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Ordinal remainders of classical -spaces
by

Alan Dow (Charlotte, NC) and Jerry E. Vaughan (Greensboro, NC)

Abstract. Let w denote the set of natural numbers. We prove: for every mod-finite
ascending chain {7, : a < A} of infinite subsets of w, there exists M C [w]¥, an infinite
maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such
that the Stone-Cech remainder 8¢\ 1 of the associated v-space, 1 = 1(w, M), is homeo-
morphic to X 4 1 with the order topology. We also prove that for every A < t7, where t is
the tower number, there exists a mod-finite ascending chain {7, : @ < A}, hence a y-space
with Stone—Cech remainder homeomorphic to A + 1. This generalizes a result credited to
S. Mréwka by J. Terasawa which states that there is a MADF M such that gy \ ¢ is
homeomorphic to w1 + 1.

1. Introduction. Let w denote the set of natural numbers. Let [w]®
denote the set of all countably infinite subsets of w. Sets A, B € [w]¥ are
said to be almost disjoint provided ANB is finite. An infinite family A C [w]*
is called an almost disjoint family (ADF) if any two elements of A are almost
disjoint. An ADF M is called a mazimal almost disjoint family (MADF) if
it is not properly contained in another ADF.

We have considered almost disjoint families of countable subsets of an
arbitrary cardinal « in [4], [5], but in this paper we only consider the classical
case K = w.

Almost disjoint families, especially MADEF’s, are of interest in set theory
(e.g., [8], [14]), topology (e.g., [6], [13]), Boolean algebra (e.g., [1], [3]) and
Banach spaces (e.g., [10], [I1]).

An important interest in topology of MADF’s concerns the well-known
class of topological spaces called y-spaces (e.g., see [2, §11]; for some his-
torical notes, see [4, §2]). For any ADF A C [w]¥, let ¢(w,.A) denote the
space with underlying set w U A and with the topology having as a base
all singletons {a} for & < w and all sets of the form {A} U (A \ F') where
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A € A and F is finite. We call 9(w, A) the -space associated with A, and
the class of spaces of the form ¢ (w, A) the class of ¢-spaces on w (or on
[w]“). It is well-known that the topology of 1(w, A) is closely related to the
ADF A, however all ¢)-spaces on w, regardless of which ADF A is used, are
first countable, zero-dimensional, Hausdorff, locally compact non-compact
spaces in which w is an open dense set of isolated points (hence the 1-space
is separable), and ¥ \ w = A is a closed discrete set. Maximal ADF’s are of
additional interest because M is maximal if and only if the y-space associ-
ated with M is pseudocompact (i.e., every real-valued continuous function
defined on 9 is bounded [12]).

For A, B € [w]¥, A C* B means that A\ B is finite, and A <* B means
that A C* B and B\ A is infinite. Let X € [w]¥. A mod-finite ascending
chain of order type X in X (chain for short) is a family {7, : o < A} C [w]®,
where A is an ordinal, such that T, <* X for all &« < A, and 8 < a < A imply
Tg <* T,,. We also say “chain indexed by A\” when the particular ordinal A
is needed. Let ¢ denote the cardinality of the continuum, and let t denote
the tower number, i.e., the smallest cardinality of a tower in [w]¥ (e.g., see
[2] or [16]).

We use the approach to Stone-Cech compactifications in [7]. For E C 1,
we let E denote the closure of E in 1. The closure of E in ¢ will be denoted
by C1¢ (E)

J. Terasawa [I5] proved that every compact metric space is the Stone—
Cech remainder of a t-space on w for a suitably chosen MADF M, and he
stated that the ordinal wy + 1 with the order topology is also the remainder
of a 1-space. He attributed that result to S. Mrowka. Our main theorem
generalizes this result as follows.

THEOREM 1.1. If there exists a chain {Ty : o < A} in [w]¥ indexed by
the ordinal X\, then there exists a MADF M C [w]|* such that B \ ¢ is
homeomorphic to A + 1 with the order topology.

Concerning the existence of ascending chains, we prove

THEOREM 1.2. If X\ < tT, then there exists an ascending ordered chain
inw of order type A. Thus there exists a MADEF M C [w]* such that B\ =
A+ 1.

Combining these two theorems we get

THEOREM 1.3. For every successor ordinal A +1 < tt there exists a
MADF M C [w]* such that the Stone—Cech remainder of (w, M) is hom-
eomorphic to A + 1 with the order topology.

Theorem implies the result attributed to Mréwka because, as is well
known, t is an uncountable cardinal, hence w; + 1 < t.
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Theorem is the best possible in ZFC in the sense that it is consistent
that the ordinal t© + 1 is not the Stone-Cech remainder of any t-space
on w. This follows because a compact separable space has weight at most ¢
[9, 2.3(i)]. Hence a compact separable space cannot contain a subspace with
¢t isolated points; in particular cannot contain a copy of the ordinal ¢ + 1.
Hence in any model where t = ¢, also t© = ¢, and this implies that t" + 1
is not the Stone-Cech remainder of any t-space on w.

We establish the homeomorphism between the Stone-Cech remainder,
B\ ¥, and A + 1 using the following simple result.

LEMMA 1.4. Let X be a Hausdorff space and {Oq : o < A} a cover of
X by compact, clopen sets such that, for all § < a < A,

(1) Og C Oq, and
(2) [Oa\Ugca Ol =1 for a < A.

Then X is homeomorphic to A with the order topology.

Proof. For av < A, let z,, € X be the point such that {z,} = O4 \
Up<a Op, and define ¢ : A — X by ¢(a) = z,. Clearly ¢ is one-to-one and
onto X. By the compactness of O, the decreasing family {O,\ Op : f < o}
is a local base for z, in X. We show that ¢ is a homeomorphism by showing
that p((7,a]) = O \ O, for all v < a < A If z € ¢((v,a]), there exists
v < B < a such that @ = ¢(8) = zg. Since zg € Og and, by (1), Og C O,,
we see that ¢(f) € On. For v < 3, 25 & O+. Thus ¢(f) = 23 € Oy \ O,.
Conversely, let x € O, \ O, and let 8 < a be the first ordinal such that
z € Og. Then z € Og \ U, 5073 s0 x = x5. We have vy < 8,50 7y < S < «
and = = ¢(B). Thus = € ¢((v,a]). This proves the equality ¢((v,a]) =
Oqu \ O+, and shows that ¢ is a homeomorphism.

LEMMA 1.5. If Z is a zero set in B, then ZNM D Z N (B \ ), and
if ZN0 (B \ ) #0, then Z N M is infinite.

Proof. Let p € Z N (B \ ¥). Then p is a free z-ultrafilter on 1. Let
7' be any zero-set neighborhood of p in £1. Since 1 is pseudocompact,
the z-ultrafilter p is countably complete, i.e., if Z, € p for n € w, then
MNhew Zn € p ([T, 8.6]). For n € w, Z, = ¢\ {n} is a (clopen) zero set in 1),
and since p is free, ¢ \ {n} € p. Now we have Z" = ZN Z' N, Zi € b,
and Z” C M. This shows that the zero-set neighborhood Z’ of p has a
non-empty intersection with Z N M. Since Z’' was arbitrary, it follows that
p € ZN M. The second statement in the lemma follows from the first.

Let F € [w]¥ and {T, : @ < A} be a chain in X. We say that the set
F diagonalizes the chain in X (or in [X]¥) provided F' C* X and for all
B<a |FNT3 <w. If FC [w]*isa family of sets, we say F diagonalizes
the chain in X provided each set F' € F diagonalizes the chain in X. We
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note that there exists F' that diagonalizes a chain {73 : 8 < a} in X if and
only if the chain is a not a tower in X (consider X \ F)).

Given disjoint sets A, B € [w] and A C [A]¥ ADF, B C [B]* ADF with
|A| = |B|, the (Mréwka) join of A and B is defined by A@® B ={AU¢(A) :
A € A}, where ¢ : A — B is a bijection (see [4 §4]). Clearly A @ B is an
ADF and is maximal if both A and B are maximal.

We call a MADF M a Mréwka MADF provided |81\ ¥| = 1. As proved
by S. Mréwka in [I3], there exists M C [w]¥ such that |5y \ ¢| = 1.

LEMMA 1.6. Let Nyw \ N € [w]|“, B C [N]¥ be a Mréwka MADF, and
A C [w\ N an ADF such that |B| = |A| > w. If M C [w]¥ is a MADF
and A® B C M then A @ B has exactly one limit point in [, where
Y= ¢(wa M)

Proof. The proof is similar to that of [5, Theorem 1.3, Case 3].

2. Proofs of the main results

Proof of Theorem Let {T : B < A} be a chain in T). For convenience
we identify T\ with w. We must construct a MADF M C [w]* such that
B\ ¢ is homeomorphic to A + 1. For A finite, say A = n > 1, we prove the
theorem by taking n disjoint copies of w each with a Mréwka MADF (i.e.,
|81 \¥| = 1). Then taking unions yields the theorem. If we prove the theorem
for a limit ordinal A, then we get it for successor ordinals, A+ 1, A+ 2,...,
because all these ordinal spaces are homeomorphic to A+ 1. Thus we assume
that {T3: 8 < A} is a chain and A is a limit ordinal.

We want our chain to have the following property:

(¥) For a <\, if cf(a) > w and {Tp : f < a} is not a tower in T, then
it is not a tower in any H <* T,.

The given chain {7 : f < A} may not have this property, so we adjust
it: For every o < A, if there exists H <* T, such that {T3 : 8 < a} is a tower
in H (hence cf(a) > w), then we change the definition of Ti, by replacing
T, with H (then T, = H). After this change, {T3 : § < a} is a tower in Tj.
For those a < A for which this change is made, T, becomes a bit smaller
than it was and the ring T, 41 \ 7o becomes a bit larger. No change is made
for any other av < \. This adjusted chain clearly has property (x).

Now we proceed to the construction of the MADF M. For a < X define

€a ={A C[T,])¥ : Ais an ADF diagonalizing {15 : f < a} in T, }.
Note that
¢a=0 & {Tp:5 < a}is atower in [T,]”.

When &, # 0, we partially order &, by set inclusion. Then by Zorn’s
Lemma, there is a family N, € &, such that N, is a maximal element in
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the poset &,. Since there exists a MADF of cardinality ¢, we may assume
that |N,| = ¢. Pick N, € N, and let B, C [N,]¥ be a Mréwka MADF
with |B,| = ¢. Since N,, diagonalizes the chain, B, diagonalizes the chain.
Then B, & (No \ {No}) is an ADF, and diagonalizes the chain {Tj : f < a}
(obviously if each of two sets diagonalizes a chain, then their union also
does).

As an intermediate step before we get to M we define families C,,.

(1a) If &, # 0 we define Co = Bo @ (No \ {No}) as described above. This
case includes all successor ordinals, all ordinals of countable cofinality, and
all ordinals of uncountable cofinality for which {73 : 8 < a} is not a tower
in Ty, hence not a tower in any H <* T, (by the adjustment we made to
the tower at the beginning of the proof).

(24) If & = 0, then we define C, = 0.

We note that if Co # 0 then |Cq| = c.

CLAM 1. For all a < X, Co C [Ta]* and C, diagonalizes the chain
{Ts: B < a}inT,.

Proof. If C, = 0, there is nothing to prove. If C,, # ), then the inclusion
Co C [T,]* follows because N, C [T,]¥, By C [No]” and N, € N,. Since
Ca = Ba & (N \ {N,}) is a join of two ADF’s each of which diagonalizes
the chain {T3 : 8 < a} in T, we see that C, diagonalizes the chain.

CLAIM 2. For all o < X, if H € [T,]* diagonalizes {Tp : B < a} in T,
then there exists C' € Cq such that |C N H| = w.

Proof. Assume H diagonalizes {15 : f < a} in T,. The existence of H
implies that &, # (0. Hence C, was defined by (1,). Therefore the maximal
element N, of &, was used in the definition of C,. We cannot have both
H ¢ N, and N, U{H} an ADF because that would contradict the maxi-
mality of N, in &,. Either way, there is N € N, such that |H N N| = w,
hence there exists C' € C, such that |C N H| = w.

Cram 3. The family {CN Ty : C € Uy, Cpt is a MADF on T,,.

Proof. 1f H €[T,,]*, then there exists a first 8 < o such that |[HNT3| = w.
Then H N Tj diagonalizes {T; : £ < 8} in Tg; so by Claim 2, there exists
C € Cg such that |C N HN1Tg| =w. Hence |[CNH| = w.

We define

M= Cu.
a<<)

Cram 4. M C [w]¥ is a MADEF.

Proof. This follows from Claim 3 and the fact that T = w.



88 A. Dow and J. E. Vaughan

We now consider the topology of 1 = ¥ (w, M), the 1-space associated
with the MADF M constructed above. We want to show that ¢ \ v is
homeomorphic to A + 1 with the order topology. We first establish some
useful facts concerning the topology on ¢ and S.

CLAIM 5. Fora <\, T,NM C Up<a Ca: cly(Tw) is clopen in 1, hence

T, is clopen in B.

Proof. Let M € T,N\M; then MT, is infinite by the definition of the topo-
logy on 9. By Claim 3, there exists C' € (Jg<,, Ca such that [CN(MNT,)| = w.
Since C, M € M, an almost disjoint family, we have C = M;so M € Uﬁga Ca.
To see that cly (T, ) is clopen in 1, it suffices to to show this set is open since
it is closed by definition. We may assume a < A since cly(Ty) = cly(w) = 9
is clopen in 1. Let M € cly(T,) "M, hence M € T, NM, so by the first part
of Claim 5, M € UBSa Cq. Thus by Claim 1, for some 8 < o, M C Tg C* Ty,
hence for some finite set F' we find that {M }U(M \ F') is a neighborhood of M
contained in cly (T, ). Thus cly(Ty,) is clopen in v, and therefore Tp, = cly(T,)
is clopen in v [7, p. 90]. This completes the proof of Claim 5.

In preparation for using Lemma [1.4] we define

Oa =T N(BY\¢) =cly(Ta) N (BY \ ) for a < A
Then {O,, : @ < A} is an increasing family of compact clopen sets in S\ ¥,
O\ = By \ ¥, and satisfies condition (1) in Lemma To complete the
proof of the theorem, we show that condition (2) also holds for this family,
i.e., we show that

‘Oa\ U Oﬁ‘ =1 fora<A
B<a

First we show that Oq \ g, Op contains at least one point.

CramM 6. If B < a < A then On \ U, Op # 0.

Proof. Since {Oq \ Opg : f < a} is a decreasing family of compact sets,
it suffices to show that O, \ Og # 0 for all 8 < a. If Cy # 0 then C, is an
infinite (in fact uncountable) subset of cly (T, ) \ cly(Tp); hence Ty, \ Tz # 0.
If Co, = 0, then « is a limit ordinal (in fact cf(a) > w), hence 5+ 1 < a.
Since Cpy1 # 0, we have ) # Opgy1\ Og C Oq \ Og.

The remainder of the proof is devoted to showing that On \ Ug., Op
contains at most one point.

CrAam 7. For all @ < A, [Oa \ Ug, Ol < 1.

Proof. Assume that for all 8 < o we have proved |[Og \ U, 5O = 1.
We show [Oq \ Ug, Op| < 1. We have two cases:

CASE 1: §, = 0. Then cf(a) > w, {Ip : f < a} is a tower in T, and
Co = 0.
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Let X = Uﬁ<a Op C B\ 9. By the induction hypothesis, {Og : f < o}
satisfies the hypothesis of Lemma hence X = «. Then the one-point
compactification of X and the one-point compactification of o are homeo-
morphic, and since in this case cf(«) > w, the only compactfication of « is its
one-point compactification, the ordinal a+1. Thus the only compactification
of X is its one-point compactification, and X = a+1. Moreover X C O, =O0,.
To prove the claim it suffices to show that X = O,. If X # O,, then there
exists a point p € O, \ X C Ty,. Since X is compact, there exists a continuous
function f : B¢ — [0,1] such that f(p) =0, f~1(0) C T, and f(X) = 1.

Since C,, = 0, by Claim 5, we have

FFronMcTanMc (Jcs= s
Bl B<a
By Lemma f71(0) N M is infinite. Pick distinct C; € f~1(0) N M; say
that C; € Cg, (for i € w). Let B = sup{f; : i € w}. Then B < a because
cf(a) > w. Let = be a limit point of {C; : ¢ € w} in B¢ \ ¢. Then f(z) = 0.
Since each C; C T, C* T, we have z € Tz C X; hence f(x) = 1, which is
a contradiction. This proves Case 1.

CASE 2: &, # (). We break this case into three subcases depending on
properties of .

SUBCASE 1: « is a successor ordinal, say o = 7 + 1. In this case

Ou\ | 05 =0-41\0-.
B<a

Since &, # 0, |Ca| = ¢ > w. By Lemma 1.6, C, has exactly one limit point
in 1y, call it 4. Since C, diagonalizes {T : § < a} in Ty, we deduce for
every C € C, that C C* T, \ T;, hence the unique limit point z, of C, is in
T \ T, = Ty \Ty; 50 24 € Oy \ O, If this is the only point in O, \ O, then
we are done. So assume there is a point p € O,, \ O; and p # x,. Therefore
there exists an open neighborhood U of p in 8¢ such that U C T, \ T and
UNCy = 0. Let f: B — [0,1] be continuous such that p € f~1(0) C U.
Since f~1(0) N Cy = 0, it follows from Claim 5 that

fFronMcTanMc e,
p<T
and from Lemma [1.5/that f=1(0) N (By \ v) € f~1(0) N M. Therefore
pefHO)N(BY\y) C fFHO)NMC ] CaC T

a<lT

so p € O;. This is a contradiction.

SUBCASE 2: cf(a) = w. By Lemma Co has exactly one limit point
in (1, which we denote by x4, and z, € O, \ U,B<a Og. If this is the
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only point in O, \ U g<a Op, then we are done. So assume there is a point
p € Oa \UpgcyOp and p # xq. Then p ¢ Co- Let f : By — [0,1] be a
continuous function such that p € f~1(0) € T, and f~1(0) NCy = 0. By
Claim 5 and Lemma 1.5, f~(0) U4, Cp is infinite. If f~1(0)NCs # 0 for
cofinally many S < «, then we may pick, for each n € w, ordinals £, < «
and M, € f~1(0)NCg, in such a way that {8, : n € w} is an increasing and
cofinal sequence in «. Since f(M,,) = 0 for n € w, we may pick by recursion
distinct integers a,, with

an € My 0 (T \ |J 71
i<n

such that f(a,) < 1/(n+1) for n € w. Then A = {a, : n € w} diagonalizes
{Ts : B < a} in T,. By Claim 2 there exists C' € C, such that |C N A]
= w, but then it follows that f(C) = 0; so C € f~1(0) N C,, which is a
contradiction. Therefore it must be the case that there exists v < a such
that f~1(0)N M C Up<, Cs. We show this possibility does not occur. If
it did, for each C € f~1(0) N M we have C C* T, hence C € T, N M.
Therefore f~1(0)NM C T,. But p € f71(0) N (B \ ) € f~1(0) N M by
Lemma Thus we have p € T77, which implies p € O, where v < «, and
that is a contradiction.

SUBCASE 3: cf(c) > w. This subcase has some similarities with Case 1
since in both cases cf(a) > w. However, in Case 1, we have C, = (), while
in this subcase we have C, # (). Put X = Ug<a Op- As in Case 1, X is the
one-point compactification of | J g<a Op, and X C O,. We need to show that
O = X. If not, there exists a point p € O, \ X. Let f : f¢b — [0,1] be a
continuous function such that p € f~1(0), X C f~1(1), and f~1(0) C Ta.
We will derive a contradiction.

By Lemma [1.5| and Claim 5,

pE UCﬁZ UCﬂU@.
BLla B<a
As in Case 1, p ¢ g, Cs because f71([0,1/2)) is neighborhood of p and
(o, 1/2))NUg<q Cp is finite (since cf(a) > w and f750,1/2))nX = 0).
Thus p € C,. By Lemma p is the only limit point of C, in Sv. Since
f71([0,1/2)) is a neighborhood of p in B, we have C, C* f71([0,1/2)). Let
Fy = Co \ f71([0,1/2)), a finite set. By Claim 1, C, C Ty, thus Fy C Ty,
and moreover, for each M € Fy, M C T,. Define Ky = Fy U |J Fy. Then
K is clopen and compact in 1, hence clopen and compact in 8. Define fj
to be equal to f on Sy \ Ko and fy = 0 on K. Then fy : f¢v — [0,1] is
continuous and has the property that Co, C f5([0,1/2)) (true subset). In
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addition fy retains three relevant properties of f: p € f51(0), X C fi (1)
(because f and fy agree on 1\ ¢), and f; *(0) C To, (because Ko C Ty,).

We see that f;((1/2,1]) is an open set containing X, and Up<a Cs C*
fo H((1/2,1]) (since cf (@) >w and f; 1([0,1/2))NX = 0). Let F} = Up<a C8\
£t ((1/2,1]), a finite set. Define K; = F; U|JFy. Then K is clopen and
compact in 1, hence clopen and compact in Sv¢. Define f; to be equal to
foon B\ Ky and f; =1 on Kj. Then f; : f¢b — [0,1] is continuous and
has the property that (Js_,Cs C 1 ((1/2,1]) (true subset). In addition
f1 retains four relevant properties of fo: Co C f; *([0,1/2)) (since fo and f;
agree on Cy), p € f;1(0), X C f; (1) (because fo and f; agree on i \ ),
and f;1(0) € T, (because f;1(0) C f571(0)).

Now we define

H = fi'((1/2,1)) N Ta.

Then H C w is infinite, and has the following three properties:

(i) Ts C* H for all § < «, since if for some < a we have |13 \ H|
= w, then by Claim 3, UTSB Co is a MADF on Tg, hence there
exists C' € (J,<5Cq such that |[C'N (T \ H)| = w, but this implies
f1(C) < 1/2, which contradicts the definition of f;.

(i) H <* Ty, because by Case 2, C,, # (), and for any C € C,, C C*
To \ H (since f1(C) < 1/2).

(iii) {Ts : B < a} is a tower in H. We need only check the maximality
condition of a tower; so suppose K < H and Tg C* K for all
B < a. Then H \ K is an infinite subset of T, and diagonalizes
{Ts : p < a} in T,. Hence by Claim 2 there exists C' € C, such
that |C N (H \ K)| = w. This implies that f1(C) > 1/2, but this is
impossible because fi(C) < 1/2. This proves that {Tz: f < a} is a
tower in H <* T,.

But by hypothesis of Case 2, {&, # 0; so {Ts : B < a} is not a tower
in T, (as noted following the definition of &), hence not a tower in H by
property () of our adjusted chain. That contradicts (iii) and completes the
proof of Subcase 3 of Claim 7, and therefore Claim 7 is proved.

By Claims 6 and 7, the family {O, : @ < X + 1} satisfies the hypothesis
of Lemma hence S \ ¥ is homeomorphic to A + 1. This completes the
proof of Theorem 1.1.

Proof of Theorem If we have a chain indexed by an ordinal A, then
clearly we have chains indexed by all ordinals 5 < A. There exists a chain
(in fact a tower) {S, : o < t} C [w]¥ indexed by t. It suffices to prove that
for every ordinal A\ < t* with cf()\) = t, there is a chain indexed by A. The
proof is by induction. Assume we have (ascending) ordered chains in w of
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order type 8 for every 3 < XA where A < t*, and cf(\) = t. We construct a
chain indexed by A. Let ¢ : t = A be a strictly increasing function onto a
set of ordinals cofinal in \. Let {E, : a < t} be a pairwise disjoint family of
copies of w, and let f, : Eo — Sa+1 \ Sa be a bijection. For each o < k let

{UF s p(a) <7 <p(a+1)}
be an ascending mod-finite chain in [F,]* indexed by the interval of ordinals
[o(a), p(a + 1)) (considered as a subset of a chain indexed by the ordinal
o(ar 4 1)) with the one extra requirement that Ugta) = 0. By “ascending”
we mean that if p(a) <7 < p < @(a+1) then Uy <* Ug <* E,. Now we
define a chain indexed by A as follows: For 7 < A, let a < t be the unique
ordinal such that p(a) <7 < ¢(a+ 1), and define

T = Sa U fo(US)  for p(a) <7< pla+1).

By our definitions, T,,) = Sa. It remains to show “mod-finite ascending”.
Suppose 7 < pu < A. Let a < t be such that p(a) < 7 < p(a +1). If
p < p(a+ 1), then on E, we have U2 <* UZ, hence fo(U7) <* fo(Uy),
hence

Tr = Sa U fo(U7) <* Sa U fo(U7) = T).

If p(a+1) < p, let 8 < t be such that p(8) < pu < p(B+1). Then a+1 < 3
and we have

Tr = Sq U f(U2) <* Say1 C* Sp C SgU f3(Uf) = T,..
Thus {7, : @« < A} is a chain, and this completes the proof of Theorem [1.2
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