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The sizes of the classes of H®)-sets
by

Vaclav Vlasak (Praha)

Abstract. The class of H™Y)-sets forms an important subclass of the class of sets of
uniqueness for trigonometric series. We investigate the size of this class which is reflected
by the family of measures (called polar) annihilating all sets from the class. The main aim
of this paper is to answer in the negative a question stated by Lyons, whether the polars
of the classes of H™)-sets are the same for all N € N. To prove our result we also present
a new description of HW)_gets.

1. Introduction. Let M be a collection of closed subsets of [0, 1], and
M([0,1]) be the set of all Radon measures on the interval [0, 1]. Then the
polar M+ c M([0,1]) is defined by

M+ = {v e M([0,1]); VB € M : v(B) = 0}.

We say that p € M([0,1]) is Rajchman if lim},|_, fi(n) = 0. The family
of all Rajchman measures is denoted by R. Let us recall that closed sets of
extended uniqueness (Uy sets) are those closed sets which are annihilated by
every Rajchman measure. Thus by definition we have R C UOL.

Rajchman [J] investigated classes A with the property A~ = R. He
introduced an important subclass of U sets, called H-sets (or H(V-sets) (see
the next section or [4] for the definitions of U and H) and investigated
whether H+ = R. Lyons [5] showed that R = Ui. On the other hand
Kaufman [3] proved that U+ # Ug- = R. Thus Uy can be considered much
larger than U in the sense of polars. More generally, one can consider two
families of closed sets A C B and may ask whether B+ C AL, If this is the
case then B can be considered much larger than A.

Rajchman conjectured that every set of uniqueness was a countable union
of H-sets. This was disproved by Pyatetskii-Shapiro [7] (see also [§]), who
also introduced the classes of H(™)-sets for N € N. Further he showed
that HN) ¢ HNV+) « U ¢ Uy and that there is an HV+Y_get which
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cannot be written as a countable union of H™)-sets. Lyons [6] showed that
R S (Unen HWM)YL Thus, the classes HN) are “small” in Up in the sense
given above. Lyons [6] asked whether (HV+D)+ = (H(™)L The aim of
this paper is to prove the next theorem which answers Lyons’ question in
the negative for every N € N.

THEOREM 1.1. Let N € N. Then (HWHV)L o£ (H(V)L,

We will prove Theorem using a description of H)-sets in Theo-
rem This result can be used to reprove Sleich’s result that each H™)-set
is o-porous ([12]).

The case N = 1 of Theorem 1.1}, which is much simpler, was presented
without proof in [I1].

The question also arises whether (Jyey H™Y)t 2 Ut Zeleny and
Pelant [13] show that there is a non-o-porous closed set of uniqueness. Thus
this set is a set of uniqueness which cannot be written as a countable union
of elements of |J oy H™).

2. Proof of Theorem [1.1]
NOTATION 2.1.

e We denote the Lebesgue measure on R by A and the number of ele-
ments of a finite set A by f A.

e The symbol (x) stands for the fractional part of x € R, i.e., (x) =
x — [z], where [z] is the integer part of x. Further, for B C R we
denote (B) = {(z); = € B}.

e For N € Nand a€ (RV)N, we write a={a;}ey and a; = (ajl-, . .,aév)
e RN,

e By an open interval J C RY we mean any product of nonempty open
intervals J' CR,i=1,...,N.

e Let z € R and r > 0. We denote the interval (z —r,x +r) by B(z, 7).

DEFINITION 2.2. Let N e N, L € R, and P C R.

e A sequence of vectors a € (RV)N is quasi-independent if for every
nonzero a € Z" we have lim; |(a, aj)| = oo, where (u,v) denotes the
scalar product of vectors u,v € RV. The set of all quasi-independent
sequences of vectors from PV is denoted by Q(PY).

e A closed set A C [0,1] is in H®V)(P) if there exist @ € Q(PY) and an
open interval J C [0, 1] such that for every € A and every j € N we
have (za;) := ((gca;>7 ce <xa§v>) ¢ J. We will write just H™) instead
of HN)(N), and H™* instead of HN)(R\ {0}). Subsets of elements
of HN) are called HWN)-sets.
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e A closed set A C [0,1] is in HéN)* if there exist a € Q(R \ {0}V) and
an open interval J = Hi\il Jt 0,1V witnessing A € H™* and
satisfying

a;+1)\(J1)

a;

for every i € {1,...,N —1} and j € N.

The notion of H™)* is well known but HEJN)* is a new notion.

REMARK 2.3. (i) Let N M € N, N < M, and L,K € R, L < K. Then
cearly H\MV* ¢ HM* g+ — gM* and H®) ¢ H™*. Further, the
family HN) is hereditary, i.e., if A € HN), A 5 B and B is closed then
B € H\N), Similarly, the families H™)* and HéN)* are also hereditary.

(ii) Bari [1] denotes H™M)* by HV)(R). We use R \ {0} instead of R
to avoid dividing by zero. It is easy to see that HV)(R) = HN)(R\ {0}).
Thus, both of these definitions define the same object. Note that each set
from HM)* is a finite union of elements of H®) (see [I, pp. 919-921]).
Consequently, (HN)*)L = (HM)L,

(iif) Let N € N. Then the collection H™) consists of closed H®)-sets.

The proof of the main result is based on the following two results which
will be proved in the next sections.

LEMMA 2.4. Let N € N. Then (HN+tD)L C (H%V)*)L'

THEOREM 2.5. Let N,L € N. Then HéN)* = HWV)*,

Granting these results the proof goes as follows.

Proof of Theorem By Lemma Theorem and Remark (ii)

we get
(O C (i) = (HO)E = () .

3. Proof of Lemma Throughout this section N € N will be fixed.
We will construct a measure p € (Hl(év)*)i \ (H(N+1))L‘

3.1. Construction of the measure u

Noration 3.1. We fix x € (NN+H)N guch that for every n € N and j =
1,...,N both x,/(22}) and z..,/(2z)*!) are natural numbers greater
than n2.
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ForneNand j=1,...,N + 1 we set
(31)  Po={xe(0,1); (x-z) ¢ (1/2, )N i=1,... ,n},

1—1 1 1—1 1
Prni=13|——,—| C0,1];i €N, C P, ¢,
K {[296% 293%] 0,1]; (2 J 2xn> }

1Pl = 1/(2a7).

NOTATION 3.2. Let A be a collection of subsets of R, and let S C R. We
denote

S={VeAVcsS}
NoTATION 3.3. Let V C [0,1] and z € R\ {0}. We set
1
T(z, V)= {x(V +n);ne Z} .
The following remark explains the notions P, and P, ;. I hope this clar-

ifies these notions and the important Remark [3.5] below.

REMARK 3.4. Fix some n € N. If n =1 then set I = [0, 1], otherwise fix
some I € P,,_1 n41. Let 0 < j < N + 1. Define

1—1 1
M, =< |——,—| CJ;ieNy,
! {[236% 29:%} }

- 1
M; = { [Z, Z} C J; i is an odd natural number}.

2z, 2%,
Clearly, M7 = T7(227,[0,1]) and M/ = T”(«},[0,1/2]) = {z € [0,1];
z-xl ¢ (1/2,1)}. Tt is easy to see that 77]1 = MI Let 0 < 5 < N. Since
It /(24) is a natural number we have
Plin={VeM ;@BJeP., . vcivieMl)}
—MI+1U U M3+1
JePl
Remark [3.5] and Lemma [3.6] below will explain some basic facts concern-

ing the collections 735 .

REMARK 3.5. Let n € N. Since 2, /(247,) and zl 1/ (228 1) are nat-
ural numbers we can easily obtain the following three statements:

[ ] UPn N+1 = P ;
® Fntl,j = UIePn NHP n+1,5°
e lfje{l,....N+1},i €N, I € Py and [[5, 2] C I then

Y
n+1 21n+1

1—1 1 1 1+1
[ o :| S 'Pn+17j or |: :| S 'Pn+1’j.
241 2Tp4q 295n+1 23’3n+1
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LEMMA 3.6.

(i) If V € Py, then [|Pnjll = A(V).
(ii) Let k > n and i,7 < N + 1 be such that k > n or j > i. Let
I,J € Prni. Then $ Pl =1P/,.
(ili) Letn>1, I € Pp_iny1 and 1 < j<i< N +1. Then

1Pl <2 > 4Pk
RePl

(iv) Let ni,n2,ng € N, n; < ng < ns, j1,J2,73 € {1,...,N + 1} and
I € Py, j, be such that no < n3 or jo < j3. Then

TL3 Js = <2 : : ﬁ n37]3

I
REPn2 Jo

(v) Letn €N and 1 < j < N. Then ||Py ;| > n?||Pnj+1l-

Proof. (i) Let V' € Py, ;. Then there exists ¢ € N such that V= [12;—]1, ﬁ]
Thus, A(V)=1/(223) = ||Puj|-

(ii) Let x = min(/) and y = min(J). It is easy to verify that 73,;;]7]- =
Pl ;ty—=

(iii) By Remark [3.5] we can easily obtain

1P <2aiNI) <2 > 4PE,
RePl

(iv) Assume ny < n3. Then

tt N3J3_ Z Z ﬁ n3]3’

I Vv
VGP’FLQ*l N+1 Wean N+1

Z tP naJBZ Z Z Z £P nsjs

I
ReP}, VEPL | ni1 REPY . WePE .,

Using (ii) and (iii) we obtain the desired inequality.
Assume ny = n3 and jo < j3. Then

I
ﬁpn3,j3 = Z tt TL3 NEX

I
VGPnQ—I,N+1

Z tP "3:J3: Z Z P ns,Js

T
REPry 5 VEP,, 1 ni1 REPY, 5,

Using (ii) and (iii) we obtain the desired inequality.
(v) Clearly, [Poll = (@ /o) [Pl = 202 Pr ] m
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LEMMA 3.7. LetWSC [
Then AU T (z, W)%) >

3A(S
Proof. Clearly, jjT(m W)

0,1] be intervals, x € R\ {0} and A\(S) > 4/|z|.
JAW).

§>A(9) - || — 2. Thus,

2M(W)

]

MUTw)s) = AWV T WS > AS)AW) —

]
Since A(S) > 4/|z| we have
A(W) _ 1
> =A(S)A .
U= D).
LEMMA 3.8. Let n,s,7 € N,n>1,5,j < N+1,1¢€ P,_1,s and let
S C I be an interval with A\(S) > 8||73nj||. Then )\(UPS ) = 1A(S).

AS)AW) —

Proof. It is easy to verify that I={JP,,_; y,; and PV ST (xh,[0,1/2)V
for every V € PL _1.n+1- Consequently, P, ; D T (@, [0,1 / 2))!. Thus 77;3 j
T (27,]0,1/2])°. Hence

)\(U Pf,j) > A(U T (3, [0, 1/2])5).

We know that A(S) > 8|7, || = 4/%. Thus Lemma yields
1
MNUT @ 0,1/2)%) = NS

CONSTRUCTION 3.9. For I = [Q’NL,Q N+1] where n € N and i €
{1,...,22N*+1}, we define

1/8Pp N1 whenever I € Py,
p(l) =

3.2
(3:2) 0 whenever I ¢ Py, n1.

Now we use the standard mass distribution principle (see e.g. [2, Propo-
sition 1.7]) to extend p to the desired measure.
We also set

(3.3) P={re0,1;VieN: (v-z;) ¢ (1/2,1)V T},
We can easily obtain the following properties of the measure p.

LEMMA 3.10. The measure u is a continuous Radon probability measure
and the support of 1 is a subset of P.

Proof. Let x € [0,1] and n € N. Then there exists 1 < i < 2zY*! such

thatxe[ N+1,2 N+1} Bywe have

(o)) < ([“1 i ])< !
T —_— | | < =
a =H zx,ﬁV“ anNH 8 Pn N+1

Since limy, ;00 1/ 4 Pn,n+1 = 0 we have p({z}) = 0.
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By (3.2) and Remark the support of p is a subset of |J Py nvt1 = Pn
for every n € N. But by (3.1), P = (,cry Prn- =

3.2. Verification of u ¢ (H(NH))L
LEMMA 3.11. The set P is a closed HN*V-set and p(P) = 1.

Proof. Let a = (aq,...,an4+1) € ZNf"l \ {0}. We find the largest i <
N + 1 such that a; # 0. Since lim, o 75, /2%, = 0 for every 1 < j < i, we
have

o
- Thoy
. E | = || lim 2! = oco.
- xt n—+00

lim |(xn,a)] = lim ‘ E zda;| = lim 2}
J:

Thus {Zn}nen € Q(NN+1) and therefore P € HN*+D | By Lemma we
have u(P)=1. =

3.3. Verification of y € (Hfév) )t Fix X € H( J* We find an open
interval W = szl W; C [0,1]Y and z € Q(R\{0}?) witnessing X € Hfév)*.
Thus, we have
2 PAW;)

3
J
2

Let 0 <o < p < N be integers. We set
Apop={r€0,1;FjeN o<j<p: <xzi) ¢ W;},
Ak = {.1: c [0, 1]; Vi S k- <$Zz> Qf W} = ﬂAi,O,N7

i<k
A= ﬂ Ay = ﬂ Ako,N-
keN kEN

We have X C A. We want to show that u(X) = 0, so it is sufficient to prove
n(A) = 0.
Further in this section fix a constant [ € N such that

(3.5) 1>100 and [>1/\W;), j=1,...,N.

NoTATION 3.12. Let n,k € N, S;T C [0,1] and D be a collection of
subsets of [0, 1]. We define

VD, T)={V eD; VAT =0},
and if P;ﬁNH # (0, then we set

BV ( nN+1aAk)
t Py Nt1

(3.4)

>10 forallieN,je{l,...,N—1}.

[1}

H—1- and e = 4l
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LEMMA 3.13.
(i) u(A) < pp g for all n,k € N.
(ii) If n,s,k € N and n > s then p, 1, < sup{uxk; VePsNt1} sk
Proof. (i) We have
(3.6) ANP CANP C AN Py C | JPrvir \ V(Prvi, Ar)).
Using Lemma and we conclude that
p(A) = (AN P) < p({JPavia \ V(Pavin, A1)

n n,N+1; A
_ Z ,U(J> _ ﬁ(P ,N+1 ﬁ\,;} (P N+1 k)) = fn k-
JEP -1 \V(Po v 41.4%) i
(ii) It is easy to verify that
A AV
P eV (P41, Ar) _ T §V(Pon+1, Vk)
ﬁpn,NJrl VEPs N+1 ﬂPS’N+1 ' ﬁfpn,N+1
1%

_ 1 oo £V(Pun+1, Ak)Y 2VeP, i Mk

§Ps,N+1 VP ﬁPXNH B Ps,N+1

Z 14
_ 2VEP N4 \V(Ps v+ 1,48) Pk

)

ﬁPS,N+1
where the last equality follows from the fact that uY, = 0 for all V €
V (Ps N+1, Ar). Thus, we have
(Ps.nt1 \ V(Ps N1, Ar))

ﬁps,N-i-l

i
Hon,le < SUP{MX,M V €Psni1}-

= sup{iy i V € Ps v} - fsk-

We assume that k € N is fized in the following definition and in Lem-
mas

DEFINITION 3.14. Let S C [0, 1] be an interval and j € {0,..., N — 1}.
We inductively define

Ki1(8) = T(" Wjsn)®,
Ki($)= | 7TGE.W)" t=j+2,...,N
LEICj’tfl(S)
LEMMA 3.15.

(i) For every Z € K;j4(S) we have A(Z) = A(W; 1 .
(i) Let K,L C [0,1] and K N L =0. Then K;(K)NK;+(L) = 0.
(ili) Let K,L € Kj(S). Then K =L or KNL
(iV) UICjﬂg(S) N Ak,j,t — @

|| ~—
=0~
N
Tk
v
~
~—
=
N
w&#
Ny
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Proof. Statements (i)—(iii) are easy to verify.
(iv) It is straightforward to show that

t
U’C]}t(s) C m UT(ZIZ’Wi)Sv
i=j+1
t .
A= | ([0, 1]\ UT(z,g,m-)R).
i=j+1
Since T (28, W;)¥ C T (2L, W;)® for every 1 < i < N, the right-hand sides
above are disjoint. =
LEMMA 3.16. Let 0 < j <t < N and let S C [0,1] be an interval with
A(S) > 4/\zi+1]. Then AN({JK;+(S)) > A(S)(20)7 .

Proof. We argue by induction. First, we assume that ¢t = j + 1. Then
K;+(S) = T (2, W;)* and A(S) > 4/|zt|. We have
LB7 1
_ t S
MUKi) = MUTGEL %) = A

A(S)(20)7t = A(S)(21) .

Now, we assume that £ > j + 1 and that we have already proved
(3.7) A(U /cj,t_l(S)) > A(S)(20) L.

Let L € ICj;—1(S) be arbitrary. Then A(L) = /\(Wt_l)/|z};_1]. By (3.4) we
have A\(Wy_1)/|z ' > 10/|2L|. Thus

(3.8) L) > 4/|24].
We obtain
MUkes) = MU U TeRmb)
LG’ijtfl(S)
LBI5(ii), (iii
LE’Cj,tfl(S)
LB 1
> —
> D, MDA
LE’ijtfl(S)
B3
> > aweEn
Lelj—1(S)
L[3.15(iii)

@)~ A (UK ()

A(S) (21,
where (3.8) was used to verify the condition of Lemma .

ME)
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LEMMA 3.17. Let 0 <o <p<N,1<s<N,1<j3<N+1,n, k be
natural numbers and I € P, . Suppose that

(3.9) n > 1%

(3.10) n| P, > 2 >+ DIPotagll, o<i<p.
k

Then

(3 11) ﬂv(Pn+1ijkap) 1(20

. lj n+1,] 4
Proof. By Lemma [3.15(iii),(iv) we have
Ko,
(3.12) V(P Anep) 2P o | PR
KK (1)

By (3.12), Lemma [3.15[iii) and Lemma [3.6(i) we have
ﬁv( n+1]7‘4k,0,p) ﬁpn+1,g (U n+1,_7)
=D = 2

ﬁp""‘l’j - K€Kq (I ﬁ ‘*‘LJ K€Kq (I (U ‘HJ)
AMUP )
> x>,
D
KeKo,p(I)

Thus, it is enough to verify that

(3.13) > A (UPKL) = e

KeKo,p(I)
By { . and . we have n > 12 and [ > 4. By Lemmam and -,
4
AMI) = [[Pnsll = n2||73n s+1]l = a+1 > T
“ L

Thus Lemma yields
(3.14) (U Kop(I ) (D217
Let K € Ko,,(I). From Lemma [3.15(1), and n 4+ 1 > 8 we have
ME) 2 1 2 8P|

Thus Lemma implies

(3.15) MUPEL) 2 MK,

.-lk\'—‘
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By (3.15] -, Lemma“ 3.15((iii) and - we have
1
) (Upn+ly)>1 Z )‘ *)‘(U’Cw )

K€Ky ,(I) KeKo

So, we have verified . "

LEMMA 3.18. Letng <nj <ng € N, 1 <751 < joa<jz3s < N+1 and
Ty, Ty C [0,1]. If there exist oy, a > 0 such that

ﬁv( n1+1 ]27T1)

A)(20)77°

NH

(316) = O,
ﬁI]Dnl—"_17]2
% T
(3.17) EV(P, 32“33 2 > s,
jijTLerl,Js

for every It € Py, and I € Py, j,, then
ﬁV( n2+1]37T1 UTQ) ]-

> Q10
ﬂ 2+17j3 4
for every I € Py j,.
Proof. Let I € Py, ;,. Clearly,
(3.18) ﬁv( no ]QaTl) 2 Z P n2732
VEV(PL 415,:T1)
Hence
. 1%
(3.19) t V(P! W 1) 7L>w) va(a{ ) jQ,Tanz,jg
: = W
LP n2,]2 2ZW€73,{1+1 i Pn2,j2
M V(P T ED 1
> 501
ﬁ n1+1 ,J2 2
Clearly,
(3200 $V(Pl, 11, T1UTE) > S V(P To)-
VeV(Pl ;. Th)
Therefore
liV( 2+1 337T1 UTy) (20). L.‘V ZVEV(PI ﬁV(PMJrLJs’TQ)
P 1 2ZW6P1 AP
@17 1% , -
> Oéz—ﬁ Q(jjnz J2 ) > iaztn "

n2 2J2
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LEMMA 3.19. There exists € > 0 such that for every n,k € N there exist
n €N and k € N such that n >n, k> k and

ij( 3 N+17 A/},O,N) >

1PN -

for every I € Pp Ny1.

Proof. Set e = 2(321)™. Let n,k € N. We set ng = max{n+1,1?}.
We will construct £ > k, s < N and sequences ng < ny1 < --- < ng and
0=wvy <wv <---<ws =N such that

. . 1
VO <1< s Vo1 <J<vi: ngl|Prw g2l 2 [ ey > (ni + Dl P11l

Since z € Q(R\ {0}"V) and (3.4)) holds we have lim |2} | = co and |zj+1\ >
10|27 | for every i € N,j < N. Thus we can find k& > k such that 1/}21} <
| P (no+1). We set vg = 0. Assume that we have already constructed
no,...,n; and vg,...,v; for some i > 0. If v; = N we set s = i and we are
done. If v; < N we find n;11 € N such that

nirPrssosal 2 [y > (st 4 Dl Pl
k
Further we find the largest v;+1 € {v; +1,..., N} such that
W > (ni-i-l + 1)Hpm+1+1,vi+1+1H
and we are done. We set n = ng + 1.

We use Lemma replacing o, p, s, j, n, k by v;_1, v;, vic1 + 1, v; + 1,
n;, k respectively to obtain

ﬁ V( n;+1, Ul+17 Ai{‘},’l}i_l,l}i)

(3.21) (20)vi-1

»h\)—‘

ﬁ +1 Wi+1
for every V € Pp, 4,141 and 1 <7 < s.
We will prove by induction that

ﬁ V( nj+1 vi+1» Afc;uo,yj)

(3.22) > 477 (20) 7 479t

ﬁ +1 wi+1
for every V€ Py, 1 and 1 < j <s.
By (3.21]) we have (3.22) for j = 1.

Suppose that 1 < j < s and (3.22)) holds for 7 — 1. Thus, by (3.21)) and
Lemma|3.18|replacing no, n1, n2, ji, j2, 33, 11, T2 by n1, nj—1, nj, 1, vj_1+1,
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v; + 1, Az respectively we have

kwo,vj—17 " kv 1,05

ﬁV( ’n,J+1 v;+1» Alg’vo,vj) ﬁv( n;+1,v;+1> Al::,’uo,vj,1 U Al%,vj,l,vj)

tt +1 w+1 ﬁpanrl,ijrl

1(4 J+1(2l) vi_1 _4—j+2) <jl(2l)vjl_vj>

= 479(20) 7 4TI

S

Thus we obtain ([3.22]).
Since vs = N, s < N and (3.22)) holds, we have

EV(Pr N1 Apon) -

(3.23) )N 47 > 9
8Py N1
for every V € Py, 1. Fix I € Py, ny41. Clearly,
(3.24) ttV(PTIL N+17AkON Z 8V( nN+17Ak0N)
VeP{ll 1

By (3.24), (3.23) and Lemma [3.6]iv),(ii) we have
EV(P; 7,N+1 A;;,07N) S ZVGPT{N hV(Pf‘L/NHv AIE,O,N)
ﬁpl JN+1 B 2 ZWePI ij~ JN+1 B

Proof of Lemma . We need to show that yu(A) = 0. Set e = 2(321)~
Let n,k € N. By Lemma there exist 1, k € N such that

ﬁv( nN—&—l?A];;,QN) >
7 >e
i Pr N+1
for every I € Py n41. Since A C A, v we have
i ﬁ'P N+1 ﬁv( nN+17Ak)
,k ﬁfp[ N+1
W)I N1~ BV(P N+17A12;,0,N)
B i PE N1

for every I € Py n+1. Thus by Lemma 3.13(ii) we have p; ¢ < (1 — &)pn -
Hence inf{py 1; n,k € N} =0, and Lemma [3.13(i) yields

S~

<l-—¢

0 < pu(A) <inf{upi; n,k e N} =0. u
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4. Proof of Theorem 2.5
NOTATION 4.1. Let Nyn € N, a € QR \ {0}Y), y € R, and let J C R

and J = HN J7 C [0,1]" be open intervals. We set
T(y,J) ={z €[0,1]; {xy) € (N)},
N
H,(a, 01\ﬂTaP J?),  H(a,J)= () Hala,J).
neN

NoOTATION 4.2. Let m € N, I C [0,1]™ be an interval and let z €
Q(R\ {0}™). Then we define

H(z,I)={x€[0,1]; Vk e N: (z - 2z) & I}.
REMARK 4.3. Let m € N.

(i) If A € H™* then there exist z € Q(R\ {0}") and an open interval
W C [0,1]™ such that A C H(z,W).

(i) If I € J C [0,1]™ are open intervals and » € Q(R \ {0}™), then
H(r,J) C H(r,I).

LEMMA 4.4. Let N € N, a = {a;} € QR\{0}), {jx} be an increasing
sequence of integers and J C U C [0, 1]N be open intervals. Then:

) {a;,} € QRN {0}Y).
( ) H(a,U) C H({a; },U).
(iii) H(a,U) = Npen Hn(a,U).
(iv) Let L € RN*N be a nonsingular matriz. Then there exists a finite
set M C N such that for every increasing sequence {vi} of elements
from N\ M we have {L(a,,)} € Q(R\ {0}V).
(v) Lety € R\ {0} and J C [0,1] be an open interval. Then T (y,J) =
Unez y(J + )0 [0,1] =UT(y,J)n[0,1].
(vi) Let m € Z\ {0}, y € R\ {0} and u,r € R. Then T(y, B(u,r)) D
T(y/m,B(u/m,r/|m|)), where B(x,s) = (x — s,z + s) for s > 0.
(vii) Let y € R\ {0}, and let J C R and V C (J) be open intervals.
Then T(y,J) D T(y,V).
Proof. (i)-(iii), (v) and (vii) are trivial.
(iv) We set M = {i € N;3s < N : (L(a;))® = 0}. Let {vx} be an
increasing sequence of elements from N\ M. Then {L(a,,)} € (R\{0})V)N.

Let o € Z¥\{0}. Then LT (a) is a nonzero vector, where L' is the transpose
of the matrix L. Thus we have

Him, [(Elaw); )] = lism, l(awe, LT(@)] = oo

Thus, L(ay,) € QR {0}V).
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f (vz) )Clearly, T (y, B(u,r)) D T(y/m,B(u/m,r/|m])). Thus (vi) follows

We will use the following well known approximation theorem.

LEMMA 4.5 ([10, Dirichlet’s Theorem on Simultaneous Approximations]).
Let aq,...,an be real numbers and QQ > 1 be an integer. Then there exist
integers q,pi, . ..,pp with 1 < ¢ < Q™ and |a;q—p;| < 1/Q for all1 <i < n.

LEMMA 4.6. Let N € N, a € QR \ {0}") and let U, = U' x --- x
UN=Lx UN c [0,1)V for n € N be open intervals. If there exists a > 0 such
that \(UY) > « for alln € N then there exist an increasing sequence {j,} of
positive integers and an open interval J = U x --- x UN=1 x JN c [0, 1]V
such that for every n € N we have

(i) 4AIY) > AU)),
(i) Hn({a;,},U;,) € Ho({az,},J)-

Proof. Since inf{\(UN);n € N} > a > 0 there exists an increasing
sequence {v,} of positive integers such that

4inf{\NUY); n € N} > 3sup{\U}Y); n € N}.
We find [ € N such that
2/1 < inf{A(U,)); n € N} < 3/L.
For all j € N we find b; € Ny and an open interval JJN = (bj/1,(bj +1)/1)

such that JJN C Uquv_. Since the set {JJN; j € N} is finite there exists an

increasing sequence {p,} of positive integers and an open interval .J N such
that JpNn =JNforallne N. Weset 7 = Ulx--.xUN"1x N and j, = vp, .
Thus,

for every n € N. Clearly,
4 4
ANJIN) = 723 inf{A(U,}); n € N} > sup{A(U.\ ); n € N} > A(U}Y)
forallm e N. =

The following lemma was inspired by Zajicek [12].

LEMMA 4.7. Lety,z € R\{0}, y # z, let U = B(u,r1) and V = B(v,r2)
be subsets of [0,1], and 6 < min{\(V)/|y|, \(U)/|z|}. If 4|y| > 3|z| then

T(y,V)NT(z,U) D T(z,B(u,|z16/4))NT(y — z, B(v — u,r2/4)).
Proof. Since |z|0/4 < r; we have B(u,|z|0/4) C U. Thus
T(z,U) D T(z,B(u,|z|0/4)).
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Let x € T(z,B(u,|2|0/4)) N T(y — z, B(v — u,72/4)). Then there exist £ €
B (0,72/4), € B(0,|z|0/4) and m,n € Z such that

1 1
r=(E+v—u+n) ;o r=(pt+ut+m)-
y—z 2

Thus, z = (f—HH—v—i—m—i-n) Since [E+p| < ro/d+12[0/4 < ro/d+]yld/3 <
ro/4 4 2ry/3 < 19, we have 5 +pu+veV. Thus, z€T(y,V). n

LEMMA 4.8. Let N € N, a € QR\ {0}Y), lett = [, U  [0,1]V be
an open interval, L € N and §; = min{)\(Ui)/]aé-]; i=1,...,N} for every
j € N. Then there exist a nonsingular matrizc £ € QN*N | an increasing
sequence {v,} of positive integers and an open interval J = Hf\;1 JtC
[0, 1] such that

(a) = {L(ay,)} € QR \ {0}"),

(b) Vn e N: H,({ay, },U) C Hy(, ),
() Yn e NVi < N : |2 X\(JY) )zt | > L,
(d) AIN) /|2 > by, /16.

Proof. Passing to a subsequence and permuting indices if necessary, we
can assume that |a| < |ait!| for all n € N and i < N. We find Q € N such
that 1/Q < min{\(U%);i=1,...,N}/(8L). By Lemmafor every j € N
there exist qj,pjl, . ,pj-v_l € 7Z such that

1 < q; < QN717

< l, i=1,...,N—1.

Q
Since |a§|/\a§v| < 1, we have |p3] < QN!forevery j € Nandi=1,...,
N — 1. Passing to a subsequence if necessary, we can assume that there exist
q,p%,...,pV 1 such that ¢ = qj, pt = pé- for every j € N. Clearly, there
exists 0 < s < N such that p’ = 0 if and only if i < s. Denote by u’ the

center of the interval U? and set

al

4.1 . pt
( ) QJaN p]

a;- for i <s,
yé: a;'-/pi—aé-v/q fors<i< N, j €N.
aév/q for i = N,

Further we define
o Ji=U'fori<s,
o J'=B(u'/p' —u¥ /g, \(U")/(8|p!])) for s <i < N,
oJN B(u N/q,é\y |/4) for j € N,
. JN JNN(0,1).

Since u” /q € (0,1) we have )\(JJN) > %)\(JN) Passing to a subsequence if
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necessary and using Lemma (iv) we see that y := {(yjl, cen, yJN )}] is in
Q(R\ {0}V). For every s < i < N we find an open interval Jt C [0,1] such
that A(J%) > A(J%)/2 and J¢ C (J%). By Lemma[4.4(vi) we have

T(a%,U") D T<a§f B(“lj A(Ui)»,

P e 20|
ul AUN)
(4.2) T(aj.V,UN)DT<y§V,B<q, 5 >>
Since '
qa—]{,—pi < 1 - min{\(U");i=1,...,N} < 17
a; Q 8L 8

we have 4|a§-/pi| > 3]yJN| Since aé-/pi —ylN = y; and y € Q(R\ {0}Y), it
follows that a;'»/pi #* yJN We use Lemma replacing y, v, 79, 9, 2z, u, 1 by
al/p*, ' [p', MU /(2Ip']), 65,97, u™ /g, AU™)/(2q) respectively to obtain

a’ u’ )\(Ui)>> (N (uN A(UN))>
43) T ?,B(.,. NT(y;', Bl —, ——=
(43) <p‘ P 2[p Ui g 2q
> T(y}, J)) N Ty}, J").

Recall that y — z is replaced by az /pt — yj»v = y;
By Lemma vii) and our choice of the sets J¢, JJN we have

(4.4) Ty, JN) N T, T > TY, JN) N T, JY.
By (4.2)-(4.4) we have
(4.5) Hy(a,U) C Hy(y, J' x - x JVN7Lx g,

Observe that

1o 1 1 1a¥] 1 min{A(Ui);i=1,...,N} |aY]
N Ny N| 7 ’ ’ ) J
AJ}Y) = 5/\(Jj ) = 16j|yj | = 15]' q = 4 Y| q
J
1 min{A(U");i=1,...,N}
=1 . .

Thus we can use Lemma to get an open interval JV and an increasing
sequence v, of positive integers such that for every n € N,

(4.6)  Ho({yw,},J' x--x IV L Iy ¢ Hy({yw, }, T x - x JV),

and
ANTN) > A(ID).
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We set 2 := yf)n and J = J' x---x JN. By the definition of y we easily
see that L is a triangular matrix without any zero element on the diagonal.
Thus we have (a). By (4.5)) and (4.6) we get (b). Assume ¢ < s. Since

b at 1 min{\U);i=1,....,N
—Jj\,:q%_ngé< {A( )8L }’
x] a'l)j
we have
N ; ) N
i A(J* ANU? N . 8L
i( | - E ! > |- i ’ > 8L.
i Zj ij
Let s <7 < N. Since
ifrl = qi?{,' i<l min{/\(Ui);giL: 1,...,N}’
x] a/Uj Q
we deduce
xévA(JZ) > ﬂfév)\(JZ) _ l’é\[)\(UZ) . $§VL
EE N T

Thus we have (c). Clearly,
16A(IN) > AN(IY) > 20(JY) = B, |2 |
for all n € N. Thus we have (d). =

LEMMA 4.9. Let N € N, a € QR \ {0}N), let U = [T, U" € [0, 1] be
an open interval, L € N and ; = min{)\(Ui)/|a;|; i=1,...,N} for every
j € N. Then there exist x € (RN)N, a nonsingular matriz M € QNN
an increasing sequence {vy,} of positive integers and an open interval J =

MY, 70 c [0,1)N such that

(a) & := {M(ay,)} € QR\{0}Y),

(b) VneN: Hn({avn}ﬁu) - Hn(maj)7
() Yn € NVi < N : |2itiN(J}) /2l | > L,
(d) A(IN) /|| = b, /16.

Proof. We use induction on N. The case N = 1 is trivial. Assume that
our statement holds for some N — 1 € N; we show that it also holds for V.
By Lemma E there exist a nonsingular matrix £ € QV*V, an 1ncreasmg
sequence {p,} of positive integers and an open interval V = Hl 1 Vi C

[0,1]" such that

i) y:={L(a,)} € QR\ {0}"),
(i) Yn e N: H,({ap, },U) C Hy,(y,V
(iii) ¥n e NVi < N : [yNA(V)/y| > 16L
(iv) AVN)/|yn'| = 8p,/16.
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Clearly, {y',...,yV "1} € Q(R\ {0}V~1). By induction hypothesis there
exist {z,} € (QV~HN, a nonsingular matrix 2 € QW-DxN=1"an in-
creasing sequence {j,} of positive integers and open intervals J¢ C [0, 1],
0 <7 < N, such that

(1) {zps o) = {2,y DY € QRN {0}V,
(2) Vn € N:

N-1 -
Hn({y]ln, .. ,yan_l}, H Vi> Cc H, ({x,li, A H Ji),
i=1 i=1
(3) Vne NVi< N —1: ]ajﬁflx\(ﬂ)/xm > L,
(4) ATV = g min{A(V) /|y s i=1,....N = 1}.
We set v, = pj,,, 2l = yJNn and JN = VN We define Z € QV*V by
ZZLj for 0 < 4,5 < N,
Zij =141 fori=j=N+1,
0 otherwise.
Clearly, Z is nonsingular. We set M = Z - L. Thus M is also nonsingular.
Using (i) and (1) we easily obtain (a). By (2) we have
(4.7) VneN:Hy({yj,,...,up 1, V) C Hu(z, J).
Using (4.7) and (ii) we get (b). Using (3) we obtain (c) for i < N — 1.
From (iii) we have min{A\(V*)/|y; [; i =1,...,N — 1} = )\(VN_l)/|y§\£71|.
Using this, (4) and (iii) again we get the case i = N — 1. Formula (iv) easily
gives (d). =
Proof of Theorem . The inclusion HM)* > HéN)* is trivial.

Let A € HMN)* Then there exists a € Q(R\ {0}") and an open interval
U c [0,1]" such that A ¢ H(a,U). By Lemma 4.9| there exists 2 € (QV)N

and an open interval J C [0,1]" such that H(a,U) C H(x,J) € HéN)*.
So, Ac HV*
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