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The tree property at the double successor
of a measurable cardinal x with 2" large

by

Sy-David Friedman (Wien) and Ajdin Halilovi¢ (Bucuresti)

Abstract. Assuming the existence of a AT-hypermeasurable cardinal x, where X is
the first weakly compact cardinal above k, we prove that, in some forcing extension,
& is still measurable, k™ has the tree property and 2* = x™TF. If the assumption is
strengthened to the existence of a f-hypermeasurable cardinal (for an arbitrary cardinal
0 > X of cofinality greater than ) then the proof can be generalized to get 2% = 0.

1. Introduction. For an infinite cardinal x, a x-tree is a tree T' of height
k such that every level of T has size less than k. A tree T is a k- Aronszajn
tree if T' is a k-tree which has no branches of length «. We say that the tree
property holds at k, or TP (k) holds, if every k-tree has a branch of length x.
Thus, TP(k) holds iff there is no x-Aronszajn tree. TP(Xp) holds in ZFC,
and it is actually exactly the statement of the well-known Konig lemma.
Aronszajn showed also in ZFC that there is an Ni-Aronszajn tree. Hence,
TP(X;) fails in ZFC.

Large cardinals are needed once we consider trees of height greater
than W;. Silver proved that, for k > N, TP(k) implies & is weakly com-
pact in L. Mitchell proved that given a weakly compact cardinal A above
a regular cardinal k, one can make )\ into K so that, in the extension, k™
has the tree property. Thus, TP(R;) is equiconsistent with the existence of
a weakly compact cardinal.

For more of the relevant literature on the tree property we refer the reader
to the following: Abraham [I], Cummings and Foreman [3], Foreman, Magi-
dor and Schindler [5], and Neeman [I0] have done work on the tree property
at two or more successive cardinals; Magidor and Shelah [9], Neeman [10],
and Sinapova [I1], [12] have worked on the tree property at successors of
singular cardinals.
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Natasha Dobrinen and the first author [4] used a generalization of Sacks
forcing to reduce the large cardinal strength required to obtain the tree prop-
erty at the double successor of a measurable cardinal x from a supercompact
to a weakly compact hypermeasurable cardinal. In their model 2% = 1.

On the other hand, TP(R3) is consistent with large continuum (for a proof
see [13]). In the present paper we prove the analogous result for TP(k*T)
with k measurable, using Mitchell’s forcing together with a surgery argument
(see [2]).

As in [4], the consistency of a cardinal k of Mitchell order A*, where A
is weakly compact and greater than s, is a lower bound on the consistency
strength of TP(k™1) with k measurable and 2% = xk*++. Therefore our result
is in fact almost an equiconsistency result.

2. The theorem. We say that a cardinal k is y-hypermeasurable if
there is an elementary embedding j : V' — M with crit(j) =  such that
H(y)Y = H(y)M.

THEOREM. Assume thatV is a model of ZFC and k is \T -hypermeasur-
able in V', where X is the least weakly compact cardinal greater than k. Then
there exists a forcing extension of V in which k is still measurable, k™" has
the tree property and 2% = k1T,

Proof. Let k be AT-hypermeasurable. Let j : V — M be an elementary
embedding with crit(j) = &, j(k) > A and HOAT)Y = HOAT)M. We may
assume that M is of the form M = {j(f)(a) |a < AT, f: x>V, fEV}
We first define some forcing notions in order to describe the intended model.

For a regular cardinal o and an arbitrary cardinal 8 let Add(«, 3) denote
the forcing for adding 5 many a-Cohens. The conditions are partial functions
from a x /8 into {0,1} of size < «a.

Define a forcing notion P, as follows. Let pg be the first inaccessible
cardinal and let A\g be the least weakly compact cardinal above pg. For k < &,
given Ag, let px41 be the least inaccessible cardinal above A\; and let g1 be
the least weakly compact cardinal above pg41. For limit ordinals k < &, let
pr. be the least inaccessible cardinal greater than or equal to sup; ., A; and
let A\x be the least weakly compact cardinal above pg. Note that p, = k and
Ak is the least weakly compact cardinal above k.

Let Py be the trivial forcing. For ¢ < &, if i = p; for some k < k&, let Q; be
a Pj-name for the forcing Add(py, )\z) Otherwise let Ql be a P,-name for the
trivial forcing. Let Py 1 = P; % Q. Let P, be the iteration (P, Ql> 1< K)
with Easton support.

We define the Mitchell forcing M (k, ) as the iteration Add(k, ) * Q,

where
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Q@ = {q| q is a partial function of cardinality < k on the
regular cardinals below  such that for each 7 in Dom(q),
P IFAdd(Y) «q(~) € Add(kT,1)7 ).

Since M (k, A) is known to preserve the tree property at A while making
A into the ™1 of the extension (see [I]), the idea is simply to force with
Add(k, A\T) over VM (%) However, in order to preserve the measurability
of k, our intended model will be a little different:

Let jo : V — Mj be the measure ultrapower embedding via the normal
measure Uy = {X C k | k € j(X)} derived from j with critical point &
such that "My C My and let Ay be the first weakly compact cardinal of M
above k. To prove the theorem we force over V with

P, Add(k, A\ )M0) % M(k,\) x Add(xk, A7) * R,

where P, is the ‘preparatory’ forcing defined above, and R is the forcing
notion defined in the following paragraph:

Let G, go be generic filters on P, Add(k, (A\J)M0), respectively. We lift
the embedding jo : V' — My to an embedding of V[G] as follows. The forc-
ing jo(Px) can be factored into the three obvious parts jo(Fy)|x * jo(Pi)s *
J0(P)k+1,jo(x), but since V- and My have the same H,.+, we have jo(P)|x
= Py. By elementarity, jo(Py)s is the forcing Add(x, (\)*°). Therefore,
G * go is generic for jo(Py)|. * jo(Pk)x over My. We can easily construct
in V[G][go] a generic filter Hy over My[G][go] for the remaining forcing
J0(Pr)kt1,jo(x)» using the facts that jo(Py)41,jo(s) 1 &1 -closed in Mo[G][go],
VI[G][g0] N " Mo[G][g0] € Mo|G][go], and each dense subset of jo(Pr)st1,jo(x)
in My[G][go] has an Add(k, (AJ)M°)-name in My[G] of the form jo(f)(x) for
some function f € V[G], f : K — H (k™). Therefore, jo lifts in V[G][go] to an
elementary embedding jo : V[G] — My[G][go][Ho] because jo is the identity
on the conditions in G, and hence obviously jo[G] C G * go * Hp. The forcing
R is defined as Add(jo(k), AT) of My[G][go][Ho]. We note here that R is an
element of V[G][go]. Since jo(A) = A, R is actually the image of Add(k, A\™)
under jp.

For technical reasons, we rewrite our forcing as

P, « Add(k, A1) *Q * R,

where @ is this time defined only using the even components i of Add(x, A1)
with (A\J)™° < i < A. More precisely, for an interval I of ordinals let
Add(k, I)|even be the forcing whose conditions are partial functions from
k x {even ordinals in I} into {0,1} of size < k. Then, for ¢ € @ and
v € Dom(q), q(7) is an Add(k, [(A)™°,7))jeven-name for a condition in
Add(k™,1).

We denote the final model VPx*Add(mATQxR og 17,
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DEFINITION. Let A and B be two partial orderings. A function7: B — A
is called a projection if the following hold:

e 7 is order-preserving and 7w (B) is dense in A.
e If 7(b) = a and d’ < a, then there is ¥’ < b such that 7(0') < d'.

Facr. If m : B — A is a projection, then the forcing B is forcing-
equivalent to A x BJA for some quotient B/A (see [1] for details).

Since both @ and Add(k, [(A§)™, X)) even exist in the model V[G][go],
we can also consider the forcing Add(k, [(AJ)0, X)) even X Q- In order not to
confuse it with Add(k, [(A§)*°, X)) even*@, which has a different ordering, we
will write Add(x, [(AG )™M, X)) jeven ¥ @'. For the same reason, the conditions
(p, q) in the product will be denoted as (p, (0, q)).

It can be shown that @ is xT-distributive, and Q' is obviously x*-closed
in V[G][go]. See [1] for a proof of the following lemma.

LEMMA 1. The map 7 given by w(p, (0,q)) = (p,q) is a projection from
Add(k, [, \)jeven x @ onto Add(s, [N, X)) jesen * Q.
This projection can be naturally extended to a projection from

Add(k, [A)M, M) x Q' x R onto  Add(k, [(A\J)M, A7) * Q * R.
LEMMA 2. R is kT -closed and \-Knaster in V[G][go].

Proof. The closure follows easily because R is k™-closed in My[G][go][Ho]
and My[G][go][Ho] is closed under k-sequences in V[G][go]. Let (po : o < A)
be a sequence of conditions in R, and let p, be of the form jo(fa)(x) for some
function f, : K = Add(k, A\"), fo € V[G]. A A-system argument shows that
A many of the functions f, are pointwise compatible. It follows that A many
of the conditions p, are compatible. u

LEMMA 3. The forcing Q = R is w*-distributive in VPr*Add(mAT)

Proof. The forcings @', R are closed in the model V wxAdd (s, (Ag)M0) i
which they are defined, therefore their product Q' x R is closed there as well.
By Easton’s lemma, after forcing with the x*-c.c. forcing Add(k, [(A§) 0, A1),
the product Q' x R will remain sT-distributive. Since xT-distributivity is
equivalent to not adding new k-sequences of ordinals, it follows from the
above facts about projections that @ % R is distributive in V7 wrAdd(mAT) qg
well. m

LEMMA 4. In W, t = (s1)Y, kT =\, and s+ = OH)V. In par-
ticular, 28 = KT+,

Proof. kT = (k%)": This follows from the facts that P, * Add(x, \") is
kT-c.cin V, and Q * R is kT -distributive in Y PexAdd(r,AT)
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kTt = A\, kTt = (AT)V: The Mitchell forcing M (k, ) collapses pre-
cisely the cardinals between k™ and A (see [, Lemma 2.4] for a proof). On
the other hand, in the model V7 ok Add (s, (A )MO), in which all cardinals are
preserved, R has the A-Knaster property and M (k, ) x Add(x, \T) satisfies
the A-c.c. It follows that their product also satisfies the A-c.c., which means
that all cardinals above A are preserved. =

REMARK. In the general case where k is f-hypermeasurable we can first
force to add a function f : kK — k with j(f)(k) = 6. Then 6y, My’s version
of 6, is less than k™, because 6y = jo(f)(k) < jo(k) < k™. It follows that
the forcing R still has the A\-Knaster property in Vx*Add(s.00)

To complete our proof we need to show that, in the extension, x is still
measurable and A = k™ still has the tree property.

LEMMA 5. & remains measurable in W.

Proof. In order to prove that x remains measurable in W we intend
to extend the elementary embedding j : V — M to an embedding of W.
We have already picked generics G, go for the forcings Py, Add(k, (\J)M0),
respectively. Let g be an Add(k, [(A\J)™0, AT))-generic filter over V[G][go).
We first use a ‘surgery’ argument to lift j to an embedding of V[G][go][g]-
For completeness we give the full proof.

The embedding j can be factored as ko jo, where k : My — M is defined
by k([F|v) := j(F)(k). The embedding k is also elementary and its critical
point is (7)Mo, By elementarity and GCH, (k™+)Mo < jo(k) < k*T. Note
also that k(X\g) = A.

On page [57] we have lifted in V[G][go] the embedding jo : V' — My to an
embedding jo : V[G] — My[G][g0][Ho].

Next we lift the embedding k : My — M to My[G][go|[Ho]. It lifts trivially
to k : Mo[G] — M|G]. Note that k(Add(x, (A\J)M°)) = Add(k, AT), and that
k is almost the identity on the conditions in gg, namely, it only shifts the
ith component to the k(i)th component. Therefore, we can rearrange the
generic filter gg X ¢ into some (go X g)’ such that the ith component of gy x g
is the same as the k(i)th component of (go x g)’. Then k[go] C (g0 X g)’
and the embedding k lifts in V[G][go][g] to k : Mo|G][g0] — M[G][(g0 % g)']
(note that k restricted to AJ belongs to M[G]). And finally, we ‘transfer’
Hy along k to build a filter H generic for k(jo(Ps)wt1,jo(x)) = J(Pr)ut1,5(x)-
Namely, let H = {p € j(Px)x+1,j(x) | k(po) < p for some py € Ho}; then H
is generic for j(Py).41,(x)- To see this, note that each open dense set D C
J(Pe)rt1,5(s) in M[G][(go*g)'] is of the form k(f)(a) for some f € Mo[G][go]
with domain of size (A\{)™°, because every element of M is of the form
3()(@) = (Gl iae (@) = KGo() g0 (@) for some '€V, a <A™,
We may assume that f(z) is an open dense subset of jo(Px),41,j,(x) for each
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x € Dom(f), and since jo(Px)xt1,jo(x) 19 (AT )Mo-closed in My[G][go], we
may choose rg € Hp belonging to each f(z), x € Dom(f). It follows that
k(?“()) eDNH.

Therefore, we can lift k to k : My[G][go][Ho] — M[G][(g0 x ¢)'][H] in
V[G][g0]]g], getting the commutative diagram
j

VIG] M[G][(go % g)'][H]

Mo |[G][go] [Ho]

We now plan to lift j : V[G] — M[G][(g0 % ¢)'][H] to an embedding of
V[G][go]lg]. Let Gg x h be a filter on @ x R which is generic over V[G][go][g]-
We transfer h along k, just as we did with Hy, in order to get a generic h* for
j(Add(k, AT)) so that we could lift j to j : V[G][go]lg] — Mo[G][g0][Ho|[R*].
The fact that h can be transferred to create a generic for j(Add(x, A1)), and
the fact that R = jo(Add(k,AT)) is not a harmful forcing in V[G][go], i.e
has kT-closure and A-Knaster property, are the main advantages of factoring
J as ko jp.

This lifting argument is called surgery, because we still have to make sure
that jlgo X g] C h*, and that is done by altering the generic h* on a small
part, as follows. Let F' = Jgox g : k x AT — 2 be the function corresponding
to the generic go x g. Then |Jjlgo X ¢] is the function F* : k x jAT] — 2
defined by F*(v,7(9)) = F(v,d). We have to modify h* to h** so that each
g* in h** is compatible with F™* so that j[go x g] € h**. Finally we show that
h** is also a generic filter.

For any ¢ € h* let ¢* be defined by altering ¢ on Dom(q) N (k % ][)\+])
to agree with F*. We claim that ¢* belongs to M[G][(g0 % ¢)'][H], an
therefore is a condition in j(Add(k,\T)). We can write q as j(f)(«) for
some o < A and some function f : k — Add(k, A1), f € VI[G]. If (v,5(3))
belongs to Dom(q), then (7v,d) belongs to Dom(f(5)) for some 8 < &, so
{(7,0) | (7, 4(9)) € Dom(q)} is contained in Zy = |Jz Dom(f(3)) € VI[G]. As
Zy has size at most x and P, is k-c.c., thereis Z € V with Zyg C Z C k x AT
of size at most k. Then Z belongs to M and j[Z also belongs to M. Using
4,90, 9,71 Z we can define ¢*, and therefore ¢* belongs to M[G][(g0 x g)'|[H].

CramM. h** := {q* | ¢ € h*} is j(Add(k, A\"))-generic over the model
MI[G][(g0 x g)'|[H].

Proof. Suppose that D is an open dense subset of j(Add(k, ")), D €
M|G][(go x g)'][H]. For any ¢ € j(Add(k,A")) define N(q) to be the set of

conditions r with the same domain as ¢ which disagree with ¢ on a set of
size at most k. Then E = {q | N(q) C D} is a dense subset of j(Add(x, "))
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as well, by the j(x)-closure of j(Add(k,A")). Choose ¢ in E N h*. Then ¢*
belongs to N(q), and therefore to D. It follows that h** intersects D. This
shows the Claim.

So far we have proven that in V[G][go][g][h] there is a definable elemen-
tary embedding j : V[G][go][g] = M[G][(g0 x g)'][H][~*"].

We now need to find a generic filter Gjg) x hj(g) for j(Q x R) such that
JlGq x h] € Gjq) X hj(r), in order to define our final lifting

j : VIGllgollgl[Gl[h] — M[G][(g0 x g)'I[H][P™][G o)) [hj(m)]-
This last step is, however, just another transferring argument since, by
Lemma 3, Q x R is " -distributive over V[G][go][g], that is, Gjq) X hj(r) :=
{(g,7) | j(go,7m0) < (g,r) for some (qo,70) € Gg x h} is an appropriate
generic. This completes the proof of Lemma 5| =

LEMMA 6. xTT has the tree property in W.

Proof. In order to get a contradiction suppose that there is a xTT-

Aronszajn tree in W.

Recall that W can be written as 1 Fr*Add(s,(A)M0)xM (rA)xAdd(R AR T ot
V) denote the model V PexAdd(r, A M0)x M (8A) and let R = R)) be the forcing
Add(jo(k), \) of My[G][go][Hop]. We first notice that there must be a k-

Aronszajn tree already in VlAdd(“’)‘)XR/. Indeed, note that Add(x, AT) x R has
the A-c.c. in V4 (see the proof of Lemma)) and let w be an Add(k, A\*) x R-
name in Vi for a subset of A = x™ which codes a kTT-Aronszajn tree.
Then for every a < k™7 there is a maximal antichain A, of size less than A
such that each ¢ € A, decides the statement & € 7. Let B = [J{Dom(q) |
q € A, for some a}. Then |B| = A, and (Add(k,AT) X R),p is isomorphic to
Add(k,\) x R'. Thus, we can replace Add(x, ") x R with its isomorphic
copy such that 7 is an Add(k,A) x R’-name, which means that there is a
kT T-Aronszajn tree in VlAdd(K’)‘)XR,.

Just as before, rewrite Py * Add(k, (\$)M0) x M (k, A) * Add(k, \) x R’ as
P+ Add(x, A\ )M0) x Add(k, \) * Q x R/, where @ is defined only using the
even components of Add(k,\). Hence, in terms of our chosen generics, the
above means that there is a x*"-Aronszajn tree T in V[G][g0][g\][GQl[hya]-
Let T be an Add(k, \) * Q x R'-name in V[G]|[go] for T.

Recall that A is a weakly compact cardinal in V' [G][go]. Therefore, there
exist in V[G][go] transitive ZF~-models Ny, Ny of size A and an elementary
embedding k : Ny — N, with critical point A, such that Ny D H(X)V[Gll]
and G, go, T € Ny.

Note that g|y * Gq * h is also Add(k, \) * Q x R'-generic over Ny. Since
A is the critical point of k, we can factor k(Add(k,\) x Q@ x R') as

Add(k, A) * Add(k, [\, k(N)) * Q * Q" * R/« R*
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where Q* and R* denote the tail forcings k(Q)/Q and k(R')/R’, respectively,
with components indexed from the interval [A, k(\)). Since k is the identity
on gy * Gg * h|, we can extend the embedding k : No — Ny in some large
universe U to an embedding

k2 Nolgnl(Galllyal = Nilgnllg™lIGQlIGo- ][l [h"]

where g*, G+, h* are arbitrary generics for Add(k, [A, k()N))), Q*, R*, respec-
tively, picked in U. (We can assume that G is generic over Ni[gy][g*] and
that h is generic over N1[g\][g"][Gq][G ], for one can start the argument
by first picking an Add(k, A) * Add(k, [A\,k(N))) * Q * Q* x R’ x R*-generic
filter g\ * g* * G * G~ * h|y * h* over V in some large universe U, and then
restricting it to Add(s, A) * @ x R to get g\ * Gg * hyy.)

Since T' € No[g)2][G@][h))] is a A-Aronszajn tree, by elementarity k(7T') is
a k(\)-Aronszajn tree in N1[gx][g"][Gq][Gq+][hx][h*] which coincides with T
up to level A. Hence T" has a cofinal branch b in N1 [g\][g*][GQ][Go+][hA][h*].
We will show that b must actually belong to Ni[g\][Ggl[h] (i-e. the tail
generics ¢g*, G+, h* cannot add a new branch), and thereby reach the de-
sired contradiction to the assumption that 7" has no cofinal branches in
VIG]lgo]lg][Gql[n]!

Similarly to the discussion following Lemmal[l] in N; there is a projection
from the product

Add(k, \) x Add(k, [N\, kE(N)) x Q" x Q*' x R' x R*
onto
Add(k, \) * Add(k, [N\, k(M) * Q * Q" * R’ x R*,

where Q" and Q*" are kT -closed forcings defined in Ny. Let G x G+ be
Q" x Q*'-generic over Ni[gy][g*]. (Again we can assume that hyy is generic
over the bigger model N1[g\][g"][Gqr][Gg].)

If we can show that the bigger generic g* x G« * h* does not add the
branch b through 7" over the bigger model N1[g|»][G'¢/][h5], then in particular
the smaller generic g* * Gg+ * h* does not add b over the smaller model
N1[g\l[Gql[ha], and we are done.

Since all the forcings are defined in Nj, we can ‘reorder the generics’ in
Ny [gp\] [Q*HGQ’HGQ*’H}LM] [h*] as we want. Write

Nilgpllg ]G llGo-lhplIR®] as MG llhallanllg T[Go-1[h"].

Note that in N1[G][h,], @' x R* is a kT -closed forcing and Add(k, k(X)) is
xt-c.c. Therefore, it can be shown that Q* x R* does not add any branches

to T over the model N1[Gq][hx][g2][g7] (for a detailed proof of this lemma
see [13]).
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Finally, Add(k, [\, k()\))) has the x**-Knaster property, which means

that it could not have added the branch b over the model N1[Gq/][h\][g)A]
either.

This proves Lemma [6] and hence the proof of the Theorem is complete. =

3. Open questions

. Is it possible to singularize the cardinal s of the above model preserving

the tree property of k™7

. Does the consistency of the existence of a measurable cardinal k, such

that TP(k™") and 2% = k™1, follow from the consistency of the ex-
istence of a cardinal x of Mitchell order A™ where ) is weakly compact
(yielding an equiconsistency result)?

3. Is it consistent to have TP(R,42), X, strong limit, and 2%« large?

4. Is it consistent to have TP(AY), A singular strong limit, and 2* large?
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