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The sizes of the classes of H(N)-sets

by

Václav Vlasák (Praha)

Abstract. The class of H(N)-sets forms an important subclass of the class of sets of
uniqueness for trigonometric series. We investigate the size of this class which is reflected
by the family of measures (called polar) annihilating all sets from the class. The main aim
of this paper is to answer in the negative a question stated by Lyons, whether the polars
of the classes of H(N)-sets are the same for all N ∈ N. To prove our result we also present
a new description of H(N)-sets.

1. Introduction. Let M be a collection of closed subsets of [0, 1], and
M([0, 1]) be the set of all Radon measures on the interval [0, 1]. Then the
polar M⊥ ⊂M([0, 1]) is defined by

M⊥ = {ν ∈M([0, 1]); ∀B ∈M : ν(B) = 0}.
We say that µ ∈ M([0, 1]) is Rajchman if lim|n|→∞ µ̂(n) = 0. The family
of all Rajchman measures is denoted by R. Let us recall that closed sets of
extended uniqueness (U0 sets) are those closed sets which are annihilated by
every Rajchman measure. Thus by definition we have R ⊂ U⊥0 .

Rajchman [9] investigated classes A with the property A⊥ = R. He
introduced an important subclass of U sets, called H-sets (or H(1)-sets) (see
the next section or [4] for the definitions of U and H(1)) and investigated
whether H⊥ = R. Lyons [5] showed that R = U⊥0 . On the other hand
Kaufman [3] proved that U⊥ 6= U⊥0 = R. Thus U0 can be considered much
larger than U in the sense of polars. More generally, one can consider two
families of closed sets A ⊂ B and may ask whether B⊥ ( A⊥. If this is the
case then B can be considered much larger than A.

Rajchman conjectured that every set of uniqueness was a countable union
of H-sets. This was disproved by Pyatetskĭı–Shapiro [7] (see also [8]), who
also introduced the classes of H(N)-sets for N ∈ N. Further he showed
that H(N) ⊂ H(N+1) ⊂ U ⊂ U0 and that there is an H(N+1)-set which
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cannot be written as a countable union of H(N)-sets. Lyons [6] showed that
R ( (

⋃
N∈NH

(N))⊥. Thus, the classes H(N) are “small” in U0 in the sense

given above. Lyons [6] asked whether (H(N+1))⊥ = (H(N))⊥. The aim of
this paper is to prove the next theorem which answers Lyons’ question in
the negative for every N ∈ N.

Theorem 1.1. Let N ∈ N. Then (H(N+1))⊥ 6= (H(N))⊥.

We will prove Theorem 1.1 using a description of H(N)-sets in Theo-
rem 2.5. This result can be used to reprove Šleich’s result that each H(N)-set
is σ-porous ([12]).

The case N = 1 of Theorem 1.1, which is much simpler, was presented
without proof in [11].

The question also arises whether (
⋃
N∈NH

(N))⊥ ) U⊥. Zelený and
Pelant [13] show that there is a non-σ-porous closed set of uniqueness. Thus
this set is a set of uniqueness which cannot be written as a countable union
of elements of

⋃
N∈NH

(N).

2. Proof of Theorem 1.1

Notation 2.1.

• We denote the Lebesgue measure on R by λ and the number of ele-
ments of a finite set A by ]A.
• The symbol 〈x〉 stands for the fractional part of x ∈ R, i.e., 〈x〉 =
x − [x], where [x] is the integer part of x. Further, for B ⊂ R we
denote 〈B〉 = {〈x〉; x ∈ B}.
• For N ∈ N and a∈(RN )N, we write a={aj}j∈N and aj = (a1j , . . . , a

N
j )

∈ RN .
• By an open interval J ⊂ RN we mean any product of nonempty open

intervals J i ⊂ R, i = 1, . . . , N .
• Let x ∈ R and r > 0. We denote the interval (x− r, x+ r) by B(x, r).

Definition 2.2. Let N ∈ N, L ∈ R, and P ⊂ R.

• A sequence of vectors a ∈ (RN )N is quasi-independent if for every
nonzero α ∈ ZN we have limj |(α, aj)| = ∞, where (u, v) denotes the
scalar product of vectors u, v ∈ RN . The set of all quasi-independent
sequences of vectors from PN is denoted by Q(PN ).
• A closed set A ⊂ [0, 1] is in H(N)(P ) if there exist a ∈ Q(PN ) and an

open interval J ⊂ [0, 1]N such that for every x ∈ A and every j ∈ N we
have 〈xaj〉 := (〈xa1j 〉, . . . , 〈xaNj 〉) /∈ J . We will write just H(N) instead

of H(N)(N), and H(N)∗ instead of H(N)(R \ {0}). Subsets of elements
of H(N) are called H(N)-sets.
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• A closed set A ⊂ [0, 1] is in H
(N)∗
L if there exist a ∈ Q(R \ {0}N ) and

an open interval J =
∏N
i=1 J

i ⊂ [0, 1]N witnessing A ∈ H(N)∗ and
satisfying ∣∣∣∣ai+1

j λ(J i)

aij

∣∣∣∣ ≥ L
for every i ∈ {1, . . . , N − 1} and j ∈ N.

The notion of H(N)∗ is well known but H
(N)∗
L is a new notion.

Remark 2.3. (i) Let N,M ∈ N, N ≤ M , and L,K ∈ R, L ≤ K. Then

clearly H
(N)∗
K ⊂ H

(M)∗
L , H(N)∗ = H

(N)∗
0 and H(N) ⊂ H(N)∗. Further, the

family H(N) is hereditary, i.e., if A ∈ H(N), A ⊃ B and B is closed then

B ∈ H(N). Similarly, the families H(N)∗ and H
(N)∗
L are also hereditary.

(ii) Bari [1] denotes H(N)∗ by H(N)(R). We use R \ {0} instead of R
to avoid dividing by zero. It is easy to see that H(N)(R) = H(N)(R \ {0}).
Thus, both of these definitions define the same object. Note that each set
from H(N)∗ is a finite union of elements of H(N) (see [1, pp. 919–921]).
Consequently, (H(N)∗)⊥ = (H(N))⊥.

(iii) Let N ∈ N. Then the collection H(N) consists of closed H(N)-sets.

The proof of the main result is based on the following two results which
will be proved in the next sections.

Lemma 2.4. Let N ∈ N. Then (H(N+1))⊥ ( (H
(N)∗
10 )⊥.

Theorem 2.5. Let N,L ∈ N. Then H
(N)∗
L = H(N)∗.

Granting these results the proof goes as follows.

Proof of Theorem 1.1. By Lemma 2.4, Theorem 2.5, and Remark 2.3(ii)
we get

(H(N+1))⊥ ( (H
(N)∗
10 )⊥ = (H(N)∗)⊥ = (H(N))⊥.

3. Proof of Lemma 2.4. Throughout this section N ∈ N will be fixed.

We will construct a measure µ ∈ (H
(N)∗
10 )⊥ \ (H(N+1))⊥.

3.1. Construction of the measure µ

Notation 3.1. We fix x ∈ (NN+1)N such that for every n ∈ N and j =

1, . . . , N both xj+1
n /(2xjn) and x1n+1/(2x

N+1
n ) are natural numbers greater

than n2.
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For n ∈ N and j = 1, . . . , N + 1 we set

Pn = {x ∈ [0, 1]; 〈x · xi〉 /∈ (1/2, 1)N+1, i = 1, . . . , n},(3.1)

Pn,j =

{[
i− 1

2xjn
,
i

2xjn

]
⊂ [0, 1]; i ∈ N,

(
i− 1

2xjn
,
i

2xjn

)
⊂ Pn

}
,

‖Pn,j‖ = 1/(2xjn).

Notation 3.2. Let A be a collection of subsets of R, and let S ⊂ R. We
denote

AS = {V ∈ A; V ⊂ S}.
Notation 3.3. Let V ⊂ [0, 1] and x ∈ R \ {0}. We set

T (x, V ) =

{
1

x
(V + n); n ∈ Z

}
.

The following remark explains the notions Pn and Pn,j . I hope this clar-
ifies these notions and the important Remark 3.5 below.

Remark 3.4. Fix some n ∈ N. If n = 1 then set I = [0, 1], otherwise fix
some I ∈ Pn−1,N+1. Let 0 < j ≤ N + 1. Define

Mj =

{[
i− 1

2xjn
,
i

2xjn

]
⊂ J ; i ∈ N

}
,

M̃j =

{[
i− 1

2xjn
,
i

2xjn

]
⊂ J ; i is an odd natural number

}
.

Clearly, MJ
j = T J(2xjn, [0, 1]) and M̃J

j = T J(xjn, [0, 1/2]) = {x ∈ [0, 1];

x · xjn /∈ (1/2, 1)}. It is easy to see that PIn,1 = M̃I
1. Let 0 < j ≤ N . Since

xj+1
n /(2xjn) is a natural number we have

PIn,j+1 = {V ∈MI
j+1; (∃J ∈ PIn,j : V ⊂ J) ∨ (V ∈ M̃I

j+1)}

= M̃I
j+1 ∪

⋃
J∈PIn,j

MJ
j+1.

Remark 3.5 and Lemma 3.6 below will explain some basic facts concern-
ing the collections PIn,j .

Remark 3.5. Let n ∈ N. Since xj+1
n /(2xjn) and x1n+1/(2x

N+1
n ) are nat-

ural numbers we can easily obtain the following three statements:

•
⋃
Pn,N+1 = Pn.

• Pn+1,j =
⋃
I∈Pn,N+1

PIn+1,j .

• If j ∈ {1, . . . , N + 1}, i ∈ N, I ∈ Pn,N+1 and
[
i−1

2xjn+1

, i+1

2xjn+1

]
⊂ I then[

i− 1

2xjn+1

,
i

2xjn+1

]
∈ Pn+1,j or

[
i

2xjn+1

,
i+ 1

2xjn+1

]
∈ Pn+1,j .
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Lemma 3.6.

(i) If V ∈ Pn,j, then ‖Pn,j‖ = λ(V ).
(ii) Let k ≥ n and i, j ≤ N + 1 be such that k > n or j ≥ i. Let

I, J ∈ Pn,i. Then ]PIk,j = ]PJk,j.
(iii) Let n > 1, I ∈ Pn−1,N+1 and 1 ≤ j ≤ i ≤ N + 1. Then

]PIn,i ≤ 2
∑

R∈PIn,j

]PRn,i.

(iv) Let n1, n2, n3 ∈ N, n1 < n2 ≤ n3, j1, j2, j3 ∈ {1, . . . , N + 1} and
I ∈ Pn1,j1 be such that n2 < n3 or j2 ≤ j3. Then

]PIn3,j3 ≤ 2
∑

R∈PIn2,j2

]PRn3,j3 .

(v) Let n ∈ N and 1 ≤ j ≤ N . Then ‖Pn,j‖ ≥ n2‖Pn,j+1‖.

Proof. (i) Let V ∈ Pn,j . Then there exists i ∈ N such that V =
[
i−1
2xjn

, i

2xjn

]
.

Thus, λ(V )=1/(2xjn) = ‖Pn,j‖.
(ii) Let x = min(I) and y = min(J). It is easy to verify that PJk,j =

PIk,j + y − x.

(iii) By Remark 3.5 we can easily obtain

]PIn,i ≤ 2xinλ(I) ≤ 2
∑

R∈PIn,j

]PRn,i.

(iv) Assume n2 < n3. Then

]PIn3,j3 =
∑

V ∈PIn2−1,N+1

∑
W∈PVn2,N+1

]PWn3,j3 ,

∑
R∈PIn2,j2

]PRn3,j3 =
∑

V ∈PIn2−1,N+1

∑
R∈PVn2,j2

∑
W∈PRn2,N+1

]PWn3,j3 .

Using (ii) and (iii) we obtain the desired inequality.

Assume n2 = n3 and j2 ≤ j3. Then

]PIn3,j3 =
∑

V ∈PIn2−1,N+1

]PVn3,j3 ,

∑
R∈PIn2,j2

]PRn3,j3 =
∑

V ∈PIn2−1,N+1

∑
R∈PVn2,j2

]PRn3,j3 .

Using (ii) and (iii) we obtain the desired inequality.

(v) Clearly, ‖Pn,j‖ = (xj+1
n /xjn)‖Pn,j+1‖ ≥ 2n2‖Pn,j+1‖.
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Lemma 3.7. Let W,S ⊂ [0, 1] be intervals, x ∈ R\{0} and λ(S) ≥ 4/|x|.
Then λ(

⋃
T (x,W )S) ≥ 1

2λ(S)λ(W ).

Proof. Clearly, ] T (x,W )S ≥ λ(S) · |x| − 2. Thus,

λ
(⋃
T (x,W )S

)
=
λ(W )

|x|
· ] T (x,W )S ≥ λ(S)λ(W )− 2λ(W )

|x|
.

Since λ(S) ≥ 4/|x| we have

λ(S)λ(W )− 2λ(W )

|x|
≥ 1

2
λ(S)λ(W ).

Lemma 3.8. Let n, s, j ∈ N, n > 1, s, j ≤ N + 1, I ∈ Pn−1,s and let
S ⊂ I be an interval with λ(S) ≥ 8‖Pn,j‖. Then λ(

⋃
PSn,j) ≥ 1

4λ(S).

Proof. It is easy to verify that I=
⋃
PIn−1,N+1 and PVn,j⊃T (xjn, [0, 1/2])V

for every V ∈ PIn−1,N+1. Consequently, PIn,j ⊃ T (xjn, [0, 1/2])I . Thus PSn,j ⊃
T (xjn, [0, 1/2])S . Hence

λ
(⋃
PSn,j

)
≥ λ

(⋃
T (xjn, [0, 1/2])S

)
.

We know that λ(S) ≥ 8‖Pn,j‖ = 4/xjn. Thus Lemma 3.7 yields

λ
(⋃
T (xjn, [0, 1/2])S

)
≥ 1

4
λ(S).

Construction 3.9. For I =
[

i−1
2xN+1
n

, i
2xN+1
n

]
, where n ∈ N and i ∈

{1, . . . , 2xN+1
n }, we define

µ(I) =

{
1/ ]Pn,N+1 whenever I ∈ Pn,N+1,

0 whenever I /∈ Pn,N+1.
(3.2)

Now we use the standard mass distribution principle (see e.g. [2, Propo-
sition 1.7]) to extend µ to the desired measure.

We also set

P =
{
x ∈ [0, 1]; ∀i ∈ N : 〈x · xi〉 /∈ (1/2, 1)N+1

}
.(3.3)

We can easily obtain the following properties of the measure µ.

Lemma 3.10. The measure µ is a continuous Radon probability measure
and the support of µ is a subset of P .

Proof. Let x ∈ [0, 1] and n ∈ N. Then there exists 1 ≤ i ≤ 2xN+1
n such

that x ∈
[

i−1
2xN+1
n

, i
2xN+1
n

]
. By (3.2) we have

µ({x}) ≤ µ
([

i− 1

2xN+1
n

,
i

2xN+1
n

])
≤ 1

]Pn,N+1
.

Since limn→∞ 1/ ]Pn,N+1 = 0 we have µ({x}) = 0.
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By (3.2) and Remark 3.5 the support of µ is a subset of
⋃
Pn,N+1 = Pn

for every n ∈ N. But by (3.1), P =
⋂
n∈N Pn.

3.2. Verification of µ /∈ (H(N+1))⊥

Lemma 3.11. The set P is a closed H(N+1)-set and µ(P ) = 1.

Proof. Let α = (α1, . . . , αN+1) ∈ ZN+1 \ {0}. We find the largest i ≤
N + 1 such that αi 6= 0. Since limn→∞ x

j
n/xin = 0 for every 1 ≤ j < i, we

have

lim
n→∞

|(xn, α)| = lim
n→∞

∣∣∣ i∑
j=1

xjnαj

∣∣∣ = lim
n→∞

xin

∣∣∣∣ i∑
j=1

xjnαj
xin

∣∣∣∣ = |αi| lim
n→∞

xin =∞.

Thus {xn}n∈N ∈ Q(NN+1) and therefore P ∈ H(N+1). By Lemma 3.10 we
have µ(P ) = 1.

3.3. Verification of µ ∈ (H
(N)∗
10 )⊥. Fix X ∈ H(N)∗

10 . We find an open

intervalW =
∏N
j=1Wj ⊂ [0, 1]N and z ∈ Q(R\{0}N ) witnessingX ∈ H(N)∗

10 .
Thus, we have

(3.4)

∣∣∣∣zj+1
i λ(Wj)

zji

∣∣∣∣ ≥ 10 for all i ∈ N, j ∈ {1, . . . , N − 1}.

Let 0 ≤ σ ≤ ρ ≤ N be integers. We set

Ak,σ,ρ = {x ∈ [0, 1]; ∃j ∈ N, σ < j ≤ ρ : 〈x · zjk〉 /∈Wj},

Ak = {x ∈ [0, 1]; ∀i ≤ k : 〈x · zi〉 /∈W} =
⋂
i≤k

Ai,0,N ,

A =
⋂
k∈N

Ak =
⋂
k∈N

Ak,0,N .

We have X ⊂ A. We want to show that µ(X) = 0, so it is sufficient to prove
µ(A) = 0.

Further in this section fix a constant l ∈ N such that

(3.5) l > 100 and l > 1/λ(Wj), j = 1, . . . , N.

Notation 3.12. Let n, k ∈ N, S, T ⊂ [0, 1] and D be a collection of
subsets of [0, 1]. We define

V(D, T ) = {V ∈ D; V ∩ T = ∅},

and if PSn,N+1 6= ∅, then we set

µSn,k = 1−
]V (Pn,N+1, Ak)

S

]PSn,N+1

and µn,k = µ
[0,1]
n,k .
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Lemma 3.13.

(i) µ(A) ≤ µn,k for all n, k ∈ N.
(ii) If n, s, k ∈ N and n ≥ s then µn,k ≤ sup{µVn,k; V ∈ Ps,N+1} · µs,k.

Proof. (i) We have

(3.6) A ∩ P ⊂ Ak ∩ P ⊂ Ak ∩ Pn ⊂
⋃

(Pn,N+1 \ V(Pn,N+1, Ak)).

Using Lemma 3.10, (3.6) and (3.2) we conclude that

µ(A) = µ(A ∩ P ) ≤ µ
(⋃

(Pn,N+1 \ V(Pn,N+1, Ak)
)

=
∑

J∈Pn,N+1\V(Pn,N+1,Ak)

µ(J) =
](Pn,N+1 \ V (Pn,N+1, Ak))

]Pn,N+1
= µn,k.

(ii) It is easy to verify that

µn,k = 1−
]V(Pn,N+1, Ak)

]Pn,N+1
= 1−

∑
V ∈Ps,N+1

]V(Pn,N+1, Ak)
V

]Ps,N+1 · ]PVn,N+1

=
1

]Ps,N+1

∑
V ∈Ps,N+1

1−
]V(Pn,N+1, Ak)

V

]PVn,N+1

=

∑
V ∈Ps,N+1

µVn,k

]Ps,N+1

=

∑
V ∈Ps,N+1\V(Ps,N+1,Ak)

µVn,k

]Ps,N+1
,

where the last equality follows from the fact that µVn,k = 0 for all V ∈
V (Ps,N+1, Ak). Thus, we have

µn,k ≤ sup{µVn,k; V ∈ Ps,N+1} ·
](Ps,N+1 \ V(Ps,N+1, Ak))

]Ps,N+1

= sup{µVn,k; V ∈ Ps,N+1} · µs,k.

We assume that k ∈ N is fixed in the following definition and in Lem-
mas 3.15–3.17.

Definition 3.14. Let S ⊂ [0, 1] be an interval and j ∈ {0, . . . , N − 1}.
We inductively define

Kj,j+1(S) = T (zj+1
k ,Wj+1)

S ,

Kj,t(S) =
⋃

L∈Kj,t−1(S)

T (ztk,Wt)
L, t = j + 2, . . . , N.

Lemma 3.15.

(i) For every Z ∈ Kj,t(S) we have λ(Z) = λ(Wt)/|ztk| ≥ 1/(l|ztk|).
(ii) Let K,L ⊂ [0, 1] and K ∩ L = ∅. Then Kj,t(K) ∩ Kj,t(L) = ∅.
(iii) Let K,L ∈ Kj,t(S). Then K = L or K ∩ L = ∅.
(iv)

⋃
Kj,t(S) ∩Ak,j,t = ∅.
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Proof. Statements (i)–(iii) are easy to verify.
(iv) It is straightforward to show that⋃

Kj,t(S) ⊂
t⋂

i=j+1

⋃
T (zik,Wi)

S ,

Ak,j,t =
t⋃

i=j+1

(
[0, 1] \

⋃
T (zik,Wi)

R
)
.

Since T (zik,Wi)
S ⊂ T (zik,Wi)

R for every 1 ≤ i ≤ N , the right-hand sides
above are disjoint.

Lemma 3.16. Let 0 ≤ j < t ≤ N and let S ⊂ [0, 1] be an interval with

λ(S) ≥ 4/|zj+1
k |. Then λ(

⋃
Kj,t(S)) ≥ λ(S)(2l)j−t.

Proof. We argue by induction. First, we assume that t = j + 1. Then
Kj,t(S) = T (ztk,Wt)

S and λ(S) ≥ 4/|ztk|. We have

λ
(⋃
Kj,t(S)

)
= λ

(⋃
T (ztk,Wt)

S
) L.3.7
≥ 1

2
λ(S)λ(Wt)

(3.5)

≥ λ(S)(2l)−1 = λ(S)(2l)j−t.

Now, we assume that t > j + 1 and that we have already proved

λ
(⋃
Kj,t−1(S)

)
≥ λ(S)(2l)j−t+1.(3.7)

Let L ∈ Kj,t−1(S) be arbitrary. Then λ(L) = λ(Wt−1)/|zt−1k |. By (3.4) we

have λ(Wt−1)/|zt−1k | ≥ 10/|ztk|. Thus

λ(L) ≥ 4/|ztk|.(3.8)

We obtain

λ
(⋃
Kj,t(S)

)
= λ

(⋃ ⋃
L∈Kj,t−1(S)

T (ztk,Wt)
L
)

L.3.15(ii),(iii)
=

∑
L∈Kj,t−1(S)

λ
(⋃
T (ztk,Wt)

L
)

L.3.7
≥

∑
L∈Kj,t−1(S)

1

2
λ(L)λ(Wt)

(3.5)

≥
∑

L∈Kj,t−1(S)

λ(L)(2l)−1

L.3.15(iii)
= (2l)−1λ

(⋃
Kj,t−1(S)

)
(3.7)

≥ λ(S)(2l)j−t,

where (3.8) was used to verify the condition of Lemma 3.7.
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Lemma 3.17. Let 0 ≤ σ < ρ ≤ N , 1 ≤ s ≤ N , 1 ≤ j ≤ N + 1, n, k be
natural numbers and I ∈ Pn,s. Suppose that

n ≥ l2,(3.9)

n‖Pn,s+1‖ ≥
1

|zik|
≥ (n+ 1)‖Pn+1,j‖, σ < i ≤ ρ.(3.10)

Then

]V(PIn+1,j , Ak,σ,ρ)

]PIn+1,j

≥ 1

4
(2l)σ−ρ.(3.11)

Proof. By Lemma 3.15(iii),(iv) we have

V(PIn+1,j , Ak,σ,ρ) ⊃ P
⋃
Kσ,ρ(I)

n+1,j ⊃
⋃

K∈Kσ,ρ(I)

PKn+1,j .(3.12)

By (3.12), Lemma 3.15(iii) and Lemma 3.6(i) we have

]V(PIn+1,j , Ak,σ,ρ)

]PIn+1,j

≥
∑

K∈Kσ,ρ(I)

]PKn+1,j

]PIn+1,j

=
∑

K∈Kσ,ρ(I)

λ(
⋃
PKn+1,j)

λ(
⋃
PIn+1,j)

≥
∑

K∈Kσ,ρ(I)

λ(
⋃
PKn+1,j)

λ(I)
.

Thus, it is enough to verify that∑
K∈Kσ,ρ(I)

λ
(⋃
PKn+1,j

)
≥ 1

4
λ(I)(2l)σ−ρ.(3.13)

By (3.9) and (3.5) we have n ≥ l2 and l > 4. By Lemma 3.6(v) and (3.10),

λ(I) = ‖Pn,s‖ ≥ n2‖Pn,s+1‖ ≥
n

zσ+1
k

≥ 4

zσ+1
k

.

Thus Lemma 3.16 yields

λ
(⋃
Kσ,ρ(I)

)
≥ λ(I)(2l)σ−ρ.(3.14)

Let K ∈ Kσ,ρ(I). From Lemma 3.15(i), (3.10) and n+ 1 > 8l we have

λ(K) ≥ 1

lzρk
≥ 8‖Pn+1,j‖.

Thus Lemma 3.8 implies

(3.15) λ
(⋃
PKn+1,j

)
≥ 1

4
λ(K).
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By (3.15), Lemma 3.15(iii) and (3.14) we have∑
K∈Kσ,ρ(I)

λ
(⋃
PKn+1,j

)
≥ 1

4

∑
K∈Kσ,ρ(I)

λ(K) =
1

4
λ
(⋃
Kσ,ρ(I)

)
≥ 1

4
λ(I)(2l)σ−ρ.

So, we have verified (3.13).

Lemma 3.18. Let n0 ≤ n1 < n2 ∈ N, 1 ≤ j1 < j2 < j3 ≤ N + 1 and
T1, T2 ⊂ [0, 1]. If there exist α1, α2 > 0 such that

]V(PI1n1+1,j2
, T1)

]PI1n1+1,j2

≥ α1,(3.16)

]V(PI2n2+1,j3
, T2)

]PI2n2+1,j3

≥ α2,(3.17)

for every I1 ∈ Pn0,j1 and I2 ∈ Pn2,j2, then

]V(PIn2+1,j3
, T1 ∪ T2)

]PIn2+1,j3

≥ 1

4
α1α2

for every I ∈ Pn0,j1.

Proof. Let I ∈ Pn0,j1 . Clearly,

]V(PIn2,j2 , T1) ≥
∑

V ∈V(PIn1+1,j2
,T1)

]PVn2,j2 .(3.18)

Hence

]V(PIn2,j2
, T1)

]PIn2,j2

(3.18),L.3.6(iv)

≥

∑
V ∈V(PIn1+1,j2

,T1)
]PVn2,j2

2
∑

W∈PIn1+1,j2

]PWn2,j2

(3.19)

L.3.6(ii)

≥
]V(PIn1+1,j2

, T1)

2 ]PIn1+1,j2

(3.16)

≥ 1

2
α1.

Clearly,

]V(PIn2+1,j3 , T1 ∪ T2) ≥
∑

V ∈V(PIn2,j2 ,T1)

]V(PVn2+1,j3 , T2).(3.20)

Therefore

]V(PIn2+1,j3
, T1 ∪ T2)

]PIn2+1,j3

(3.20),L.3.6(iv)

≥

∑
V ∈V(PIn2,j2 ,T1)

]V(PVn2+1,j3
, T2)

2
∑

W∈PIn2,j2
]PWn2+1,j3

(3.17)

≥ α2

]V(PIn2,j2
, T1)

2 ]PIn2,j2

(3.19)

≥ 1

4
α2α1.
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Lemma 3.19. There exists ε > 0 such that for every n, k ∈ N there exist
ñ ∈ N and k̃ ∈ N such that ñ > n, k̃ > k and

]V(PIñ,N+1, Ak̃,0,N )

]PIñ,N+1

≥ ε

for every I ∈ Pn,N+1.

Proof. Set ε = 2(32l)−N . Let n, k ∈ N. We set n0 = max
{
n+ 1, l2

}
.

We will construct k̃ > k, s ≤ N and sequences n0 < n1 < · · · < ns and
0 = v0 < v1 < · · · < vs = N such that

∀0 < i ≤ s ∀vi−1 < j ≤ vi : ni‖Pni,vi−1+2‖ ≥
1∣∣zj
k̃

∣∣ > (ni + 1)‖Pni+1,vi+1‖.

Since z ∈ Q(R\{0}N ) and (3.4) holds we have lim |z1i | =∞ and |zj+1
i | ≥

10|zji | for every i ∈ N, j < N . Thus, we can find k̃ > k such that 1/
∣∣z1
k̃

∣∣ ≤
‖Pn0+1,2‖(n0 + 1). We set v0 = 0. Assume that we have already constructed
n0, . . . , ni and v0, . . . , vi for some i ≥ 0. If vi = N we set s = i and we are
done. If vi < N we find ni+1 ∈ N such that

ni+1‖Pni+1,vi+2‖ ≥
1∣∣zvi+1

k̃

∣∣ > (ni+1 + 1)‖Pni+1+1,vi+2‖.

Further we find the largest vi+1 ∈ {vi + 1, . . . , N} such that

1∣∣zvi+1

k̃

∣∣ > (ni+1 + 1)‖Pni+1+1,vi+1+1‖

and we are done. We set ñ = ns + 1.

We use Lemma 3.17 replacing σ, ρ, s, j, n, k by vi−1, vi, vi−1 + 1, vi + 1,
ni, k̃ respectively to obtain

]V(PVni+1,vi+1, Ak̃,vi−1,vi
)

]PVni+1,vi+1

≥ 1

4
(2l)vi−1−vi(3.21)

for every V ∈ Pni,vi−1+1 and 1 ≤ i ≤ s.
We will prove by induction that

]V(PVnj+1,vj+1, Ak̃,v0,vj )

]PVnj+1,vj+1

≥ 4−j(2l)−vj · 4−j+1(3.22)

for every V ∈ Pn1,1 and 1 ≤ j ≤ s.
By (3.21) we have (3.22) for j = 1.

Suppose that 1 < j ≤ s and (3.22) holds for j − 1. Thus, by (3.21) and
Lemma 3.18 replacing n0, n1, n2, j1, j2, j3, T1, T2 by n1, nj−1, nj , 1, vj−1+1,
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vj + 1, Ak̃,v0,vj−1
, Ak̃,vj−1,vj

respectively we have

]V(PVnj+1,vj+1, Ak̃,v0,vj )

]PVnj+1,vj+1

=
]V(PVnj+1,vj+1, Ak̃,v0,vj−1

∪Ak̃,vj−1,vj
)

]PVnj+1,vj+1

≥ 1

4
(4−j+1(2l)−vj−1 · 4−j+2)

(
1

4
(2l)vj−1−vj

)
= 4−j(2l)−vj · 4−j+1.

Thus we obtain (3.22).

Since vs = N , s ≤ N and (3.22) holds, we have

]V(PVñ,N+1, Ak̃,0,N )

]PVñ,N+1

≥ 4−s(2l)−N · 4−s+1 ≥ 2ε(3.23)

for every V ∈ Pn1,1. Fix I ∈ Pn,N+1. Clearly,

]V(PIñ,N+1, Ak̃,0,N ) ≥
∑

V ∈PIn1,1

]V(PVñ,N+1, Ak̃,0,N ).(3.24)

By (3.24), (3.23) and Lemma 3.6(iv),(ii) we have

]V(PIñ,N+1, Ak̃,0,N )

]PIñ,N+1

≥

∑
V ∈PIn1,1

]V(PVñ,N+1, Ak̃,0,N )

2
∑

W∈PIn1,1
]PWñ,N+1

≥ ε.

Proof of Lemma 2.4. We need to show that µ(A) = 0. Set ε = 2(32l)−N .
Let n, k ∈ N. By Lemma 3.19 there exist ñ, k̃ ∈ N such that

]V(PIñ,N+1, Ak̃,0,N )

]PIñ,N+1

≥ ε

for every I ∈ Pn,N+1. Since Ak̃ ⊂ Ak̃,0,N we have

µI
ñ,k̃

=
]PIñ,N+1 − ]V(PIñ,N+1, Ak̃)

]PIñ,N+1

≤
]PIñ,N+1 − ]V(PIñ,N+1, Ak̃,0,N )

]PIñ,N+1

≤ 1− ε

for every I ∈ Pn,N+1. Thus by Lemma 3.13(ii) we have µñ,k̃ ≤ (1 − ε)µn,k.
Hence inf{µn,k; n, k ∈ N} = 0, and Lemma 3.13(i) yields

0 ≤ µ(A) ≤ inf{µn,k; n, k ∈ N} = 0.
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4. Proof of Theorem 2.5

Notation 4.1. Let N,n ∈ N, a ∈ Q(R \ {0}N ), y ∈ R, and let J ⊂ R
and J =

∏N
j=1 J

j ⊂ [0, 1]N be open intervals. We set

T (y, J) = {x ∈ [0, 1]; 〈xy〉 ∈ 〈J〉},

Hn(a,J ) = [0, 1] \
N⋂
p=1

T (apn, J
p), H(a,J ) =

⋂
n∈N

Hn(a,J ).

Notation 4.2. Let m ∈ N, I ⊂ [0, 1]m be an interval and let z ∈
Q(R \ {0}m). Then we define

H(z, I) = {x ∈ [0, 1]; ∀k ∈ N : 〈x · zk〉 /∈ I}.

Remark 4.3. Let m ∈ N.

(i) If A ∈ H(m)∗ then there exist z ∈ Q(R \ {0}m) and an open interval
W ⊂ [0, 1]m such that A ⊂ H(z,W ).

(ii) If I ⊂ J ⊂ [0, 1]m are open intervals and r ∈ Q(R \ {0}m), then
H(r, J) ⊂ H(r, I).

Lemma 4.4. Let N ∈ N, a = {aj} ∈ Q(R \ {0}N ), {jk} be an increasing
sequence of integers and J ⊂ U ⊂ [0, 1]N be open intervals. Then:

(i) {ajk} ∈ Q(R \ {0}N ).
(ii) H(a,U) ⊂ H({ajk},U).
(iii) H(a,U) =

⋂
n∈NHn(a,U).

(iv) Let L ∈ RN×N be a nonsingular matrix. Then there exists a finite
set M ⊂ N such that for every increasing sequence {vk} of elements
from N \M we have {L(avk)} ∈ Q(R \ {0}N ).

(v) Let y ∈ R \ {0} and J ⊂ [0, 1] be an open interval. Then T (y, J) =⋃
n∈Z

1
y (J + n) ∩ [0, 1] =

⋃
T (y, J) ∩ [0, 1].

(vi) Let m ∈ Z \ {0}, y ∈ R \ {0} and u, r ∈ R. Then T (y,B(u, r)) ⊃
T (y/m,B(u/m, r/|m|)), where B(x, s) = (x− s, x+ s) for s > 0.

(vii) Let y ∈ R \ {0}, and let J ⊂ R and V ⊂ 〈J〉 be open intervals.
Then T (y, J) ⊃ T (y, V ).

Proof. (i)–(iii), (v) and (vii) are trivial.

(iv) We set M = {i ∈ N; ∃s ≤ N : (L(ai))
s = 0}. Let {vk} be an

increasing sequence of elements from N\M . Then {L(avk)} ∈ ((R\{0})N )N.
Let α ∈ ZN \{0}. Then LT (α) is a nonzero vector, where LT is the transpose
of the matrix L. Thus we have

lim
n→∞

|(L(avk), α)| = lim
n→∞

|(avk , L
T (α))| =∞.

Thus, L(avk) ∈ Q(R \ {0}N ).
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(vi) Clearly, T (y,B(u, r)) ⊃ T (y/m,B(u/m, r/|m|)). Thus (vi) follows
from (v).

We will use the following well known approximation theorem.

Lemma 4.5 ([10, Dirichlet’s Theorem on Simultaneous Approximations]).
Let α1, . . . , αn be real numbers and Q > 1 be an integer. Then there exist
integers q, p1, . . . , pn with 1 ≤ q < Qn and |αiq−pi| ≤ 1/Q for all 1 ≤ i ≤ n.

Lemma 4.6. Let N ∈ N, a ∈ Q(R \ {0}N ) and let Un = U1 × · · · ×
UN−1×UNn ⊂ [0, 1]N for n ∈ N be open intervals. If there exists α > 0 such
that λ(UNn ) ≥ α for all n ∈ N then there exist an increasing sequence {jn} of
positive integers and an open interval J = U1 × · · · × UN−1 × JN ⊂ [0, 1]N

such that for every n ∈ N we have

(i) 4λ(JN ) ≥ λ(UNjn),
(ii) Hn({ajn},Ujn) ⊂ Hn({ajn},J ).

Proof. Since inf{λ(UNn ); n ∈ N} ≥ α > 0 there exists an increasing
sequence {vn} of positive integers such that

4 inf{λ(UNvn); n ∈ N} > 3 sup{λ(UNvn); n ∈ N}.

We find l ∈ N such that

2/l ≤ inf{λ(UNvn); n ∈ N} < 3/l.

For all j ∈ N we find bj ∈ N0 and an open interval JNj = (bj/l, (bj + 1)/l)

such that JNj ⊂ UNvj . Since the set {JNj ; j ∈ N} is finite there exists an

increasing sequence {pn} of positive integers and an open interval JN such
that JNpn = JN for all n ∈ N. We set J = U1×· · ·×UN−1×JN and jn = vpn .
Thus,

Hn({ajn},Ujn) ⊂ Hn({ajn},J )

for every n ∈ N. Clearly,

4λ(JN ) =
4

l
≥ 4

3
inf{λ(UNvn); n ∈ N} > sup{λ(UNvn); n ∈ N} ≥ λ(UNjm)

for all m ∈ N.

The following lemma was inspired by Zaj́ıček [12].

Lemma 4.7. Let y, z ∈ R\{0}, y 6= z, let U = B(u, r1) and V = B(v, r2)
be subsets of [0, 1], and δ ≤ min{λ(V )/|y|, λ(U)/|z|}. If 4|y| > 3|z| then

T (y, V ) ∩ T (z, U) ⊃ T (z,B(u, |z|δ/4)) ∩ T (y − z,B(v − u, r2/4)).

Proof. Since |z|δ/4 ≤ r1 we have B(u, |z|δ/4) ⊂ U . Thus

T (z, U) ⊃ T (z,B(u, |z|δ/4)).
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Let x ∈ T (z,B(u, |z|δ/4)) ∩ T (y − z,B(v − u, r2/4)). Then there exist ξ ∈
B (0, r2/4), µ ∈ B (0, |z|δ/4) and m,n ∈ Z such that

x = (ξ + v − u+ n)
1

y − z
, x = (µ+ u+m)

1

z
.

Thus, x = (ξ+µ+v+m+n) 1y . Since |ξ+µ| ≤ r2/4+|z|δ/4 < r2/4+|y|δ/3 <
r2/4 + 2r2/3 < r2, we have ξ + µ+ v ∈ V . Thus, x ∈ T (y, V ).

Lemma 4.8. Let N ∈ N, a ∈ Q(R \ {0}N ), let U =
∏N
i=1 U

i ⊂ [0, 1]N be
an open interval, L ∈ N and δj = min{λ(U i)/|aij |; i = 1, . . . , N} for every

j ∈ N. Then there exist a nonsingular matrix L ∈ QN×N , an increasing
sequence {vn} of positive integers and an open interval J =

∏N
i=1 J

i ⊂
[0, 1]N such that

(a) x := {L(avn)} ∈ Q(R \ {0}N ),
(b) ∀n ∈ N : Hn({avn},U) ⊂ Hn(x,J ),
(c) ∀n ∈ N ∀i < N : |xNn λ(J i)/xin| ≥ L,
(d) λ(JN )/|xNn | ≥ δvn/16.

Proof. Passing to a subsequence and permuting indices if necessary, we
can assume that |ain| < |ai+1

n | for all n ∈ N and i < N . We find Q ∈ N such
that 1/Q < min{λ(U i); i = 1, . . . , N}/(8L). By Lemma 4.5 for every j ∈ N
there exist qj , p

1
j , . . . , p

N−1
j ∈ Z such that

1 ≤ qj ≤ QN−1,∣∣∣∣qj aijaNj − pij
∣∣∣∣ ≤ 1

Q
, i = 1, . . . , N − 1.(4.1)

Since |aij |/|aNj | < 1, we have |pij | ≤ QN−1 for every j ∈ N and i = 1, . . . ,
N−1. Passing to a subsequence if necessary, we can assume that there exist
q, p1, . . . , pN−1 such that q = qj , p

i = pij for every j ∈ N. Clearly, there

exists 0 ≤ s < N such that pi = 0 if and only if i ≤ s. Denote by ui the
center of the interval U i and set

yij =


aij for i ≤ s,
aij/p

i − aNj /q for s < i < N,

aNj /q for i = N,

j ∈ N.

Further we define

• J i = U i for i ≤ s,
• J̃ i = B(ui/pi − uN/q, λ(U i)/(8|pi|)) for s < i < N ,

• J̃Nj = B(uN/q, δj |yNj |/4) for j ∈ N,

• JNj = J̃Nj ∩ (0, 1).

Since uN/q ∈ (0, 1) we have λ(JNj ) ≥ 1
2λ(J̃Nj ). Passing to a subsequence if
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necessary and using Lemma 4.4(iv) we see that y :=
{

(y1j , . . . , y
N
j )
}
j

is in

Q(R \ {0}N ). For every s < i < N we find an open interval J i ⊂ [0, 1] such

that λ(J i) ≥ λ(J̃ i)/2 and J i ⊂ 〈J̃ i〉. By Lemma 4.4(vi) we have

T (aij , U
i) ⊃ T

(
aij
pi
, B

(
ui

pi
,
λ(U i)

2|pi|

))
,

T (aNj , U
N ) ⊃ T

(
yNj , B

(
uN

q
,
λ(UN )

2q

))
.(4.2)

Since ∣∣∣∣q aijaNj − pi
∣∣∣∣ ≤ 1

Q
<

min{λ(U i); i = 1, . . . , N}
8L

≤ 1

8
,

we have 4|aij/pi| > 3|yNj |. Since aij/p
i − yNj = yij and y ∈ Q(R \ {0}N ), it

follows that aij/p
i 6= yNj . We use Lemma 4.7 replacing y, v, r2, δ, z, u, r1 by

aij/p
i, ui/pi, λ(U i)/(2|pi|), δj , yNj , uN/q, λ(UN )/(2q) respectively to obtain

(4.3) T

(
aij
pi
, B

(
ui

pi
,
λ(U i)

2|pi|

))
∩ T

(
yNj , B

(
uN

q
,
λ(UN )

2q

))
⊃ T (yNj , J̃

N
j ) ∩ T (yij , J̃

i).

Recall that y − z is replaced by aij/p
i − yNj = yij .

By Lemma 4.4(vii) and our choice of the sets J i, JNj we have

T (yNj , J̃
N
j ) ∩ T (yij , J̃

i) ⊃ T (yNj , J
N
j ) ∩ T (yij , J

i).(4.4)

By (4.2)–(4.4) we have

Hn(a,U) ⊂ Hn(y, J1 × · · · × JN−1 × JNn ).(4.5)

Observe that

λ(JNj ) ≥ 1

2
λ(J̃Nj ) =

1

4
δj |yNj | =

1

4
δj
|aNj |
q
≥ 1

4

min{λ(U i); i = 1, . . . , N}
|aNj |

|aNj |
q

=
1

4

min{λ(U i); i = 1, . . . , N}
q

.

Thus we can use Lemma 4.6 to get an open interval JN and an increasing
sequence vn of positive integers such that for every n ∈ N,

(4.6) Hn({yvn}, J1 × · · · × JN−1 × JNn ) ⊂ Hn({yvn}, J1 × · · · × JN ),

and

4λ(JN ) ≥ λ(JNvn).
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We set xin := yivn and J = J1×· · ·×JN . By the definition of y we easily
see that L is a triangular matrix without any zero element on the diagonal.
Thus we have (a). By (4.5) and (4.6) we get (b). Assume i ≤ s. Since∣∣∣∣ xijxNj

∣∣∣∣ =

∣∣∣∣qaivjaNvj − pi
∣∣∣∣ ≤ 1

Q
<

min{λ(U i); i = 1, . . . , N}
8L

,

we have ∣∣∣∣xNj λ(J i)

xij

∣∣∣∣ =

∣∣∣∣xNj λ(U i)

xij

∣∣∣∣ ≥ ∣∣∣∣xNj · 8LxijQ

∣∣∣∣ ≥ 8L.

Let s < i < N . Since∣∣∣∣xijpixNj

∣∣∣∣ =

∣∣∣∣qaivjaNvj − pi
∣∣∣∣ ≤ 1

Q
<

min{λ(U i); i = 1, . . . , N}
8L

,

we deduce ∣∣∣∣xNj λ(J i)

xij

∣∣∣∣ ≥ ∣∣∣∣xNj λ(J̃ i)

2xij

∣∣∣∣ =

∣∣∣∣xNj λ(U i)

8xijp
i

∣∣∣∣ ≥ ∣∣∣∣ xNj LxijQp
i

∣∣∣∣ ≥ L.
Thus we have (c). Clearly,

16λ(JN ) ≥ 4λ(JNvn) ≥ 2λ(J̃Nvn) = δvn |xNn |

for all n ∈ N. Thus we have (d).

Lemma 4.9. Let N ∈ N, a ∈ Q(R \ {0}N ), let U =
∏N
i=1 U

i ⊂ [0, 1]N be
an open interval, L ∈ N and δj = min{λ(U i)/|aij |; i = 1, . . . , N} for every

j ∈ N. Then there exist x ∈ (RN )N, a nonsingular matrix M ∈ QN×N ,
an increasing sequence {vn} of positive integers and an open interval J =∏N
i=1 J

i ⊂ [0, 1]N such that

(a) x := {M(avn)} ∈ Q(R \ {0}N ),
(b) ∀n ∈ N : Hn({avn},U) ⊂ Hn(x,J ),
(c) ∀n ∈ N ∀i < N : |xi+1

n λ(J i)/xin| ≥ L,
(d) λ(JN )/|xNn | ≥ δvn/16.

Proof. We use induction on N . The case N = 1 is trivial. Assume that
our statement holds for some N − 1 ∈ N; we show that it also holds for N .
By Lemma 4.8 there exist a nonsingular matrix L ∈ QN×N , an increasing
sequence {pn} of positive integers and an open interval V =

∏N
i=1 V

i ⊂
[0, 1]N such that

(i) y := {L(apn)} ∈ Q(R \ {0}N ),
(ii) ∀n ∈ N : Hn({apn},U) ⊂ Hn(y,V),

(iii) ∀n ∈ N ∀i < N : |yNn λ(V i)/yin| ≥ 16L,
(iv) λ(V N )/|yNn | ≥ δpn/16.
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Clearly, {y1, . . . , yN−1} ∈ Q(R \ {0}N−1). By induction hypothesis there
exist {xn} ∈ (QN−1)N, a nonsingular matrix Z ∈ Q(N−1)×(N−1), an in-
creasing sequence {jn} of positive integers and open intervals J i ⊂ [0, 1],
0 < i < N , such that

(1) {x1n, . . . , xN−1n } := {Z(y1jn , . . . , y
N−1
jn

)} ∈ Q(R \ {0}N−1),
(2) ∀n ∈ N:

Hn

(
{y1jn , . . . , y

N−1
jn
},
N−1∏
i=1

V i
)
⊂ Hn

(
{x1n, . . . , xN−1n },

N−1∏
i=1

J i
)
,

(3) ∀n ∈ N ∀i < N − 1 : |xi+1
n λ(J i)/xin| ≥ L,

(4) λ(JN−1)/|xN−1n | ≥ 1
16 min{λ(V i)/|yijn |; i = 1, . . . , N − 1}.

We set vn = pjn , xNn = yNjn and JN = V N . We define Z̃ ∈ QN×N by

Z̃i,j =


Zi,j for 0 < i, j < N,

1 for i = j = N + 1,

0 otherwise.

Clearly, Z̃ is nonsingular. We set M = Z̃ · L. Thus M is also nonsingular.
Using (i) and (1) we easily obtain (a). By (2) we have

∀n ∈ N : Hn

(
{y1jn , . . . , y

N
jn},V

)
⊂ Hn(x,J ).(4.7)

Using (4.7) and (ii) we get (b). Using (3) we obtain (c) for i < N − 1.
From (iii) we have min{λ(V i)/|yijn |; i = 1, . . . , N − 1} = λ(V N−1)/|yN−1jn

|.
Using this, (4) and (iii) again we get the case i = N − 1. Formula (iv) easily
gives (d).

Proof of Theorem 2.5. The inclusion H(N)∗ ⊃ H(N)∗
L is trivial.

Let A ∈ H(N)∗. Then there exists a ∈ Q(R \ {0}N ) and an open interval
U ⊂ [0, 1]N such that A ⊂ H(a,U). By Lemma 4.9 there exists x ∈ (QN )N

and an open interval J ⊂ [0, 1]N such that H(a,U) ⊂ H(x,J ) ∈ H(N)∗
L .

So, A ∈ H(N)∗
L .
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