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The tree property at the double successor
of a measurable cardinal κ with 2κ large

by

Sy-David Friedman (Wien) and Ajdin Halilović (Bucureşti)

Abstract. Assuming the existence of a λ+-hypermeasurable cardinal κ, where λ is
the first weakly compact cardinal above κ, we prove that, in some forcing extension,
κ is still measurable, κ++ has the tree property and 2κ = κ+++. If the assumption is
strengthened to the existence of a θ-hypermeasurable cardinal (for an arbitrary cardinal
θ > λ of cofinality greater than κ) then the proof can be generalized to get 2κ = θ.

1. Introduction. For an infinite cardinal κ, a κ-tree is a tree T of height
κ such that every level of T has size less than κ. A tree T is a κ-Aronszajn
tree if T is a κ-tree which has no branches of length κ. We say that the tree
property holds at κ, or TP(κ) holds, if every κ-tree has a branch of length κ.
Thus, TP(κ) holds iff there is no κ-Aronszajn tree. TP(ℵ0) holds in ZFC,
and it is actually exactly the statement of the well-known König lemma.
Aronszajn showed also in ZFC that there is an ℵ1-Aronszajn tree. Hence,
TP(ℵ1) fails in ZFC.

Large cardinals are needed once we consider trees of height greater
than ℵ1. Silver proved that, for κ > ℵ1, TP(κ) implies κ is weakly com-
pact in L. Mitchell proved that given a weakly compact cardinal λ above
a regular cardinal κ, one can make λ into κ+ so that, in the extension, κ+
has the tree property. Thus, TP(ℵ2) is equiconsistent with the existence of
a weakly compact cardinal.

For more of the relevant literature on the tree property we refer the reader
to the following: Abraham [1], Cummings and Foreman [3], Foreman, Magi-
dor and Schindler [5], and Neeman [10] have done work on the tree property
at two or more successive cardinals; Magidor and Shelah [9], Neeman [10],
and Sinapova [11], [12] have worked on the tree property at successors of
singular cardinals.
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Natasha Dobrinen and the first author [4] used a generalization of Sacks
forcing to reduce the large cardinal strength required to obtain the tree prop-
erty at the double successor of a measurable cardinal κ from a supercompact
to a weakly compact hypermeasurable cardinal. In their model 2κ = κ++.

On the other hand, TP(ℵ2) is consistent with large continuum (for a proof
see [13]). In the present paper we prove the analogous result for TP(κ++)
with κmeasurable, using Mitchell’s forcing together with a surgery argument
(see [2]).

As in [4], the consistency of a cardinal κ of Mitchell order λ+, where λ
is weakly compact and greater than κ, is a lower bound on the consistency
strength of TP(κ++) with κmeasurable and 2κ = κ+++. Therefore our result
is in fact almost an equiconsistency result.

2. The theorem. We say that a cardinal κ is γ-hypermeasurable if
there is an elementary embedding j : V → M with crit(j) = κ such that
H(γ)V = H(γ)M .

Theorem. Assume that V is a model of ZFC and κ is λ+-hypermeasur-
able in V , where λ is the least weakly compact cardinal greater than κ. Then
there exists a forcing extension of V in which κ is still measurable, κ++ has
the tree property and 2κ = κ+++.

Proof. Let κ be λ+-hypermeasurable. Let j : V → M be an elementary
embedding with crit(j) = κ, j(κ) > λ and H(λ+)V = H(λ+)M . We may
assume that M is of the form M = {j(f)(α) | α < λ+, f : κ→ V, f ∈ V }.
We first define some forcing notions in order to describe the intended model.

For a regular cardinal α and an arbitrary cardinal β let Add(α, β) denote
the forcing for adding β many α-Cohens. The conditions are partial functions
from α× β into {0, 1} of size < α.

Define a forcing notion Pκ as follows. Let ρ0 be the first inaccessible
cardinal and let λ0 be the least weakly compact cardinal above ρ0. For k < κ,
given λk, let ρk+1 be the least inaccessible cardinal above λk and let λk+1 be
the least weakly compact cardinal above ρk+1. For limit ordinals k ≤ κ, let
ρk be the least inaccessible cardinal greater than or equal to supl<k λl and
let λk be the least weakly compact cardinal above ρk. Note that ρκ = κ and
λκ is the least weakly compact cardinal above κ.

Let P0 be the trivial forcing. For i < κ, if i = ρk for some k < κ, let Q̇i be
a Pi-name for the forcing Add(ρk, λ

+
k ). Otherwise let Q̇i be a Pi-name for the

trivial forcing. Let Pi+1 = Pi ∗ Q̇i. Let Pκ be the iteration 〈〈Pi, Q̇i〉 : i < κ〉
with Easton support.

We define the Mitchell forcing M(κ, β) as the iteration Add(κ, β) ∗ Q,
where
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Q = {q | q is a partial function of cardinality ≤ κ on the
regular cardinals below β such that for each γ in Dom(q),

∅ 
Add(κ,γ) “q(γ) ∈ Add(κ+, 1)”}.

Since M(κ, λ) is known to preserve the tree property at λ while making
λ into the κ++ of the extension (see [1]), the idea is simply to force with
Add(κ, λ+) over VM(κ,λ). However, in order to preserve the measurability
of κ, our intended model will be a little different:

Let j0 : V → M0 be the measure ultrapower embedding via the normal
measure U0 = {X ⊆ κ | κ ∈ j(X)} derived from j with critical point κ
such that κM0 ⊆M0 and let λ0 be the first weakly compact cardinal of M0

above κ. To prove the theorem we force over V with

Pκ ∗Add(κ, (λ+0 )M0) ∗M(κ, λ) ∗Add(κ, λ+) ∗R,
where Pκ is the ‘preparatory’ forcing defined above, and R is the forcing
notion defined in the following paragraph:

Let G, g0 be generic filters on Pκ,Add(κ, (λ+0 )M0), respectively. We lift
the embedding j0 : V → M0 to an embedding of V [G] as follows. The forc-
ing j0(Pκ) can be factored into the three obvious parts j0(Pκ)|κ ∗ j0(Pκ)κ ∗
j0(Pκ)κ+1,j0(κ), but since V and M0 have the same Hκ+ , we have j0(Pκ)|κ
= Pκ. By elementarity, j0(Pκ)κ is the forcing Add(κ, (λ+0 )M0). Therefore,
G ∗ g0 is generic for j0(Pκ)|κ ∗ j0(Pκ)κ over M0. We can easily construct
in V [G][g0] a generic filter H0 over M0[G][g0] for the remaining forcing
j0(Pκ)κ+1,j0(κ), using the facts that j0(Pκ)κ+1,j0(κ) is κ

+-closed inM0[G][g0],
V [G][g0] ∩ κM0[G][g0] ⊆M0[G][g0], and each dense subset of j0(Pκ)κ+1,j0(κ)

in M0[G][g0] has an Add(κ, (λ+0 )M0)-name in M0[G] of the form j0(f)(κ) for
some function f ∈ V [G], f : κ→ H(κ+). Therefore, j0 lifts in V [G][g0] to an
elementary embedding j0 : V [G]→M0[G][g0][H0] because j0 is the identity
on the conditions in G, and hence obviously j0[G] ⊆ G ∗ g0 ∗H0. The forcing
R is defined as Add(j0(κ), λ+) of M0[G][g0][H0]. We note here that R is an
element of V [G][g0]. Since j0(λ) = λ, R is actually the image of Add(κ, λ+)
under j0.

For technical reasons, we rewrite our forcing as

Pκ ∗Add(κ, λ+) ∗Q ∗R,
where Q is this time defined only using the even components i of Add(κ, λ+)
with (λ+0 )M0 ≤ i < λ. More precisely, for an interval I of ordinals let
Add(κ, I)|even be the forcing whose conditions are partial functions from
κ × {even ordinals in I} into {0, 1} of size < κ. Then, for q ∈ Q and
γ ∈ Dom(q), q(γ) is an Add(κ, [(λ+0 )M0 , γ))|even-name for a condition in
Add(κ+, 1).

We denote the final model V Pκ∗Add(κ,λ+)∗Q∗R as W .
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Definition. Let A and B be two partial orderings. A function π : B→A
is called a projection if the following hold:

• π is order-preserving and π(B) is dense in A.
• If π(b) = a and a′ < a, then there is b′ ≤ b such that π(b′) ≤ a′.

Fact. If π : B → A is a projection, then the forcing B is forcing-
equivalent to A ∗B/A for some quotient B/A (see [1] for details).

Since both Q and Add(κ, [(λ+0 )M0 , λ))|even exist in the model V [G][g0],
we can also consider the forcing Add(κ, [(λ+0 )M0 , λ))|even×Q. In order not to
confuse it with Add(κ, [(λ+0 )M0 , λ))|even∗Q, which has a different ordering, we
will write Add(κ, [(λ+0 )M0 , λ))|even×Q′. For the same reason, the conditions
(p, q) in the product will be denoted as (p, (0, q)).

It can be shown that Q is κ+-distributive, and Q′ is obviously κ+-closed
in V [G][g0]. See [1] for a proof of the following lemma.

Lemma 1. The map π given by π(p, (0, q)) = (p, q) is a projection from

Add(κ, [(λ+0 )M0 , λ))|even ×Q′ onto Add(κ, [(λ+0 )M0 , λ))|even ∗Q.

This projection can be naturally extended to a projection from

Add(κ, [(λ+0 )M0 , λ+))×Q′ ×R onto Add(κ, [(λ+0 )M0 , λ+)) ∗Q ∗R.

Lemma 2. R is κ+-closed and λ-Knaster in V [G][g0].

Proof. The closure follows easily because R is κ+-closed inM0[G][g0][H0]
and M0[G][g0][H0] is closed under κ-sequences in V [G][g0]. Let 〈pα : α < λ〉
be a sequence of conditions in R, and let pα be of the form j0(fα)(κ) for some
function fα : κ→ Add(κ, λ+), fα ∈ V [G]. A ∆-system argument shows that
λ many of the functions fα are pointwise compatible. It follows that λ many
of the conditions pα are compatible.

Lemma 3. The forcing Q ∗R is κ+-distributive in V Pκ∗Add(κ,λ+).

Proof. The forcings Q′, R are closed in the model V Pκ∗Add(κ,(λ+0 )M0 ) in
which they are defined, therefore their product Q′×R is closed there as well.
ByEaston’s lemma, after forcing with theκ+-c.c. forcingAdd(κ,[(λ+0 )M0,λ+)),
the product Q′ × R will remain κ+-distributive. Since κ+-distributivity is
equivalent to not adding new κ-sequences of ordinals, it follows from the
above facts about projections that Q ∗ R is distributive in V Pκ∗Add(κ,λ+) as
well.

Lemma 4. In W , κ+ = (κ+)V , κ++ = λ, and κ+++ = (λ+)V . In par-
ticular, 2κ = κ+++.

Proof. κ+ = (κ+)V : This follows from the facts that Pκ ∗Add(κ, λ+) is
κ+-c.c in V , and Q ∗R is κ+-distributive in V Pκ∗Add(κ,λ+).
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κ++ = λ, κ+++ = (λ+)V : The Mitchell forcing M(κ, λ) collapses pre-
cisely the cardinals between κ+ and λ (see [1, Lemma 2.4] for a proof). On
the other hand, in the model V Pκ∗Add(κ,(λ+0 )M0 ), in which all cardinals are
preserved, R has the λ-Knaster property and M(κ, λ) ∗Add(κ, λ+) satisfies
the λ-c.c. It follows that their product also satisfies the λ-c.c., which means
that all cardinals above λ are preserved.

Remark. In the general case where κ is θ-hypermeasurable we can first
force to add a function f : κ → κ with j(f)(κ) = θ. Then θ0, M0’s version
of θ, is less than κ++, because θ0 = j0(f)(κ) < j0(κ) < κ++. It follows that
the forcing R still has the λ-Knaster property in V Pκ∗Add(κ,θ0).

To complete our proof we need to show that, in the extension, κ is still
measurable and λ = κ++ still has the tree property.

Lemma 5. κ remains measurable in W .

Proof. In order to prove that κ remains measurable in W we intend
to extend the elementary embedding j : V → M to an embedding of W .
We have already picked generics G, g0 for the forcings Pκ,Add(κ, (λ+0 )M0),
respectively. Let g be an Add(κ, [(λ+0 )M0 , λ+))-generic filter over V [G][g0].
We first use a ‘surgery’ argument to lift j to an embedding of V [G][g0][g].
For completeness we give the full proof.

The embedding j can be factored as k ◦ j0, where k : M0 →M is defined
by k([F ]U ) := j(F )(κ). The embedding k is also elementary and its critical
point is (κ++)M0 . By elementarity and GCH, (κ++)M0 < j0(κ) < κ++. Note
also that k(λ0) = λ.

On page 57 we have lifted in V [G][g0] the embedding j0 : V →M0 to an
embedding j0 : V [G]→M0[G][g0][H0].

Next we lift the embedding k : M0 →M toM0[G][g0][H0]. It lifts trivially
to k : M0[G]→M [G]. Note that k(Add(κ, (λ+0 )M0)) = Add(κ, λ+), and that
k is almost the identity on the conditions in g0, namely, it only shifts the
ith component to the k(i)th component. Therefore, we can rearrange the
generic filter g0×g into some (g0×g)′ such that the ith component of g0×g
is the same as the k(i)th component of (g0 × g)′. Then k[g0] ⊆ (g0 × g)′

and the embedding k lifts in V [G][g0][g] to k : M0[G][g0]→M [G][(g0 × g)′]
(note that k restricted to λ+0 belongs to M [G]). And finally, we ‘transfer’
H0 along k to build a filter H generic for k(j0(Pκ)κ+1,j0(κ)) = j(Pκ)κ+1,j(κ).
Namely, let H = {p ∈ j(Pκ)κ+1,j(κ) | k(p0) ≤ p for some p0 ∈ H0}; then H
is generic for j(Pκ)κ+1,j(κ). To see this, note that each open dense set D ⊆
j(Pκ)κ+1,j(κ) inM [G][(g0 ∗g)′] is of the form k(f)(a) for some f ∈M0[G][g0]

with domain of size (λ+0 )M0 , because every element of M is of the form
j(f ′)(α) = (k(j0(f

′)))�λ+(α) = k(j0(f
′)�(λ+0 )M0 )(α) for some f ′ ∈V , α<λ+.

We may assume that f(x) is an open dense subset of j0(Pκ)κ+1,j0(κ) for each
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x ∈ Dom(f), and since j0(Pκ)κ+1,j0(κ) is (λ++
0 )M0-closed in M0[G][g0], we

may choose r0 ∈ H0 belonging to each f(x), x ∈ Dom(f). It follows that
k(r0) ∈ D ∩H.

Therefore, we can lift k to k : M0[G][g0][H0] → M [G][(g0 × g)′][H] in
V [G][g0][g], getting the commutative diagram

V [G]
j //

j0

&&

M [G][(g0 × g)′][H]

M0[G][g0][H0]

k
55

We now plan to lift j : V [G] → M [G][(g0 × g)′][H] to an embedding of
V [G][g0][g]. Let GQ×h be a filter on Q×R which is generic over V [G][g0][g].
We transfer h along k, just as we did with H0, in order to get a generic h∗ for
j(Add(κ, λ+)) so that we could lift j to j : V [G][g0][g]→M0[G][g0][H0][h

∗].
The fact that h can be transferred to create a generic for j(Add(κ, λ+)), and
the fact that R = j0(Add(κ, λ+)) is not a harmful forcing in V [G][g0], i.e.
has κ+-closure and λ-Knaster property, are the main advantages of factoring
j as k ◦ j0.

This lifting argument is called surgery, because we still have to make sure
that j[g0 × g] ⊆ h∗, and that is done by altering the generic h∗ on a small
part, as follows. Let F =

⋃
g0×g : κ×λ+ → 2 be the function corresponding

to the generic g0 × g. Then
⋃
j[g0 × g] is the function F ∗ : κ × j[λ+] → 2

defined by F ∗(γ, j(δ)) = F (γ, δ). We have to modify h∗ to h∗∗ so that each
q∗ in h∗∗ is compatible with F ∗ so that j[g0×g] ⊆ h∗∗. Finally we show that
h∗∗ is also a generic filter.

For any q ∈ h∗ let q∗ be defined by altering q on Dom(q) ∩ (κ × j[λ+])
to agree with F ∗. We claim that q∗ belongs to M [G][(g0 × g)′][H], and
therefore is a condition in j(Add(κ, λ+)). We can write q as j(f)(α) for
some α < λ and some function f : κ → Add(κ, λ+), f ∈ V [G]. If (γ, j(δ))
belongs to Dom(q), then (γ, δ) belongs to Dom(f(β)) for some β < κ, so
{(γ, δ) | (γ, j(δ)) ∈ Dom(q)} is contained in Z0 =

⋃
β Dom(f(β)) ∈ V [G]. As

Z0 has size at most κ and Pκ is κ-c.c., there is Z ∈ V with Z0 ⊆ Z ⊆ κ×λ+
of size at most κ. Then Z belongs to M and j�Z also belongs to M . Using
q, g0, g, j�Z we can define q∗, and therefore q∗ belongs to M [G][(g0×g)′][H].

Claim. h∗∗ := {q∗ | q ∈ h∗} is j(Add(κ, λ+))-generic over the model
M [G][(g0 × g)′][H].

Proof. Suppose that D is an open dense subset of j(Add(κ, λ+)), D ∈
M [G][(g0 × g)′][H]. For any q ∈ j(Add(κ, λ+)) define N(q) to be the set of
conditions r with the same domain as q which disagree with q on a set of
size at most κ. Then E = {q | N(q) ⊆ D} is a dense subset of j(Add(κ, λ+))
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as well, by the j(κ)-closure of j(Add(κ, λ+)). Choose q in E ∩ h∗. Then q∗
belongs to N(q), and therefore to D. It follows that h∗∗ intersects D. This
shows the Claim.

So far we have proven that in V [G][g0][g][h] there is a definable elemen-
tary embedding j : V [G][g0][g]→M [G][(g0 × g)′][H][h∗∗].

We now need to find a generic filter Gj(Q)×hj(R) for j(Q×R) such that
j[GQ × h] ⊆ Gj(Q) × hj(R), in order to define our final lifting

j : V [G][g0][g][GQ][h]→M [G][(g0 × g)′][H][h∗∗][Gj(Q)][hj(R)].

This last step is, however, just another transferring argument since, by
Lemma 3, Q×R is κ+-distributive over V [G][g0][g], that is, Gj(Q)×hj(R) :=
{(q, r) | j(q0, r0) ≤ (q, r) for some (q0, r0) ∈ GQ × h} is an appropriate
generic. This completes the proof of Lemma 5.

Lemma 6. κ++ has the tree property in W .

Proof. In order to get a contradiction suppose that there is a κ++-
Aronszajn tree in W .

Recall thatW can be written as V Pκ∗Add(κ,(λ+0 )M0 )∗M(κ,λ)∗Add(κ,λ+)∗R. Let
V1 denote the model V Pκ∗Add(κ,(λ+0 )M0 )∗M(κ,λ) and let R′ = R|λ be the forcing
Add(j0(κ), λ) of M0[G][g0][H0]. We first notice that there must be a κ++-
Aronszajn tree already in V Add(κ,λ)×R′

1 . Indeed, note that Add(κ, λ+)×R has
the λ-c.c. in V1 (see the proof of Lemma 4) and let π be an Add(κ, λ+)×R-
name in V1 for a subset of λ = κ++ which codes a κ++-Aronszajn tree.
Then for every α < κ++ there is a maximal antichain Aα of size less than λ
such that each q ∈ Aα decides the statement α̌ ∈ π. Let B =

⋃
{Dom(q) |

q ∈Aα for some α}. Then |B| = λ, and (Add(κ, λ+)×R)|B is isomorphic to
Add(κ, λ) × R′. Thus, we can replace Add(κ, λ+) × R with its isomorphic
copy such that π is an Add(κ, λ) × R′-name, which means that there is a
κ++-Aronszajn tree in V Add(κ,λ)×R′

1 .
Just as before, rewrite Pκ ∗Add(κ, (λ+0 )M0) ∗M(κ, λ) ∗Add(κ, λ)×R′ as

Pκ ∗Add(κ, (λ+0 )M0) ∗Add(κ, λ) ∗Q×R′, where Q is defined only using the
even components of Add(κ, λ). Hence, in terms of our chosen generics, the
above means that there is a κ++-Aronszajn tree T in V [G][g0][g|λ][GQ][h|λ].
Let Ṫ be an Add(κ, λ) ∗Q×R′-name in V [G][g0] for T .

Recall that λ is a weakly compact cardinal in V [G][g0]. Therefore, there
exist in V [G][g0] transitive ZF−-models N0, N1 of size λ and an elementary
embedding k : N0 → N1 with critical point λ, such that N0 ⊇ H(λ)V [G][g0]

and G, g0, Ṫ ∈ N0.
Note that g|λ ∗GQ ∗ h|λ is also Add(κ, λ) ∗Q×R′-generic over N0. Since

λ is the critical point of k, we can factor k(Add(κ, λ) ∗Q×R′) as

Add(κ, λ) ∗Add(κ, [λ, k(λ))) ∗Q ∗Q∗ ∗R′ ∗R∗
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where Q∗ and R∗ denote the tail forcings k(Q)/Q and k(R′)/R′, respectively,
with components indexed from the interval [λ, k(λ)). Since k is the identity
on g|λ ∗ GQ ∗ h|λ we can extend the embedding k : N0 → N1 in some large
universe U to an embedding

k : N0[g|λ][GQ][h|λ]→ N1[g|λ][g∗][GQ][GQ∗ ][h|λ][h∗]

where g∗, GQ∗ , h∗ are arbitrary generics for Add(κ, [λ, k(λ))), Q∗, R∗, respec-
tively, picked in U . (We can assume that GQ is generic over N1[g|λ][g∗] and
that h|λ is generic over N1[g|λ][g∗][GQ][GQ∗ ], for one can start the argument
by first picking an Add(κ, λ) ∗ Add(κ, [λ, k(λ))) ∗ Q ∗ Q∗ ∗ R′ ∗ R∗-generic
filter g|λ ∗ g∗ ∗GQ ∗GQ∗ ∗h|λ ∗h∗ over V in some large universe U , and then
restricting it to Add(κ, λ) ∗Q×R′ to get g|λ ∗GQ ∗ h|λ.)

Since T ∈ N0[g|λ][GQ][h|λ] is a λ-Aronszajn tree, by elementarity k(T ) is
a k(λ)-Aronszajn tree inN1[g|λ][g∗][GQ][GQ∗ ][h|λ][h∗] which coincides with T
up to level λ. Hence T has a cofinal branch b in N1[g|λ][g∗][GQ][GQ∗ ][h|λ][h∗].
We will show that b must actually belong to N1[g|λ][GQ][h|λ] (i.e. the tail
generics g∗, GQ∗ , h∗ cannot add a new branch), and thereby reach the de-
sired contradiction to the assumption that T has no cofinal branches in
V [G][g0][g][GQ][h]!

Similarly to the discussion following Lemma 1, in N1 there is a projection
from the product

Add(κ, λ)×Add(κ, [λ, k(λ)))×Q′ ×Q∗′ ×R′ ×R∗

onto
Add(κ, λ) ∗Add(κ, [λ, k(λ))) ∗Q ∗Q∗ ∗R′ ∗R∗,

where Q′ and Q∗′ are κ+-closed forcings defined in N1. Let GQ′ × GQ∗′ be
Q′ × Q∗′-generic over N1[g|λ][g∗]. (Again we can assume that h|λ is generic
over the bigger model N1[g|λ][g∗][GQ′ ][GQ∗′ ].)

If we can show that the bigger generic g∗ ∗ GQ∗′ ∗ h∗ does not add the
branch b through T over the bigger modelN1[g|λ][GQ′ ][h|λ], then in particular
the smaller generic g∗ ∗ GQ∗ ∗ h∗ does not add b over the smaller model
N1[g|λ][GQ][h|λ], and we are done.

Since all the forcings are defined in N1, we can ‘reorder the generics’ in
N1[g|λ][g∗][GQ′ ][GQ∗′ ][h|λ][h∗] as we want. Write

N1[g|λ][g∗][GQ′ ][GQ∗′ ][h|λ][h∗] as N1[GQ′ ][h|λ][g|λ][g∗][GQ∗′ ][h
∗].

Note that in N1[GQ′ ][h|λ], Q∗′×R∗ is a κ+-closed forcing and Add(κ, k(λ)) is
κ+-c.c. Therefore, it can be shown that Q∗′×R∗ does not add any branches
to T over the model N1[GQ′ ][h|λ][g|λ][g∗] (for a detailed proof of this lemma
see [13]).
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Finally, Add(κ, [λ, k(λ))) has the κ++-Knaster property, which means
that it could not have added the branch b over the model N1[GQ′ ][h|λ][g|λ]
either.

This proves Lemma 6 and hence the proof of the Theorem is complete.

3. Open questions

1. Is it possible to singularize the cardinal κ of the above model preserving
the tree property of κ++?

2. Does the consistency of the existence of a measurable cardinal κ, such
that TP(κ++) and 2κ = κ+++, follow from the consistency of the ex-
istence of a cardinal κ of Mitchell order λ+ where λ is weakly compact
(yielding an equiconsistency result)?

3. Is it consistent to have TP(ℵω+2), ℵω strong limit, and 2ℵω large?
4. Is it consistent to have TP(λ+), λ singular strong limit, and 2λ large?
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