of restricted height. This is an important class of
models. From the point of view of Shelah’s non-structure theory, the class
of trees of low height is probably the most important one among the classes
of structures of a specific type. Trees of low height are used as skeletons
in Ehrenfeucht–Mostowski model constructions in the case of unsuperstable
theories. In [Tu] the models were specially designed for the result. Secondly,
we make changes to the assumptions (e.g. replace ω1 by ω2) and try to get
stronger conclusions. For trees of low height (compared to their size), in
many cases we solve the question of how equivalent non-isomorphic models
the class contains (measured by ≡2 and proved in ZFC).

The following two results on trees were proved before (in ZFC): M. Mor-
ley showed that there are ω2, ω1-trees A and B of power ω1 such that A 6∼= B
and A ≡ω1

ω B (i.e. A ≡ B (L∞ω1); see [NS] and notice that A 6≡2
ω+1 B).

S. Shelah showed that for all regular κ > ω, there are κ+, ω + 1-trees A
and B of power κ such that A 6∼= B and A ≡κω B (see [Sh1] and notice
that A 6≡κω+1 B). Notice also that without cardinal arithmetical assump-
tions, Shelah’s construction does not generalize to higher trees (κ<ω = κ).
On the other hand, Shelah showed the result not only for trees but for all
unsuperstable theories T (κ > |T |).

Our main tool will be the use of club-guessing. Shelah’s original reason to
study club-guessing was to prove non-structure theorems. Since then there
has been other applications for club-guessing in model theory (see e.g. [KS]).
The most famous ones are in set theory, of course. We will introduce a
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generalization of the majorant property mentioned above. It can be seen as
a variant of club-guessing principles.

In the first section we study the provability of the generalization of the
majorant property. In the second section we apply the principle to get strong
non-structure theorems. The constructions in this section use ideas from
the model constructions of [Tu]. Most of our results are proved without
any assumptions on the cardinal arithmetic, and in the rest the conclusions
follow from assumptions much weaker than κω = κ.

1. Club-guessing. We define three combinatorial principles. The first
two are modifications of S. Shelah’s club-guessing ([Sh5]) and the last is a
generalization of H. Tuuri’s majorant property ([Tu]).

1.1. Definition. Assume κ is a regular cardinal and α < κ.

(i) By �κα we denote the following principle: There are Ci ⊆ κ, i < κ,
such that

(a) Ci is a closed subset of
⋃{β + 1 | β ∈ Ci} and otp(Ci) = α,

(b) for all cub C ⊆ κ there is i < κ such that Ci ⊆ C.

(ii) By �κα we denote the following principle: There are Ci ⊆ κ, i < κ,
such that

(a) Ci is a closed subset of
⋃{β + 1 | β ∈ Ci} and otp(Ci) = α,

(b) for all cub C ⊆ κ there is i < κ such that Ci ⊆ C,
(c) for all β < κ, the cardinality of the set {Ci ∩ β | i < κ, Ci ∩ β
6= Ci} is < κ.

(iii) By ∗κα we denote the following principle: There are fi : α→ κ, i < κ,
such that for all g : κ<α → κ there is i < κ for which g((fi(γ))γ<β) < fi(β)
for all β < α.

Notice that κλ = κ implies ∗κα and �κα, for all α < λ+, and that all
the properties are preserved under ccc-forcing. So con(ZFC) implies e.g.
con(ZFC + MA + ¬CH + ∀α < ω1 (∗ω1

α )).

1.2. Theorem ([Sh3]). Assume that κ and ξ are regular cardinals and
ξ+ < κ. Then �κξ holds.

The following theorem is implicitly proved in a very early (9/91) manu-
script of [Sh5]. Since [Sh5] has not appeared yet and a bit additional work
is needed, we will repeat the proof:

1.3. Theorem. For all regular κ > ω1 and α < κ, �κ+

α holds.

Proof. By [Sh2], Lemma 4.4, there are Sξ, ω < cf(ξ) ≤ ξ < κ, and Cξδ ,
δ ∈ Sξ, such that:

(1) Each Sξ is a subset of {δ < κ+ | cf(δ) < κ}.
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(2) Cξδ ⊆ {γ < δ | cf(γ) < κ} is a closed subset of δ of power < κ and
unbounded if δ is a limit ordinal.

(3) For all ξ < κ and δ ∈ Sξ, if γ ∈ Cξδ , then γ ∈ Sξ and Cξγ = Cξδ ∩ γ.
(4) For all δ < κ+ with cf(δ) < κ, there is a cub E ⊆ κ such that for all

ξ ∈ E, if cf(ξ) > ω, then δ ∈ Sξ.
(5) If δ < κ+ is limit, C ⊆ {γ < δ | cf(γ) < κ} is of power < κ and ξ is

large enough (and cf(ξ) > ω), and δ ∈ Sξ, then C ⊆ Cξδ .

Notice that (4) is claim (a) in the proof of Lemma 4.4 in [Sh2], and (5)
follows by induction on δ from the definition of Cξδ as follows (we assume
that the reader is familiar with the proof of Lemma 4.4 of [Sh2]): The case
cf(b(δ)) 6= cf(ξ) is immediate by (ii) and (iii) of the definition of Di

α, and in
the case cf(b(δ)) = cf(ξ) notice that we can restrict the intersection to those
W which are subsets of some (fixed) W ∗ such that there is ξ∗ < κ for which
the following holds: If δ′ ∈W ∗ and ξ > ξ∗ then δ′ ∈ Sξ implies C∩δ′ ⊆ Cξδ′ .

Claim 1. For all δ∗ < κ there is ξ < κ for which the following holds:
for all cub C ⊆ κ+, there is δ ∈ Sξ such that otp(Cξδ ∩ C) > δ∗.

Proof. Assume the claim is not true for δ∗. For all ξ < κ, choose Cξ
which witnesses the failure of the claim for ξ. Let C =

⋂
ξ<κ Cξ, C

∗ =
{γ ∈ C | cf(γ) < κ} and choose δ ∈ C∗ so that otp(C∗ ∩ δ) is limit, < κ
and > δ∗. By (4) and (5) above, we can find ξ < κ so that δ ∈ Sξ and
C∗ ∩ δ ⊆ Cξδ , a contradiction. Claim 1

Let ξ < κ be as in Claim 1 for δ∗ = α. We write S = Sξ and Cδ = Cξδ
(δ ∈ S).

Claim 2. There is a cub C such that for all cub E there is δ ∈ S for
which Cδ ∩ C ⊆ E and otp(Cδ ∩ C) > α.

Proof. Assume not. For all i < κ choose cub Ei so that

(a) Ei ⊆ Ci =
⋂
j<i Ej ,

(b) for all δ ∈ S, Cδ ∩ Ci 6⊆ Ei or otp(Cδ ∩ Ci) ≤ α.

Let C =
⋂
i<κ Ei and choose δ ∈ S so that otp(Cδ ∩ C) > α. On the other

hand, (Cδ ∩Ei)i<κ is a decreasing sequence and so there is i < κ such that
Cδ ∩ Ej = Cδ ∩ Ei for all i < j < κ, in particular Cδ ∩ Ei+1 = Cδ ∩ Ci+1,
which means Cδ ∩ Ci+1 ⊆ Ei+1, a contradiction. Claim 2

Let S∗ = {δ ∈ S | otp(Cδ ∩ C) > α}, where C is as in Claim 2. For all
δ ∈ S∗, we define C∗δ to be the set of the first α elements of Cδ ∩ C. Now
these witness that �κ+

α holds: (a) and (b) of Definition 1.1(ii) are clear. Also
(c) holds since for all β < κ+ and δ ∈ S∗, if Cδ∩β 6= Cδ, then there is γ ≤ β
such that up to one element, C∗δ ∩ β = Cξγ ∩ C.
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1.4. Lemma. Assume that κ is a regular cardinal , α < κ and µ|β| < κ
for all cardinals µ < κ and β < α. Then �κα implies �κα. In particular , �κω
implies �κω for all regular κ > ω.

Proof. Immediate.

1.5. Lemma. �ω1 implies �ω2
α for all α < ω1.

Proof. Just repeat the proof of Theorem 1.3: Fix α and let Cδ, δ < ω2,
witness �ω1 .

Claim. There is a cub C ⊆ ω2 for which the following holds: for all cub
E ⊆ ω2 there is δ < ω2 such that Cδ ∩ C ⊆ E and otp(Cδ ∩ C) > α.

Proof. Assume not. Choose Ei, i < ω1, so that Ei ⊆ Ci =
⋂
j<i Ej and

for all δ < ω2, Cδ ∩ Ci 6⊆ Ei or otp(Cδ ∩ Ci) ≤ α. Let C =
⋂
i<ω1

Ei and
δ ∈ C be such that otp(C ∩ δ) = ω1. Then otp(C ∩ Cδ) = ω1 and there
is γ ∈ C ∩ Cδ such that β = otp(C ∩ Cδ ∩ γ) is a limit and > α. Since
Cδ ∩ γ = Cγ , we have β = otp(C ∩ Cγ). Since |Cγ | < ω1, there is i < ω1

such that Ci ∩ Cγ = C ∩ Cγ , a contradiction. Claim

Let C be as in the Claim and define C∗δ to be the set of the first α
elements of Cδ ∩C (if otp(Cδ ∩C) ≤ α, then C∗δ is undefined). Clearly these
satisfy (a) and (b) from Definition 1.1(ii). Also (c) is satisfied since for all
δ < ω2 and β < ω2, if C∗δ ∩ β 6= C∗δ , then there is γ ≤ β such that up to a
finite number of elements, C∗δ ∩ β = Cγ ∩ C.

1.6. Lemma. Assume κ is a regular uncountable cardinal and α < κ is
a limit ordinal. Then �κα implies ∗κα. (For successor α, �κα+1 implies ∗κα.)

Proof. Let Ci, i < κ, witness �κα. For all i < κ, let f ′i : α → κ be the
increasing enumeration of Ci and let fi : α→ κ be such that fi(γ) = f ′i(γ+1)
for all γ < α. We show that these witness ∗κα. For this let g : κ<α → κ be
arbitrary. We let C ⊆ κ be the set of all γ such that the following holds: if
for some i < κ, η = fi�δ, δ < α and sup(rng(η)) < γ, then g(η) < γ. By
(c) in the definition of �κα, C is cub and so there is some i < κ such that
Ci ⊆ C. But then g((fi(γ))γ<β) < fi(β) for all β < α.

1.7. Lemma. (i) If �κα holds and β < α · ω, then �κβ holds.
(ii) If ∗κα holds and β < α · ω, then ∗κβ holds.

Proof. We prove (i), the other claim is similar. Let Di, i < κ, exemplify
that �κα holds. We let Ci, i < κ, enumerate all C such that

(i) otp(C) = β,
(ii) C is the closure of an initial segment of

⋃
k<nDik , where i0, . . . , in−1

< κ are such that sup(Dk) < min(Dm) for all k < m < n.

Clearly these show that �κβ holds.
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The following conclusion lists all the club-guessing facts that we shall
need.

1.8. Conclusion. (i) ∗ω1
n is true for all n < ω.

(ii) ∗ω2
α is true for all α < ω · ω.

(iii) ∗κ+

α is true for all regular κ > ω1 and all α < κ.
(iv) If �ω1 holds, then ∗ω2

α holds for all α < ω1.

Proof. (i) is trivial and the remaining are immediate by Theorems 1.2
and 1.3 and Lemmas 1.4–1.7.

The poset in the proof of the following theorem is due to J. Baumgartner
[Ba].

1.9. Theorem. ∗ω1
ω is independent of ZFC.

Proof. Since ∗ω1
ω is implied by CH, it is enough to prove the consistency

of ¬∗ω1
ω . We say that f : ω1 → ω1 is cub if it is strictly increasing and

continuous. We let Q be the set of all finite p such that p ⊆ f for some
cub f . We order Q by inclusion.

Claim 1. Q is proper.

Proof. Let p ∈ Q and M ≺ Hκ be such that p,Q ∈M . Let α = ω1 ∩M
and q = p ∪ {(α, α)}. Clearly,

(∗) γ + α = α for all γ < α,

and so it is easy to see that q ∈ Q. Let D ∈ M be dense and q′ ≤ q. Then
q′�α ∈M and so there is p′ ∈M ∩D such that p′ ≤ q′�α. By (∗), p′∪q′ ∈ Q
and clearly p′ ∪ q′ ≤ q′, p′. Claim 1

LetG be Q-generic over V and F =
⋃
G. Let g : ω<ω1 → ω1 be one-to-one

and such that for all η, g(η) > max{η(n) | n ∈ dom(η)} and if η ⊆ ξ then
g(η) ≤ g(ξ). Define G = F ◦ g.

Claim 2. If f : ω → ω1 is such that f ∈ V , then there is n < ω for
which G((f(i))i<n) > f(n).

Proof. For a contradiction, assume p forces that G((f(i))i<n) ≤ f(n)
for all n < ω. Let βn = f(n) and αn = g((f(i))i<n). We may assume
that supn<ω βn = supn<ω αn, because otherwise supn<ω βn < supn<ω αn,
which is impossible since F (α) ≥ α for all α < ω1. Let α = supn<ω αn
and h : ω1 → ω1 be a cub such that p ⊆ h. Clearly we may assume that
h(α) = α (h(α) > α gives an easy contradiction). Let β = max(dom(p)∩α).
For a contradiction, it is enough to find a continuous strictly increasing
h′ : (α − β) → {h(γ) | β ≤ γ < α} such that

⋃{h′(γ) | β ≤ γ < α} = α
and h′(αn) > βn for some n < ω. So it is enough to prove the following
subclaim:
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Subclaim. Assume α < ω1 is a limit ordinal and (αn)n<ω and (βn)n<ω
are strictly increasing cofinal sequences in α. Then there is a continuous
strictly increasing function h : α→ α such that h(αn) > βn for some n < ω.

Proof (by induction on α). If γ + α = α for all γ < α, then the claim is
clear. So we may assume that α = β + γ for some β, γ < α. But now the
claim follows from the induction assumption. Subclaim & Claim 2

We will use the theory of ω2-pic forcing. For the definition of ω2-pic see
[Sh4], Chapter VIII. However, we will not need the definition, just general
results from [Sh4].

Claim 3. Q is ω2-pic.

Proof. By Claim 1 and [Sh4], VIII, Lemma 2.5, it is enough to show that
|Q| < ω2, which is trivial. Claim 3

For all i < ω2, let Pi be the forcing notion obtained by iterating Q i
times using countable support. By Gi we denote an (arbitrary) Pi-generic
set over V . By Claims 1 and 3, for all i < ω2, Qi is proper and ω2-pic in
V [Gi] (assuming no cardinals are collapsed) and so by [Sh4], III, Theorem
3.2, and VIII, Lemmas 2.4 and 2.3, assuming CH, Pω2 is proper and has
ω2-cc. In particular, Pω2 does not collapse any cardinals. We show that ∗ω1

ω

fails in V [Gω2 ].
Assume not. Let fi, i < ω1, witness ∗ω1

ω . Since Pω2 has ω2-cc, there is
α < ω2 such that fi ∈ V [Gω2�α] for all i < ω1. By Claim 2, there is g :
ω<ω1 → ω1 in V [Gω2�(α+ 1)] such that for all i < ω1, g((fi(k))k<n) > fi(n)
for some n < ω, a contradiction.

1.10. Question. Does ∗ω2
α hold for ω · ω ≤ α < ω1?

Notice that by Conclusion 1.8(iv), at least a Mahlo is needed to make
∗ω2
α fail for some α < ω1.

2. Non-structure of trees. In this section we apply the club-guessing
principles from the previous section to get strongly equivalent non-isomor-
phic trees without any assumptions on the i-function. We start with a result
that sets some limits on what is possible to prove. Let κ be a cardinal and
α an ordinal. By a κ+, α-tree we mean a downward closed subtree of κ<α

(or a tree isomorphic to one).
Warning : This definition differs from the usual definition of λ, β-tree,

but it is convenient for our purposes.

2.1. Theorem ([HT], [HS]). Assume κ = µ+, µ regular , κ ∈ I[κ] and
α < κ. If A and B are κ+, α-trees and A ≡κµ·α B, then A ∼= B. (In fact , if
µ = ω, then A ≡2

µ·α B suffices and if µ = λ+, then A ≡2
µ·λ·α B suffices.)

Proof. This is essentially proved in [HS].
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If A is a κ+, α-tree and η ∈ A, then by A�η we mean the subtree of A
of all ξ ∈ A such that ξ ≥ η.

2.2. Definition. Let A and B be κ+, α-trees and κ = µ+. We say that
(A,B) is a (κ+, α)-homogeneous pair of trees if the following holds:

(i) if γ < α and η ∈ κ<γ , then η ∈ A iff η ∈ B,
(ii) if η _ (δ) ∈ A and length(η) + 2 < α, then |{γ | B�(η _ (γ)) ∼=

A�(η _ (δ))}| ≥ µ,
(iii) if η _ (δ) ∈ B and length(η) + 2 < α, then |{γ | A�(η _ (γ)) ∼=

B�(η _ (δ))}| ≥ µ.

Item (ii) in the following lemma puts some limits on what can be proved
by the model constructions of [Tu].

2.3. Lemma. Assume κ = µ+ and α < κ.

(i) If ∗κα holds, then there is a (κ+, α + 1)-homogeneous pair (A,B) of
trees such that |A| = |B| = κ, A 6∼= B and A ≡κα B. (In fact , A ≡2

µ·α B.)
(ii) If ∗κα fails, α is a limit ordinal and (A,B) is a (κ+, α+1)-homogene-

ous pair of trees, then A ∼= B.

Proof. (i) Let fi, i < κ, exemplify that ∗κα holds. For all η ∈ κ≤α, we
define P (η) as follows:

(a) If length(η) = 0, then P (η) = 0.
(b) Assume length(η) = γ+ 1. If P (η�γ) is not defined, then P (η) is not

defined; if P (η�γ) is defined, then P (η) = P (η�γ) if η(γ) ≥ µ, and otherwise
P (η) = P (η�γ) + 1 mod 2.

(c) Assume length(η) = γ is limit. Let P (η) = 0 if P (η�β) = 0 for all
β < γ large enough, and P (η) = 1 if P (η�β) = 1 for all β < γ large enough.
Otherwise P (η) is left undefined.

Q(η) is defined exactly as P (η) except that (a) is replaced by

(a′) if length(η) = 0, then Q(η) = 1.

Claim 1. (α) For all η, P (η) is defined iff Q(η) is defined and in that
case P (η) = Q(η) + 1 mod 2.

(β) If γ = length(η) = length(ξ), β < γ, P (η�β) = Q(ξ�β) and η(δ) =
ξ(δ) for all β ≤ δ < γ, then P (η) is defined iff Q(ξ) is defined and in that
case P (η) = Q(ξ).

(γ) If γ = length(η) = length(ξ) and {β < γ | η(β) 6= ξ(β)} is finite,
then P (η) is defined iff P (ξ) is defined.

Proof. Easy. Claim 1

We let I ⊆ κ≤α be the least set such that

(1) for all i < κ, if P (fi) is defined, then fi ∈ I,
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(2) I is closed under initial segments,
(3) if η ∈ I, length(η) = length(ξ) and {γ < length(η) | η(γ) 6= ξ(γ)} is

finite, then ξ ∈ I.

We define A and B so that A ∩ κ<α = B ∩ κ<α = I ∩ κ<α and if
length(η) = α, then η ∈ A (resp. η ∈ B) iff η ∈ I and P (η) = 0 (resp.
Q(η) = 0).

Claim 2. (A,B) is a (κ+, α+ 1)-homogeneous pair of trees, and |A| =
|B| = κ.

Proof. We prove only (ii) of the definition of a (κ+, α+ 1)-homogeneous
pair of trees as (i) is trivial and (iii) is similar to (ii). So assume η _ (δ) ∈ A
and length(η)+1 < α. There are several cases, but they are all similar so we
may assume P (η) = Q(η) = 0 and δ < µ. Then P (η _ (δ)) = Q(η _ (γ))
for all γ < µ, and so A�(η _ (δ)) ∼= B�(η _ (γ)) by Claim 1(β).

The claim concerning the cardinality of the trees is clear from their
definition. Claim 2

Claim 3. A 6∼= B.

Proof. For a contradiction, assume G : A → B is an isomorphism. Define
g : κ<α → κ so that for all η ∈ κ<α,

(I) if η 6∈ A, then g(η) = µ,
(II) if η ∈ A, then g(η) is the least γ ≥ µ such that the following holds:

if G(η _ (δ)) = G(η) _ (δ′), then δ < γ iff δ′ < γ.

Let i < κ be such that g((fi(δ))δ<γ) < fi(γ) for all γ < α. Then fi(γ) ≥
µ for all γ < α, and so P (fi) = 0, i.e. fi ∈ A. Now we have two cases:

Case 1: α is limit. Let η be such that η�γ = G(fi�γ) for all γ < α.
Then η(γ) ≥ µ for all γ < α, and so Q(η) = 1, i.e. η 6∈ B, a contradiction.

Case 2: α = β+ 1. Let ξ = fi�β and η = G(ξ). As above, P (ξ) = 0 and
Q(η) = 1. So by the definition of A and B, and (3) in the definition of I,
the number of successors of ξ is κ and the number of successors of η is µ, a
contradiction. Claim 3

Claim 4. A ≡κα B.

Proof. We describe the winning strategy of E in the Ehrenfeucht–Fräıssé
game EFκα(A,B): We write Ai for the set of all η ∈ A such that length(η) ≤ i
and similarly for B. At each move i < α, E chooses a level preserving partial
isomorphism Fi as follows:

(a)
⋃
j<i Fj ⊆ Fi, dom(Fi) ∪ rng(Fi) contains all the elements chosen so

far by A, and E answers according to Fi,
(b) Ai+1 ⊆ dom(Fi) and Fi�Ai+1 is onto Bi+1,
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(c) if length(η) > i + 1 and η ∈ dom(Fi), then we have P (η�(i + 1)) =
Q(Fi(η�(i+ 1))); furthermore, if η ∈ dom(Fi), j < length(η) and P (η�j) =
Q(Fi(η)�j), then Fi(η)(k) = η(k) for all j ≤ k < length(η),

(d) if η ∈ dom(Fi), length(η) ≤ i + 1 and P (η) 6= Q(Fi(η)), then
Fi(η) = η.

It is easy to see that player E can find these functions. Claim 4

(ii) Let ηi, i < κ, be the enumeration of all η ∈ A ∪ B such that
length(η) = α. Find g : κ<α → κ such that for all i < κ there is γ < α for
which g(ηi�γ) > ηi(γ). Let ξi, i < γ(∗), be an enumeration of all ξ ∈ A such
that βi = length(ξ) < α. Furthermore assume that the enumeration is such
that if ξi < ξj , then i < j.

We define level preserving partial isomorphisms Fi, i < γ(∗), essentially
as in Claim 4 above, i.e. so that the following are satisfied:

(1)
⋃
j<i Fj ⊆ Fi,

(2) Ai ⊆ dom(Fi), where Ai is the set of all ξ ∈ A such that for some
j < i, length(ξ) ≤ βj + 1 and ξ ≥ ξj ,

(3) for all j < i, there is γj < κ such that γj > g(ξj), A�(ξj _ (γ))
⊆ dom(Fi) for all γ < γj , Fi�(A�(ξj _ (γ))) is an isomorphism onto
B�Fi(ξj _ (γ)) and if Fi(ξj _ (δ)) = Fi(ξj) _ (δ′) then δ < γj iff δ′ < γj ,

(4) dom(Fi) = Ai ∪
⋃{A�(ξj _ (γ)) | γ < γj , j < i},

(5) if η ∈ Ai −
⋃{A�(ξj _ (γ)) | γ < γj , j < i}, then Fi(η) = η.

By induction on i < γ(∗) using the definition of a (κ+, α+ 1)-homogeneous
pair of trees, it is easy to see that Fi exists (at limits take unions, which
works by (5) above and Definition 2.2(i)).

Let F =
⋃
i<γ(∗) Fi. We show that F is an isomorphism from A to B. By

symmetry, it is enough to show that if η ∈ A is of length α, then η ∈ dom(F ).
By the choice of g, we can find i < γ(∗) so that η�βi = ξi and η(βi) < g(ξi).
But then η ∈ dom(Fi+1).

2.4. Lemma. Let κ > ω and λ ≤ κ be cardinals and α ≤ κ be a limit
ordinal. Assume that for all β < α there are κ+, γ-trees Aβ and Bβ of power
κ such that γ < α, Aβ ≡λβ Bβ and Aβ 6∼= Bβ. Then there are κ+, α-trees A
and B of power κ such that A ≡λβ B for all β < α and A 6∼= B.

Proof. We assume that all sets Aβ and Bγ , β, γ < α, are disjoint and
that r and e do not belong to any of these. We define the universe of A to
consist of those x such that one of (i)–(iii) holds:

(i) x = r,
(ii) x = (γ, β, δ, e), γ, β < α and δ < ω,
(iii) x = (γ, β, δ, y), γ, β < α, δ < ω and if β < γ, then y ∈ Aβ and

otherwise y ∈ Bβ .
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We order A as follows: x ≤ x′ if one of (a)–(c) holds:

(a) x = r,
(b) x = (γ, β, δ, e) and x′ = (γ, β′, δ, y) for some y and β′ ≥ β,
(c) x = (γ, β, δ, y) and x′ = (γ, β, δ, y′) for some y′ ≥ y.

B is defined as A except that (ii) and (iii) are replaced by (ii′) and (iii′):

(ii′) x = (γ, β, δ, e), γ ≤ α, β < α and δ < ω,
(iii′) x = (γ, β, δ, y), γ ≤ α, β < α, δ < ω and if β < γ, then y ∈ Aβ and

otherwise y ∈ Bβ .

Clearly these trees are of power κ. Let A∗ be the subtree of A which
consists of those x ∈ A which satisfy (i) or (ii) above. Similarly B∗ consists
of those x ∈ B which satisfy (i) or (ii′).

Claim 1. A 6∼= B.

Proof. For a contradiction assume that f is an isomorphism from A to
B. Then f�A∗ is an isomorphism onto B∗. This is because for all x ∈ A∗,
the height of A∗�x is α but for all y ∈ B−B∗, the height of B�y is < α, and
vice versa. So it is easy to find x = (γ, β, δ, y) ∈ A such that β ≥ γ, y is the
root of Bβ and f(x) = (α, β, δ′, y′) for some δ′ and y′ (and so y′ is the root
of Aβ). But then Aβ ∼= Bβ , a contradiction. Claim 1

Claim 2. For all β < α, A ≡λβ B.

Proof. Let β < α be given. First E chooses an isomorphism f : A∗ → B∗
such that if x = (γ, β′, δ, e), f(x) = (γ′, β′, δ′, e) and β′ ≤ β, then γ > β′

iff γ′ > β′. If x = (γ, β′, δ, e) ∈ A∗, then by Ax we mean the subtree of A
which consists of those y ∈ A−A∗ such that x is the largest element in A∗,
which is smaller than y; Bx, x ∈ B∗, is defined similarly.

Now if x = (γ, β′, δ, e) ∈ A∗ and β′ ≤ β, then Ax is isomorphic to Bf(x)

and if β′ > β, then Ax ≡λβ Bf(x). So clearly E can play β moves in the game
EFλβ(A,B). Claim 2 & Lemma 2.4

2.5. Theorem. (i) There are ω2, ω-trees A and B of power ω1 such that
A 6∼= B and A ≡ω1

n B for all n < ω. (In fact , A ≡2
α B for all α < ω · ω.)

(ii) There are ω3, ω · ω-trees A and B of power ω2 such that A 6∼= B and
A ≡ω2

α B for all α < ω · ω. (In fact , A ≡2
α B for all α < ω1 · ω · ω.)

(iii) Assume κ > ω1 is a regular cardinal and α < κ. Then there are
κ+2, α + 1-trees A and B of power κ+ such that A 6∼= B and A ≡κ+

α B. (In
fact , A ≡2

κ·α B.)
(iv) Assume κ > ω1 is a regular cardinal and α ≤ κ is a limit ordinal.

There are κ+2, α-trees A and B of power κ+ such that A 6∼= B and A ≡κ+

β B
for all β < α. (In fact , A ≡2

β B for all β < κ · α.)
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(v) If �ω1 holds, then there are ω3, ω1-trees A and B of power ω2 such
that A 6∼= B and A ≡ω2

α B for all α < ω1. (In fact , A ≡2
α B for all α < ω1·ω1.)

(vi) If ∗ω1
α holds for all α < ω1, then there are ω2, ω1-trees A and B of

power ω1 such that A 6∼= B and A ≡ω1
α B for all α < ω1.

Proof. Immediate by Lemmas 2.3 and 2.4 and Conclusion 1.8.

Notice that by Theorem 2.1, in Theorem 2.5(i), “A ≡2
α B for all α < ω·ω”

and in (v) “A ≡2
α B for all α < ω1 · ω1” are the best possible and in (iv), if

κ = λ+, λ regular, then “A ≡2
α B for all β < κ ·α” is often the best possible

(for κ many α ≤ κ, λ · α = α).

2.6. Remark. By [NS] and [Sh5] the following holds (for linear orderings
this is implicit in [NS]): Assume κ = µ+ and µ is regular. Then for all
countable unstable T , there are A,B |= T of power κ such that A 6∼= B
and A ≡κµ B. This can be seen as follows: Choose a linear ordering θ so
that |θ| ≤ κ, θ ∼= θ · (α + 1) for α ≤ µ, θ ∼= θ · µ + θ · ω∗1 and cf(θ∗) = ω,
where by ω∗1 and θ∗ we denote the inverse of ω1 and θ, respectively. Then by
appplying the Φ-model construction from [NS], we get linear orders Φ(A),
A ⊆ {α < κ | cf(α) = µ}, such that for all A and B, Φ(A) ≡κµ Φ(B) and
inv1

ω(Φ(A)) = inv1
ω(Φ(B)) iff the symmetric difference of A and B is not

stationary. Now the claim follows by using [Sh5], Chapter 3.

Notice that in the remark above, if I[κ+] is improper, then Φ(A) 6≡2
µ+ω+1

Φ(B) (unless Φ(A) ∼= Φ(B); see [HHR]).
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