
FUNDAMENTA

MATHEMATICAE

223 (2013)

Finitarily Bernoulli factors are dense

by

Stephen Shea (Manchester, NH)

Abstract. It is not known if every finitary factor of a Bernoulli scheme is finitarily
isomorphic to a Bernoulli scheme (is finitarily Bernoulli). In this paper, for any Bernoulli
scheme X, we define a metric on the finitary factor maps from X. We show that for
any finitary map f : X → Y , there exists a sequence of finitary maps fn : X → Y (n)
that converges to f , where each Y (n) is finitarily Bernoulli. Thus, the maps to finitarily
Bernoulli factors are dense. Let (X(n)) be a sequence of Bernoulli schemes such that each
Y (n) is finitarily isomorphic to X(n). Let X ′ be a Bernoulli scheme with the same entropy
as Y . Then we also show that (X(n)) can be chosen so that there exists a sequence of
finitary maps to the X(n) that converges to a finitary map to X ′.

1. Introduction. For a complete introduction to ergodic theory, see [13].
When we refer to a process X, we are referring to (X,U , µ, T ) where X = AZ

for some (finite or countably-infinite) alphabet A, U is the σ-algebra gener-
ated by the coordinates, µ is a shift-invariant probability measure on (X,U),
and T is the shift map on (X,U , µ). We say X is a Bernoulli scheme (BS) if
µ = pZ for some probability vector p. Two processes X and Y are isomorphic
if there exists an invertible, bimeasurable, equivariant map between subsets
of full measure in X and Y that takes the measure in X to the measure
in Y . Ornstein showed that entropy is a complete isomorphism invariant for
BSs (see [4]). He later showed that every factor of a BS is isomorphic to
a BS (see [5]).

For x∈X, we will use the notation x[m,n] for the block xm, xm+1, . . . , xn.
An isomorphism ψ from X to Y is finitary if for almost every x ∈ X there
exist integers m ≤ n such that the zero coordinates of ψ(x) and ψ(x′) agree
for almost all x′ ∈ X with x[m,n] = x′[m,n], and similarly for ψ−1 (see [2]).
If we drop the requirement that ψ be invertible, we say that ψ is a finitary
factor map. Keane and Smorodinsky showed that entropy is a complete
finitary isomorphism invariant for BSs (see [2]).
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A symbol a in the alphabet of a process X is a renewal state of X if
P [Xn = a] > 0, and the σ-algebras U(Xn+1, Xn+2, . . . ) and U(. . . , Xn−2,
Xn−1) are independent given the event [Xn = a]. A process is Markov
if every state is a renewal state. Aperiodic finite-state Markov processes
are finitarily isomorphic to BSs (are fB) (see [3]). In unpublished work,
Smorodinsky showed that every finitary factor of a BS has exponentially
decaying return times (see [9] for more details). Countable state mixing
Markov processes with exponentially decaying return times are fB (see [7]).
For an up-to-date survey of the literature on finitary maps, see [9].

In spite of all the progress with regard to finitary isomorphisms, there
still does not exist a factor theorem in the finitary theory analogous to
Ornstein’s factor theorem in [5]. For a factor Y of a BS to be fB, Y must
be a finitary factor of a BS (since, by definition, a finitary isomorphism is
a finitary factor map). The question of whether all finitary factors are fB
appears in the literature at least as early as [6]. In [12], it is conjectured
that all finitary factors of BSs are fB.

Let X be a finite-state BS. We require X to be finite-state so that we
can use the work in [1] and [2]. In Section 3, we define a metric d on the
finitary factor maps of X. Let f : X → Y be a finitary factor map. Let X ′

be a BS such that h(X ′) = h(Y ), where h denotes the entropy. Here, we
show that there exist sequences of processes (Y (n)) and (X(n)) where in d,
(Y (n))→ Y and (X(n))→ X ′. Also, for each n, X(n) is a BS, and Y (n) is
finitarily isomorphic to X(n).

2. Finitary isomorphisms of r-processes. Following the terminology
in [10], we say a renewal state a in X has n-Bernoulli distribution if for some
nonnegative integer n, P [Xn′ = a | X0 = a] = P [Xn′ = a] for all n′ > n. If
a process has a renewal state with n-Bernoulli distribution for some n ≥ 0,
then we say that process is an r-process. A BS is an r-process where every
state is a renewal state with 0-Bernoulli distribution. The proof of our first
result will require the following theorem about r-processes.

Theorem 2.1. Let X be a finitary factor of a BS and a finite or count-
ably-infinite state r-process. Then X is fB.

Proof. In [10], we provide a proof of Theorem 2.1 for finite-state r-
processes using the marker and filler methods of [2]. We now extend to
the countable state case by using the result in [7]. We will show there ex-
ists a finitary isomorphism φ from X to a mixing countable state Markov
process Y with exponentially decaying return times. Since the construction
mimics that in the proof of Theorem 15 in [11], we will not provide the easily
verifiable details. Let X have renewal state a. Let (φ(x))n = a if xn = a, and
otherwise let (φ(x))n = x[n− j, n] where j ≥ 0, xn−j = a and xn−i 6= a for i
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in [0, j−1]. In other words, the image under φ is a record of x back to the last
occurrence of a. Since a is a renewal state in X, every state in Y is a renewal
state. So, Y is a Markov process. Since φ is a finitary isomorphism, and X is
a finitary factor of a BS, Y is a finitary factor of a BS. Therefore, Y is mixing
and has exponentially decaying return times. By [7], there exists a finitary
isomorphism ψ from Y to a BS. The composition of the finitary isomor-
phisms φ and ψ provides a finitary isomorphism from our r-process to a BS.

3. Main results. Let X be a finite-state BS. Let f : X → Y and
g : X → Y ′ be finitary factor maps. Define a map φf,g : X → Z where
(φf,g(x))i = 0 if (f(x))i = (g(x))i, and (φf,g(x))i = 1 otherwise. Since
f and g are finitary factor maps, φ is a finitary factor map. Let Z have
measure ν. Now define d(f, g) = ν(1). Let FX be the set of finitary factor
maps from X. It is easy to verify that (FX , d) is a metric space.

Let h(X) denote the entropy of X. Let fn : X → Y (n) be a sequence of
finitary factor maps such that fn → f in d. For each n, d(fn, f) ≥ d̄(Y (n), Y )
where d̄ is Ornstein’s d-bar distance. See [8] for details on the d-bar distance.
So, limn→∞ d̄(Y (n), Y ) = 0. Entropy is continuous in d̄ (see [8] again). This
implies that limn→∞ h(Y (n)) = h(Y ). We will use this fact in the proof of
Theorem 3.2.

Keane and Smorodinsky showed that for any two BSs X and X ′ where
h(X) > h(X ′), there exists a finitary factor map from X to X ′ (see [1]).
So, if Y is a finitary factor of a BS X, and Y ′ is a finitary factor of a BS
X ′, and h(X) > h(X ′), then both Y and Y ′ are finitary factors of X. If
h(X) = h(X ′), both Y and Y ′ are finitary factors of X and X ′ by [2]. So,
given any two finitary factors Y and Y ′ of BSs, there exists a BS X and
finitary factor maps f : X → Y and g : X → Y ′. Thus, (f, Y ) and (g, Y ′)
can be compared using the metric d.

We will need the following two definitions. The first can be found in [12],
for example. The second is new to this article. The process X(k) called
the k-stringing (or k-block presentation) of X is defined as follows. The

state space of X(k) is all allowable sequences of length k in X, and X
(k)
n =

(Xn, Xn+1, . . . , Xn+k−1). Let f : X → Y be finitary, and let x ∈ X. If
(f(x′))k = (f(x))k for almost all x′ ∈ X with x′[i, j] = x[i, j], then we say
x[i, j] is nice with respect to f and k. We are now ready to state and prove
the first of our main results.

Theorem 3.1. Let X be a finite-state BS, and let f : X → Y be a
finitary factor map. There exists a sequence of finitary factor maps fn :
X → Y (n) such that each Y (n) is fB, and limn→∞ d(fn, f) = 0.

Proof. Suppose X has alphabet A with a ∈ A. Let α be a symbol not
in the alphabet of X or Y . For each n, we define fn : X → Y (n) as follows.
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First, fn(x)[i, i+n− 1] = αn if x[i, i+n− 1] = an. Suppose x[i, i+n− 1] =
an, x[j, j + n − 1] = an where j is some integer greater than i + n, and
x[i′, i′ + n − 1] 6= an for any i′ where i < i′ < j. Then for all k such that
i+n−1 < k < j, let (fn(x))k = (f(x))k if x[i, j+n−1] is nice with respect
to f and k. If x[i, j + n− 1] is not nice, let (fn(x))k = xk.

We first show that each Y (n) is finitarily isomorphic to an r-process.
Then we use Theorem 2.1 to show that each Y (n) is fB.

Let X have σ-algebra U . Let Y (n) have σ-algebra V. Since X is a BS,
U(. . . , Xi−2, Xi−1) and U(Xi+n, Xi+n+1, . . . ) are independent given that
X[i, i + n − 1] = an. We have defined fn so that what occurs between two
occurrences of αn in Y (n) is determined by what occurs between the
two occurrences of an in X. So, V(. . . , Y (n)i−2, Y (n)i−1) and V(Y (n)i+n,
Y (n)i+n+1, . . . ) are independent given Y (n)[i, i+n−1] = αn. Therefore, αn

is a renewal state in Y (n)(n) (the n-stringing of Y (n)).
The word an is a block of length n in the BS X. So, an has (n − 1)-

Bernoulli distribution in X(n). Then αn has (n−1)-Bernoulli distribution in
Y (n)(n). Therefore, Y (n)(n) is an r-process. Theorem 2.1 implies Y (n)(n) is
fB. Since k-stringings are finitary isomorphisms, and finitary isomorphism
is transitive, Y (n) is fB.

We now show that the sequence (fn) converges to f in d. Since f is
a finitary factor map, for any integer i and any x ∈ X, we can, with full
probability, find integersm andm′ (wherem′ ≥ m) such that x[m,m′] is nice
with respect to f and i. Then, with full probability, there exist integers j, j′

and k such that j+k−1 < m, j′ > m′, x[j, j+k−1] = ak, x[j′, j′+k−1] = ak

and x[i′, i′ + k − 1] 6= ak for any i′ where j < i′ < j′. Then for each i, there
exists a positive integer k such that (f(x))i = (fk′(x))i for all k′ > k.
Therefore, limn→∞ d(fn, f) = 0.

A corollary to Theorem 3.1 is that the maps to fB factors are dense
among the finitary factor maps.

With our next theorem, we will show the following. For any finitary
factor Y of a BS and any BS X ′ such that h(Y ) = h(X ′), there exist a
process Z arbitrarily close to Y and a BS Z ′ arbitrarily close to X ′ such
that Z and Z ′ are finitarily isomorphic.

Recall that for two BSs X and X ′ where h(X) ≥ h(X ′), there exists a
finitary factor map from X to X ′ (see [1], [2]). Given a finitary factor map g :
X → X ′, we define ĝ : X×X → X ′×{∗} so that (ĝ(x1, x2))i = ((g(x1))i, ∗)
where x1, x2 ∈ X, and ∗ is a constant symbol. We define ḡ : X ×X → X ′

so that (ḡ(x1, x2))i = (g(x1))i. We introduce ĝ and ḡ for technical reasons
that will become apparent in the proof of our next theorem.

Theorem 3.2. Let X, Y , (Y (n)), (fn), and f be as in Theorem 3.1. Let
X ′ be a BS such that h(X ′) = h(Y ). Let g be a finitary factor map from X
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to X ′. Then there exists a sequence of finitary factor maps gn : X × X →
X(n) such that the following hold:

(i) (gn)→ ĝ or ḡ in d;
(ii) for each n, X(n) is a BS;
(iii) for each n, X(n) is finitarily isomorphic to Y (n).

Proof. Since limn→∞ h(Y (n)) = h(Y ), there exists a monotonic sub-
sequence (h(Y (nk))) of entropies of the Y (n). We consider three cases. First,
there exists a subsequence (Y (nk)) where h(Y (nk)) = h(X ′) for all k. Next,
we consider cases of subsequences (Y (nk)) where h(Y (nk)) is strictly in-
creasing or strictly decreasing. We verify (i) and (ii) for each of the three
cases separately. Then, at the end of the proof, we establish (iii) for all three
cases together.

Suppose there exists a subsequence (Y (nk)) where h(Y (nk)) = h(X ′) for
all k. Then define gnk

: X ×X → X(nk) to be ḡ (and thus X(nk) = X ′).
Suppose that (h(Y (n))) has a strictly decreasing subsequence. Then we

have h(Y (nk)) > h(X ′) for all nk. To simplify notation, we will now drop
the subscript k. In other words, Y (n) will refer to our subsequence with
strictly decreasing entropies. Let X(n) = X ′ × W (n) where each W (n)
is a BS such that h(X(n)) = h(Y (n)). Since limn→∞ h(Y (n)) = h(Y ),
limn→∞ h(X(n)) = h(X ′). So, for some positive integer N , if n > N , then
h(X(n)) − h(X ′) < log 2. For n > N , we can take W (n) to be a two-state
BS. Let W (n) have alphabet {b, ∗} and measure pn where pn(∗) > pn(b). De-
fine (W (n))n>N so that pn+1(∗) ≥ pn(∗). Since limn→∞ h(X(n)) = h(X ′),
limn→∞ pn(∗) = 1.

For each n, W (n) is a BS such that h(W (n)) < h(X). By [1], there exists
a finitary factor map ψn : X → W (n). Define gn : X × X → X(n) where
(gn(x1, x2))i = ((g(x1))i, (ψn(x2))i). We know (gn(x1, x2))i = ((g(x1))i, ∗) if
(ψn(x2))i = ∗. Since pn(∗)→ 1 as n→∞, (gn)→ ĝ in d.

Now suppose that (h(Y (n))) has a strictly increasing subsequence. Then
h(Y (nk)) < h(X ′) for each nk. Again, we will drop the subscript k. Suppose
X ′ has measure qZ where q = (q1, . . . , qm), and q1 ≥ · · · ≥ qm. Let X̂ ′ be a BS
with probability vector q̂ = (q1, . . . , qm−1 +C, qm−C) where C is a positive
constant less than qm, and C/qm ≤ qm−C. Since limn→∞ h(Y (n)) = h(Y ),
there exists a positive integer N such that for all n > N , h(X̂ ′) ≤ h(Y (n)) <
h(X ′). So, for each n > N , there exists a positive constant cn such that
0 ≤ cn ≤ C, and h(Y (n)) = h(X(n)) if we define X(n) to have probability
vector (q1, . . . , qm−1 + cn, qm − cn). Let X(n) have corresponding symbol
space {1, . . . ,m}.

Let Z(n) be a BS with measure (cn/qm, 1 − cn/qm)Z and correspond-
ing symbol space {a, b}. Since cn/qm ≤ qm and h(X ′) ≤ h(X), we have
h(X) ≥ h(Z(n)). So by [1], there exists a finitary factor map φn : X → Z(n).
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Let gn : X ×X → X(n) be defined as follows. Let (gn(x1, x2))i = ((g(x1))i
if (g(x1))i 6= m or (φn(x2))i 6= a. If (g(x1))i = m and (φn(x2))i = a, then
let (gn(x1, x2))i = m−1. The image is X(n) since P [(x2i = a)∩ (x1i = m)] =
(cn/qm) · qm = cn. Since limn→∞ h(X(n)) = h(X ′), limn→∞ cn = 0. Thus,
gn → ḡ in d.

Now we establish (iii). By Theorem 3.1, each Y (n) is fB. By [2], for any
sequence (X(n)) of BSs where for each n, h(X(n)) = h(Y (n)), Y (n) will be
finitarily isomorphic to X(n).
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