The sizes of the classes of $H^{(N)}$-sets

by
Václav Vlasák (Praha)

Abstract

The class of $H^{(N)}$-sets forms an important subclass of the class of sets of uniqueness for trigonometric series. We investigate the size of this class which is reflected by the family of measures (called polar) annihilating all sets from the class. The main aim of this paper is to answer in the negative a question stated by Lyons, whether the polars of the classes of $H^{(N)}$-sets are the same for all $N \in \mathbb{N}$. To prove our result we also present a new description of $H^{(N)}$-sets.

1. Introduction. Let M be a collection of closed subsets of $[0,1]$, and $\mathcal{M}([0,1])$ be the set of all Radon measures on the interval $[0,1]$. Then the polar $M^{\perp} \subset \mathcal{M}([0,1])$ is defined by

$$
M^{\perp}=\{\nu \in \mathcal{M}([0,1]) ; \forall B \in M: \nu(B)=0\}
$$

We say that $\mu \in \mathcal{M}([0,1])$ is Rajchman if $\lim _{|n| \rightarrow \infty} \widehat{\mu}(n)=0$. The family of all Rajchman measures is denoted by \mathcal{R}. Let us recall that closed sets of extended uniqueness (U_{0} sets) are those closed sets which are annihilated by every Rajchman measure. Thus by definition we have $\mathcal{R} \subset U_{0}^{\perp}$.

Rajchman [9] investigated classes A with the property $A^{\perp}=\mathcal{R}$. He introduced an important subclass of U sets, called H-sets (or $H^{(1)}$-sets) (see the next section or [4] for the definitions of U and $H^{(1)}$) and investigated whether $H^{\perp}=\mathcal{R}$. Lyons [5] showed that $\mathcal{R}=U_{0}^{\perp}$. On the other hand Kaufman [3] proved that $U^{\perp} \neq U_{0}^{\perp}=\mathcal{R}$. Thus U_{0} can be considered much larger than U in the sense of polars. More generally, one can consider two families of closed sets $A \subset B$ and may ask whether $B^{\perp} \subsetneq A^{\perp}$. If this is the case then B can be considered much larger than A.

Rajchman conjectured that every set of uniqueness was a countable union of H-sets. This was disproved by Pyatetskiü-Shapiro [7] (see also [8]), who also introduced the classes of $H^{(N)}$-sets for $N \in \mathbb{N}$. Further he showed that $H^{(N)} \subset H^{(N+1)} \subset U \subset U_{0}$ and that there is an $H^{(N+1)}$-set which

2010 Mathematics Subject Classification: 43A46, 42A63.
Key words and phrases: sets of uniqueness, polar, $H^{(N)}$ sets.
cannot be written as a countable union of $H^{(N)}$-sets. Lyons [6] showed that $\mathcal{R} \subsetneq\left(\bigcup_{N \in \mathbb{N}} H^{(N)}\right)^{\perp}$. Thus, the classes $H^{(N)}$ are "small" in U_{0} in the sense given above. Lyons [6] asked whether $\left(H^{(N+1)}\right)^{\perp}=\left(H^{(N)}\right)^{\perp}$. The aim of this paper is to prove the next theorem which answers Lyons' question in the negative for every $N \in \mathbb{N}$.

Theorem 1.1. Let $N \in \mathbb{N}$. Then $\left(H^{(N+1)}\right)^{\perp} \neq\left(H^{(N)}\right)^{\perp}$.
We will prove Theorem 1.1 using a description of $H^{(N)}$-sets in Theorem 2.5. This result can be used to reprove Šleich's result that each $H^{(N)}$-set is σ-porous ($[12]$).

The case $N=1$ of Theorem 1.1, which is much simpler, was presented without proof in [11].

The question also arises whether $\left(\bigcup_{N \in \mathbb{N}} H^{(N)}\right)^{\perp} \supsetneq U^{\perp}$. Zelený and Pelant [13] show that there is a non- σ-porous closed set of uniqueness. Thus this set is a set of uniqueness which cannot be written as a countable union of elements of $\bigcup_{N \in \mathbb{N}} H^{(N)}$.

2. Proof of Theorem 1.1

Notation 2.1.

- We denote the Lebesgue measure on \mathbb{R} by λ and the number of elements of a finite set A by $\sharp A$.
- The symbol $\langle x\rangle$ stands for the fractional part of $x \in \mathbb{R}$, i.e., $\langle x\rangle=$ $x-[x]$, where $[x]$ is the integer part of x. Further, for $B \subset \mathbb{R}$ we denote $\langle B\rangle=\{\langle x\rangle ; x \in B\}$.
- For $N \in \mathbb{N}$ and $\boldsymbol{a} \in\left(\mathbb{R}^{N}\right)^{\mathbb{N}}$, we write $\boldsymbol{a}=\left\{a_{j}\right\}_{j \in \mathbb{N}}$ and $a_{j}=\left(a_{j}^{1}, \ldots, a_{j}^{N}\right)$ $\in \mathbb{R}^{N}$.
- By an open interval $J \subset \mathbb{R}^{N}$ we mean any product of nonempty open intervals $J^{i} \subset \mathbb{R}, i=1, \ldots, N$.
- Let $x \in \mathbb{R}$ and $r>0$. We denote the interval $(x-r, x+r)$ by $B(x, r)$.

Definition 2.2. Let $N \in \mathbb{N}, L \in \mathbb{R}$, and $P \subset \mathbb{R}$.

- A sequence of vectors $\boldsymbol{a} \in\left(\mathbb{R}^{N}\right)^{\mathbb{N}}$ is quasi-independent if for every nonzero $\alpha \in \mathbb{Z}^{N}$ we have $\lim _{j}\left|\left(\alpha, a_{j}\right)\right|=\infty$, where (u, v) denotes the scalar product of vectors $u, v \in \mathbb{R}^{N}$. The set of all quasi-independent sequences of vectors from P^{N} is denoted by $\mathcal{Q}\left(P^{N}\right)$.
- A closed set $A \subset[0,1]$ is in $H^{(N)}(P)$ if there exist $\boldsymbol{a} \in \mathcal{Q}\left(P^{N}\right)$ and an open interval $J \subset[0,1]^{N}$ such that for every $x \in A$ and every $j \in \mathbb{N}$ we have $\left\langle x a_{j}\right\rangle:=\left(\left\langle x a_{j}^{1}\right\rangle, \ldots,\left\langle x a_{j}^{N}\right\rangle\right) \notin J$. We will write just $H^{(N)}$ instead of $H^{(N)}(\mathbb{N})$, and $H^{(N) *}$ instead of $H^{(N)}(\mathbb{R} \backslash\{0\})$. Subsets of elements of $H^{(N)}$ are called $H^{(N)}$-sets.
- A closed set $A \subset[0,1]$ is in $H_{L}^{(N) *}$ if there exist $\boldsymbol{a} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$ and an open interval $J=\prod_{i=1}^{N} J^{i} \subset[0,1]^{N}$ witnessing $A \in H^{(N) *}$ and satisfying

$$
\left|\frac{a_{j}^{i+1} \lambda\left(J^{i}\right)}{a_{j}^{i}}\right| \geq L
$$

for every $i \in\{1, \ldots, N-1\}$ and $j \in \mathbb{N}$.
The notion of $H^{(N) *}$ is well known but $H_{L}^{(N) *}$ is a new notion.
Remark 2.3. (i) Let $N, M \in \mathbb{N}, N \leq M$, and $L, K \in \mathbb{R}, L \leq K$. Then clearly $H_{K}^{(N) *} \subset H_{L}^{(M) *}, H^{(N) *}=H_{0}^{(N) *}$ and $H^{(N)} \subset H^{(N) *}$. Further, the family $H^{(N)}$ is hereditary, i.e., if $A \in H^{(N)}, A \supset B$ and B is closed then $B \in H^{(N)}$. Similarly, the families $H^{(N) *}$ and $H_{L}^{(N) *}$ are also hereditary.
(ii) Bari $\mathbb{1}$ denotes $H^{(N) *}$ by $H^{(N)}(\mathbb{R})$. We use $\mathbb{R} \backslash\{0\}$ instead of \mathbb{R} to avoid dividing by zero. It is easy to see that $H^{(N)}(\mathbb{R})=H^{(N)}(\mathbb{R} \backslash\{0\})$. Thus, both of these definitions define the same object. Note that each set from $H^{(N) *}$ is a finite union of elements of $H^{(N)}$ (see [1, pp. 919-921]). Consequently, $\left(H^{(N) *}\right)^{\perp}=\left(H^{(N)}\right)^{\perp}$.
(iii) Let $N \in \mathbb{N}$. Then the collection $H^{(N)}$ consists of closed $H^{(N)}$-sets.

The proof of the main result is based on the following two results which will be proved in the next sections.

Lemma 2.4. Let $N \in \mathbb{N}$. Then $\left(H^{(N+1)}\right)^{\perp} \subsetneq\left(H_{10}^{(N) *}\right)^{\perp}$.
Theorem 2.5. Let $N, L \in \mathbb{N}$. Then $H_{L}^{(N) *}=H^{(N) *}$.
Granting these results the proof goes as follows.
Proof of Theorem 1.1. By Lemma 2.4, Theorem 2.5, and Remark 2.3(ii) we get

$$
\left(H^{(N+1)}\right)^{\perp} \subsetneq\left(H_{10}^{(N) *}\right)^{\perp}=\left(H^{(N) *}\right)^{\perp}=\left(H^{(N)}\right)^{\perp} .
$$

3. Proof of Lemma 2.4. Throughout this section $N \in \mathbb{N}$ will be fixed. We will construct a measure $\mu \in\left(H_{10}^{(N) *}\right)^{\perp} \backslash\left(H^{(N+1)}\right)^{\perp}$.

3.1. Construction of the measure μ

Notation 3.1. We fix $\boldsymbol{x} \in\left(\mathbb{N}^{N+1}\right)^{\mathbb{N}}$ such that for every $n \in \mathbb{N}$ and $j=$ $1, \ldots, N$ both $x_{n}^{j+1} /\left(2 x_{n}^{j}\right)$ and $x_{n+1}^{1} /\left(2 x_{n}^{N+1}\right)$ are natural numbers greater than n^{2}.

For $n \in \mathbb{N}$ and $j=1, \ldots, N+1$ we set

$$
\begin{align*}
P_{n} & =\left\{x \in[0,1] ;\left\langle x \cdot x_{i}\right\rangle \notin(1 / 2,1)^{N+1}, i=1, \ldots, n\right\}, \tag{3.1}\\
\mathcal{P}_{n, j} & =\left\{\left[\frac{i-1}{2 x_{n}^{j}}, \frac{i}{2 x_{n}^{j}}\right] \subset[0,1] ; i \in \mathbb{N},\left(\frac{i-1}{2 x_{n}^{j}}, \frac{i}{2 x_{n}^{j}}\right) \subset P_{n}\right\}, \\
\left\|\mathcal{P}_{n, j}\right\| & =1 /\left(2 x_{n}^{j}\right) .
\end{align*}
$$

Notation 3.2. Let \mathcal{A} be a collection of subsets of \mathbb{R}, and let $S \subset \mathbb{R}$. We denote

$$
\mathcal{A}^{S}=\{V \in \mathcal{A} ; V \subset S\}
$$

Notation 3.3. Let $V \subset[0,1]$ and $x \in \mathbb{R} \backslash\{0\}$. We set

$$
\mathcal{T}(x, V)=\left\{\frac{1}{x}(V+n) ; n \in \mathbb{Z}\right\}
$$

The following remark explains the notions P_{n} and $\mathcal{P}_{n, j}$. I hope this clarifies these notions and the important Remark 3.5 below.

Remark 3.4. Fix some $n \in \mathbb{N}$. If $n=1$ then set $I=[0,1]$, otherwise fix some $I \in \mathcal{P}_{n-1, N+1}$. Let $0<j \leq N+1$. Define

$$
\begin{aligned}
& \mathcal{M}_{j}=\left\{\left[\frac{i-1}{2 x_{n}^{j}}, \frac{i}{2 x_{n}^{j}}\right] \subset J ; i \in \mathbb{N}\right\}, \\
& \widetilde{\mathcal{M}}_{j}=\left\{\left[\frac{i-1}{2 x_{n}^{j}}, \frac{i}{2 x_{n}^{j}}\right] \subset J ; i \text { is an odd natural number }\right\} .
\end{aligned}
$$

Clearly, $\mathcal{M}_{j}^{J}=\mathcal{T}^{J}\left(2 x_{n}^{j},[0,1]\right)$ and $\widetilde{\mathcal{M}}_{j}^{J}=\mathcal{T}^{J}\left(x_{n}^{j},[0,1 / 2]\right)=\{x \in[0,1] ;$ $\left.x \cdot x_{n}^{j} \notin(1 / 2,1)\right\}$. It is easy to see that $\mathcal{P}_{n, 1}^{I}=\widetilde{\mathcal{M}}_{1}^{I}$. Let $0<j \leq N$. Since $x_{n}^{j+1} /\left(2 x_{n}^{j}\right)$ is a natural number we have

$$
\begin{aligned}
\mathcal{P}_{n, j+1}^{I} & =\left\{V \in \mathcal{M}_{j+1}^{I} ;\left(\exists J \in \mathcal{P}_{n, j}^{I}: V \subset J\right) \vee\left(V \in \widetilde{\mathcal{M}}_{j+1}^{I}\right)\right\} \\
& =\widetilde{\mathcal{M}}_{j+1}^{I} \cup \bigcup_{J \in \mathcal{P}_{n, j}^{I}} \mathcal{M}_{j+1}^{J}
\end{aligned}
$$

Remark 3.5 and Lemma 3.6 below will explain some basic facts concerning the collections $\mathcal{P}_{n, j}^{I}$.

REMARK 3.5. Let $n \in \mathbb{N}$. Since $x_{n}^{j+1} /\left(2 x_{n}^{j}\right)$ and $x_{n+1}^{1} /\left(2 x_{n}^{N+1}\right)$ are natural numbers we can easily obtain the following three statements:

- $\bigcup \mathcal{P}_{n, N+1}=P_{n}$.
- $\mathcal{P}_{n+1, j}=\bigcup_{I \in \mathcal{P}_{n, N+1}} \mathcal{P}_{n+1, j}^{I}$.
- If $j \in\{1, \ldots, N+1\}, i \in \mathbb{N}, I \in \mathcal{P}_{n, N+1}$ and $\left[\frac{i-1}{2 x_{n+1}^{j}}, \frac{i+1}{2 x_{n+1}^{j}}\right] \subset I$ then

$$
\left[\frac{i-1}{2 x_{n+1}^{j}}, \frac{i}{2 x_{n+1}^{j}}\right] \in \mathcal{P}_{n+1, j} \quad \text { or } \quad\left[\frac{i}{2 x_{n+1}^{j}}, \frac{i+1}{2 x_{n+1}^{j}}\right] \in \mathcal{P}_{n+1, j} .
$$

Lemma 3.6.
(i) If $V \in \mathcal{P}_{n, j}$, then $\left\|\mathcal{P}_{n, j}\right\|=\lambda(V)$.
(ii) Let $k \geq n$ and $i, j \leq N+1$ be such that $k>n$ or $j \geq i$. Let $I, J \in \mathcal{P}_{n, i}$. Then $\sharp \mathcal{P}_{k, j}^{I}=\sharp \mathcal{P}_{k, j}^{J}$.
(iii) Let $n>1, I \in \mathcal{P}_{n-1, N+1}$ and $1 \leq j \leq i \leq N+1$. Then

$$
\sharp \mathcal{P}_{n, i}^{I} \leq 2 \sum_{R \in \mathcal{P}_{n, j}^{I}} \sharp \mathcal{P}_{n, i}^{R} .
$$

(iv) Let $n_{1}, n_{2}, n_{3} \in \mathbb{N}, n_{1}<n_{2} \leq n_{3}, j_{1}, j_{2}, j_{3} \in\{1, \ldots, N+1\}$ and $I \in \mathcal{P}_{n_{1}, j_{1}}$ be such that $n_{2}<n_{3}$ or $j_{2} \leq j_{3}$. Then

$$
\sharp \mathcal{P}_{n_{3}, j_{3}}^{I} \leq 2 \sum_{R \in \mathcal{P}_{n_{2}, j_{2}}^{I}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{R} .
$$

(v) Let $n \in \mathbb{N}$ and $1 \leq j \leq N$. Then $\left\|\mathcal{P}_{n, j}\right\| \geq n^{2}\left\|\mathcal{P}_{n, j+1}\right\|$.

Proof. (i) Let $V \in \mathcal{P}_{n, j}$. Then there exists $i \in \mathbb{N}$ such that $V=\left[\frac{i-1}{2 x_{n}^{j}}, \frac{i}{2 x_{n}^{j}}\right]$. Thus, $\lambda(V)=1 /\left(2 x_{n}^{j}\right)=\left\|\mathcal{P}_{n, j}\right\|$.
(ii) Let $x=\min (I)$ and $y=\min (J)$. It is easy to verify that $\mathcal{P}_{k, j}^{J}=$ $\mathcal{P}_{k, j}^{I}+y-x$.
(iii) By Remark 3.5 we can easily obtain

$$
\sharp \mathcal{P}_{n, i}^{I} \leq 2 x_{n}^{i} \lambda(I) \leq 2 \sum_{R \in \mathcal{P}_{n, j}^{I}} \sharp \mathcal{P}_{n, i}^{R} .
$$

(iv) Assume $n_{2}<n_{3}$. Then

$$
\begin{aligned}
\sharp \mathcal{P}_{n_{3}, j_{3}}^{I} & =\sum_{V \in \mathcal{P}_{n_{2}-1, N+1}^{I}} \sum_{W \in \mathcal{P}_{n_{2}, N+1}^{V}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{W}, \\
\sum_{R \in \mathcal{P}_{n_{2}, j_{2}}^{I}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{R}= & \sum_{V \in \mathcal{P}_{n_{2}-1, N+1}^{I}} \sum_{R \in \mathcal{P}_{n_{2}, j_{2}}^{V}} \not \sum_{W \in \mathcal{P}_{n_{2}, N+1}^{R}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{W} .
\end{aligned}
$$

Using (ii) and (iii) we obtain the desired inequality.
Assume $n_{2}=n_{3}$ and $j_{2} \leq j_{3}$. Then

$$
\begin{aligned}
\sharp \mathcal{P}_{n_{3}, j_{3}}^{I} & =\sum_{V \in \mathcal{P}_{n_{2}-1, N+1}^{I}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{V}, \\
\sum_{R \in \mathcal{P}_{n_{2}, j_{2}}^{I}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{R} & =\sum_{V \in \mathcal{P}_{n_{2}-1, N+1}^{I}} \sum_{R \in \mathcal{P}_{n_{2}, j_{2}}^{V}} \sharp \mathcal{P}_{n_{3}, j_{3}}^{R} .
\end{aligned}
$$

Using (ii) and (iii) we obtain the desired inequality.
(v) Clearly, $\left\|\mathcal{P}_{n, j}\right\|=\left(x_{n}^{j+1} / x_{n}^{j}\right)\left\|\mathcal{P}_{n, j+1}\right\| \geq 2 n^{2}\left\|\mathcal{P}_{n, j+1}\right\|$.

Lemma 3.7. Let $W, S \subset[0,1]$ be intervals, $x \in \mathbb{R} \backslash\{0\}$ and $\lambda(S) \geq 4 /|x|$. Then $\lambda\left(\cup \mathcal{T}(x, W)^{S}\right) \geq \frac{1}{2} \lambda(S) \lambda(W)$.

Proof. Clearly, $\sharp \mathcal{T}(x, W)^{S} \geq \lambda(S) \cdot|x|-2$. Thus,

$$
\lambda\left(\bigcup \mathcal{T}(x, W)^{S}\right)=\frac{\lambda(W)}{|x|} \cdot \sharp \mathcal{T}(x, W)^{S} \geq \lambda(S) \lambda(W)-\frac{2 \lambda(W)}{|x|} .
$$

Since $\lambda(S) \geq 4 /|x|$ we have

$$
\lambda(S) \lambda(W)-\frac{2 \lambda(W)}{|x|} \geq \frac{1}{2} \lambda(S) \lambda(W) .
$$

Lemma 3.8. Let $n, s, j \in \mathbb{N}, n>1, s, j \leq N+1, I \in \mathcal{P}_{n-1, s}$ and let $S \subset I$ be an interval with $\lambda(S) \geq 8\left\|\mathcal{P}_{n, j}\right\|$. Then $\lambda\left(\cup \mathcal{P}_{n, j}^{S}\right) \geq \frac{1}{4} \lambda(S)$.

Proof. It is easy to verify that $I=\bigcup \mathcal{P}_{n-1, N+1}^{I}$ and $\mathcal{P}_{n, j}^{V} \supset \mathcal{T}\left(x_{n}^{j},[0,1 / 2]\right)^{V}$ for every $V \in \mathcal{P}_{n-1, N+1}^{I}$. Consequently, $\mathcal{P}_{n, j}^{I} \supset \mathcal{T}\left(x_{n}^{j},[0,1 / 2]\right)^{I}$. Thus $\mathcal{P}_{n, j}^{S} \supset$ $\mathcal{T}\left(x_{n}^{j},[0,1 / 2]\right)^{S}$. Hence

$$
\lambda\left(\bigcup \mathcal{P}_{n, j}^{S}\right) \geq \lambda\left(\bigcup \mathcal{T}\left(x_{n}^{j},[0,1 / 2]\right)^{S}\right)
$$

We know that $\lambda(S) \geq 8\left\|\mathcal{P}_{n, j}\right\|=4 / x_{n}^{j}$. Thus Lemma 3.7 yields

$$
\lambda\left(\bigcup \mathcal{T}\left(x_{n}^{j},[0,1 / 2]\right)^{S}\right) \geq \frac{1}{4} \lambda(S) .
$$

Construction 3.9. For $I=\left[\frac{i-1}{2 x_{n}^{N+1}}, \frac{i}{2 x_{n}^{N+1}}\right]$, where $n \in \mathbb{N}$ and $i \in$ $\left\{1, \ldots, 2 x_{n}^{N+1}\right\}$, we define

$$
\mu(I)= \begin{cases}1 / \sharp \mathcal{P}_{n, N+1} & \text { whenever } I \in \mathcal{P}_{n, N+1}, \tag{3.2}\\ 0 & \text { whenever } I \notin \mathcal{P}_{n, N+1} .\end{cases}
$$

Now we use the standard mass distribution principle (see e.g. [2, Proposition 1.7]) to extend μ to the desired measure.

We also set

$$
\begin{equation*}
P=\left\{x \in[0,1] ; \forall i \in \mathbb{N}:\left\langle x \cdot x_{i}\right\rangle \notin(1 / 2,1)^{N+1}\right\} . \tag{3.3}
\end{equation*}
$$

We can easily obtain the following properties of the measure μ.
Lemma 3.10. The measure μ is a continuous Radon probability measure and the support of μ is a subset of P.

Proof. Let $x \in[0,1]$ and $n \in \mathbb{N}$. Then there exists $1 \leq i \leq 2 x_{n}^{N+1}$ such that $x \in\left[\frac{i-1}{2 x_{n}^{N+1}}, \frac{i}{2 x_{n}^{N+1}}\right]$. By 3.2 we have

$$
\mu(\{x\}) \leq \mu\left(\left[\frac{i-1}{2 x_{n}^{N+1}}, \frac{i}{2 x_{n}^{N+1}}\right]\right) \leq \frac{1}{\sharp \mathcal{P}_{n, N+1}} .
$$

Since $\lim _{n \rightarrow \infty} 1 / \sharp \mathcal{P}_{n, N+1}=0$ we have $\mu(\{x\})=0$.

By (3.2) and Remark 3.5 the support of μ is a subset of $\bigcup \mathcal{P}_{n, N+1}=P_{n}$ for every $n \in \mathbb{N}$. But by (3.1), $P=\bigcap_{n \in \mathbb{N}} P_{n}$.

3.2. Verification of $\mu \notin\left(H^{(N+1)}\right)^{\perp}$

Lemma 3.11. The set P is a closed $H^{(N+1)}$-set and $\mu(P)=1$.
Proof. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N+1}\right) \in \mathbb{Z}^{N+1} \backslash\{0\}$. We find the largest $i \leq$ $N+1$ such that $\alpha_{i} \neq 0$. Since $\lim _{n \rightarrow \infty} x_{n}^{j} / x_{n}^{i}=0$ for every $1 \leq j<i$, we have

$$
\lim _{n \rightarrow \infty}\left|\left(x_{n}, \alpha\right)\right|=\lim _{n \rightarrow \infty}\left|\sum_{j=1}^{i} x_{n}^{j} \alpha_{j}\right|=\lim _{n \rightarrow \infty} x_{n}^{i}\left|\sum_{j=1}^{i} \frac{x_{n}^{j} \alpha_{j}}{x_{n}^{i}}\right|=\left|\alpha_{i}\right| \lim _{n \rightarrow \infty} x_{n}^{i}=\infty
$$

Thus $\left\{x_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{Q}\left(\mathbb{N}^{N+1}\right)$ and therefore $P \in H^{(N+1)}$. By Lemma 3.10 we have $\mu(P)=1$.
3.3. Verification of $\mu \in\left(H_{10}^{(N) *}\right)^{\perp}$. Fix $X \in H_{10}^{(N) *}$. We find an open interval $W=\prod_{j=1}^{N} W_{j} \subset[0,1]^{N}$ and $\boldsymbol{z} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$ witnessing $X \in H_{10}^{(N) *}$. Thus, we have

$$
\begin{equation*}
\left|\frac{z_{i}^{j+1} \lambda\left(W_{j}\right)}{z_{i}^{j}}\right| \geq 10 \quad \text { for all } i \in \mathbb{N}, j \in\{1, \ldots, N-1\} \tag{3.4}
\end{equation*}
$$

Let $0 \leq \sigma \leq \rho \leq N$ be integers. We set

$$
\begin{aligned}
A_{k, \sigma, \rho} & =\left\{x \in[0,1] ; \exists j \in \mathbb{N}, \sigma<j \leq \rho:\left\langle x \cdot z_{k}^{j}\right\rangle \notin W_{j}\right\} \\
A_{k} & =\left\{x \in[0,1] ; \forall i \leq k:\left\langle x \cdot z_{i}\right\rangle \notin W\right\}=\bigcap_{i \leq k} A_{i, 0, N} \\
A & =\bigcap_{k \in \mathbb{N}} A_{k}=\bigcap_{k \in \mathbb{N}} A_{k, 0, N} .
\end{aligned}
$$

We have $X \subset A$. We want to show that $\mu(X)=0$, so it is sufficient to prove $\mu(A)=0$.

Further in this section fix a constant $l \in \mathbb{N}$ such that

$$
\begin{equation*}
l>100 \quad \text { and } \quad l>1 / \lambda\left(W_{j}\right), \quad j=1, \ldots, N \tag{3.5}
\end{equation*}
$$

Notation 3.12. Let $n, k \in \mathbb{N}, S, T \subset[0,1]$ and \mathcal{D} be a collection of subsets of $[0,1]$. We define

$$
\mathcal{V}(\mathcal{D}, T)=\{V \in \mathcal{D} ; V \cap T=\emptyset\}
$$

and if $\mathcal{P}_{n, N+1}^{S} \neq \emptyset$, then we set

$$
\mu_{n, k}^{S}=1-\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)^{S}}{\sharp \mathcal{P}_{n, N+1}^{S}} \quad \text { and } \quad \mu_{n, k}=\mu_{n, k}^{[0,1]} .
$$

Lemma 3.13.
(i) $\mu(A) \leq \mu_{n, k}$ for all $n, k \in \mathbb{N}$.
(ii) If $n, s, k \in \mathbb{N}$ and $n \geq s$ then $\mu_{n, k} \leq \sup \left\{\mu_{n, k}^{V} ; V \in \mathcal{P}_{s, N+1}\right\} \cdot \mu_{s, k}$.

Proof. (i) We have

$$
\begin{equation*}
A \cap P \subset A_{k} \cap P \subset A_{k} \cap P_{n} \subset \bigcup\left(\mathcal{P}_{n, N+1} \backslash \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)\right) \tag{3.6}
\end{equation*}
$$

Using Lemma 3.10, (3.6) and (3.2) we conclude that

$$
\begin{aligned}
\mu(A) & =\mu(A \cap P) \leq \mu\left(\bigcup\left(\mathcal{P}_{n, N+1} \backslash \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)\right)\right. \\
& =\sum_{J \in \mathcal{P}_{n, N+1} \backslash \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)} \mu(J)=\frac{\sharp\left(\mathcal{P}_{n, N+1} \backslash \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)\right)}{\sharp \mathcal{P}_{n, N+1}}=\mu_{n, k} .
\end{aligned}
$$

(ii) It is easy to verify that

$$
\begin{aligned}
\mu_{n, k} & =1-\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)}{\sharp \mathcal{P}_{n, N+1}}=1-\sum_{V \in \mathcal{P}_{s, N+1}} \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)^{V}}{\sharp \mathcal{P}_{s, N+1} \cdot \sharp \mathcal{P}_{n, N+1}^{V}} \\
& =\frac{1}{\sharp \mathcal{P}_{s, N+1}} \sum_{V \in \mathcal{P}_{s, N+1}} 1-\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n, N+1}, A_{k}\right)^{V}}{\sharp \mathcal{P}_{n, N+1}^{V}}=\frac{\sum_{V \in \mathcal{P}_{s, N+1}} \mu_{n, k}^{V}}{\sharp \mathcal{P}_{s, N+1}} \\
& =\frac{\sum_{V \in \mathcal{P}_{s, N+1} \backslash \mathcal{V}\left(\mathcal{P}_{s, N+1}, A_{k}\right)} \mu_{n, k}^{V}}{\sharp \mathcal{P}_{s, N+1}},
\end{aligned}
$$

where the last equality follows from the fact that $\mu_{n, k}^{V}=0$ for all $V \in$ $\mathcal{V}\left(\mathcal{P}_{s, N+1}, A_{k}\right)$. Thus, we have

$$
\begin{aligned}
\mu_{n, k} & \leq \sup \left\{\mu_{n, k}^{V} ; V \in \mathcal{P}_{s, N+1}\right\} \cdot \frac{\sharp\left(\mathcal{P}_{s, N+1} \backslash \mathcal{V}\left(\mathcal{P}_{s, N+1}, A_{k}\right)\right)}{\sharp \mathcal{P}_{s, N+1}} \\
& =\sup \left\{\mu_{n, k}^{V} ; V \in \mathcal{P}_{s, N+1}\right\} \cdot \mu_{s, k} .
\end{aligned}
$$

We assume that $k \in \mathbb{N}$ is fixed in the following definition and in Lemmas 3.15 3.17.

Definition 3.14. Let $S \subset[0,1]$ be an interval and $j \in\{0, \ldots, N-1\}$. We inductively define

$$
\begin{aligned}
\mathcal{K}_{j, j+1}(S) & =\mathcal{T}\left(z_{k}^{j+1}, W_{j+1}\right)^{S} \\
\mathcal{K}_{j, t}(S) & =\bigcup_{L \in \mathcal{K}_{j, t-1}(S)} \mathcal{T}\left(z_{k}^{t}, W_{t}\right)^{L}, \quad t=j+2, \ldots, N .
\end{aligned}
$$

Lemma 3.15.
(i) For every $Z \in \mathcal{K}_{j, t}(S)$ we have $\lambda(Z)=\lambda\left(W_{t}\right) /\left|z_{k}^{t}\right| \geq 1 /\left(l\left|z_{k}^{t}\right|\right)$.
(ii) Let $K, L \subset[0,1]$ and $K \cap L=\emptyset$. Then $\mathcal{K}_{j, t}(K) \cap \mathcal{K}_{j, t}(L)=\emptyset$.
(iii) Let $K, L \in \mathcal{K}_{j, t}(S)$. Then $K=L$ or $K \cap L=\emptyset$.
(iv) $\cup \mathcal{K}_{j, t}(S) \cap A_{k, j, t}=\emptyset$.

Proof. Statements (i)-(iii) are easy to verify.
(iv) It is straightforward to show that

$$
\begin{aligned}
\bigcup \mathcal{K}_{j, t}(S) & \subset \bigcap_{i=j+1}^{t} \bigcup \mathcal{T}\left(z_{k}^{i}, W_{i}\right)^{S} \\
A_{k, j, t} & =\bigcup_{i=j+1}^{t}\left([0,1] \backslash \bigcup \mathcal{T}\left(z_{k}^{i}, W_{i}\right)^{\mathbb{R}}\right)
\end{aligned}
$$

Since $\mathcal{T}\left(z_{k}^{i}, W_{i}\right)^{S} \subset \mathcal{T}\left(z_{k}^{i}, W_{i}\right)^{\mathbb{R}}$ for every $1 \leq i \leq N$, the right-hand sides above are disjoint.

Lemma 3.16. Let $0 \leq j<t \leq N$ and let $S \subset[0,1]$ be an interval with $\lambda(S) \geq 4 /\left|z_{k}^{j+1}\right|$. Then $\lambda\left(\bigcup \mathcal{K}_{j, t}(S)\right) \geq \lambda(S)(2 l)^{j-t}$.

Proof. We argue by induction. First, we assume that $t=j+1$. Then $\mathcal{K}_{j, t}(S)=\mathcal{T}\left(z_{k}^{t}, W_{t}\right)^{S}$ and $\lambda(S) \geq 4 /\left|z_{k}^{t}\right|$. We have

$$
\begin{aligned}
\lambda\left(\bigcup \mathcal{K}_{j, t}(S)\right) & =\lambda\left(\bigcup \mathcal{T}\left(z_{k}^{t}, W_{t}\right)^{S}\right) \stackrel{\mathrm{L} \text { 3.7 }}{\geq} \frac{1}{2} \lambda(S) \lambda\left(W_{t}\right) \\
& \stackrel{3.5}{\geq} \lambda(S)(2 l)^{-1}=\lambda(S)(2 l)^{j-t}
\end{aligned}
$$

Now, we assume that $t>j+1$ and that we have already proved

$$
\begin{equation*}
\lambda\left(\bigcup \mathcal{K}_{j, t-1}(S)\right) \geq \lambda(S)(2 l)^{j-t+1} \tag{3.7}
\end{equation*}
$$

Let $L \in \mathcal{K}_{j, t-1}(S)$ be arbitrary. Then $\lambda(L)=\lambda\left(W_{t-1}\right) /\left|z_{k}^{t-1}\right|$. By 3.4 we have $\lambda\left(W_{t-1}\right) /\left|z_{k}^{t-1}\right| \geq 10 /\left|z_{k}^{t}\right|$. Thus

$$
\begin{equation*}
\lambda(L) \geq 4 /\left|z_{k}^{t}\right| \tag{3.8}
\end{equation*}
$$

We obtain

$$
\begin{aligned}
& \lambda\left(\bigcup \mathcal{K}_{j, t}(S)\right)=\lambda\left(\bigcup \bigcup_{L \in \mathcal{K}_{j, t-1}(S)} \mathcal{T}\left(z_{k}^{t}, W_{t}\right)^{L}\right) \\
& \text { L3.15(ii),(iii) } \sum_{L \in \mathcal{K}_{j, t-1}(S)} \lambda\left(\bigcup \mathcal{T}\left(z_{k}^{t}, W_{t}\right)^{L}\right) \\
& \stackrel{L 3.7}{\geq} \\
& \sum_{L \in \mathcal{K}_{j, t-1}(S)} \frac{1}{2} \lambda(L) \lambda\left(W_{t}\right) \\
& \stackrel{3}{\geq} \\
& \stackrel{\text { L } 3.15 \text { (iii) }}{=}(2 l)^{-1} \lambda\left(\bigcup \mathcal{K}_{j, t-1}(S)\right) \\
& \stackrel{3.7}{\geq} \quad \lambda(S)(2 l)^{j-t},
\end{aligned}
$$

where (3.8) was used to verify the condition of Lemma 3.7.

Lemma 3.17. Let $0 \leq \sigma<\rho \leq N, 1 \leq s \leq N, 1 \leq j \leq N+1$, n, k be natural numbers and $I \in \mathcal{P}_{n, s}$. Suppose that

$$
\begin{align*}
n & \geq l^{2} \tag{3.9}\\
n\left\|\mathcal{P}_{n, s+1}\right\| & \geq \frac{1}{\left|z_{k}^{i}\right|} \geq(n+1)\left\|\mathcal{P}_{n+1, j}\right\|, \quad \sigma<i \leq \rho . \tag{3.10}
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n+1, j}^{I}, A_{k, \sigma, \rho}\right)}{\sharp \mathcal{P}_{n+1, j}^{I}} \geq \frac{1}{4}(2 l)^{\sigma-\rho} . \tag{3.11}
\end{equation*}
$$

Proof. By Lemma 3.15 (iii),(iv) we have

$$
\begin{equation*}
\mathcal{V}\left(\mathcal{P}_{n+1, j}^{I}, A_{k, \sigma, \rho}\right) \supset \mathcal{P}_{n+1, j}^{\cup \mathcal{K}_{\sigma, \rho}(I)} \supset \bigcup_{K \in \mathcal{K}_{\sigma, \rho}(I)} \mathcal{P}_{n+1, j}^{K} \tag{3.12}
\end{equation*}
$$

By (3.12), Lemma 3.15(iii) and Lemma 3.6(i) we have

$$
\begin{aligned}
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n+1, j}^{I}, A_{k, \sigma, \rho}\right)}{\sharp \mathcal{P}_{n+1, j}^{I}} & \geq \sum_{K \in \mathcal{K}_{\sigma, \rho}(I)} \frac{\sharp \mathcal{P}_{n+1, j}^{K}}{\sharp \mathcal{P}_{n+1, j}^{I}}=\sum_{K \in \mathcal{K}_{\sigma, \rho}(I)} \frac{\lambda\left(\bigcup \mathcal{P}_{n+1, j}^{K}\right)}{\lambda\left(\bigcup \mathcal{P}_{n+1, j}^{I}\right)} \\
& \geq \sum_{K \in \mathcal{K}_{\sigma, \rho}(I)} \frac{\lambda\left(\bigcup \mathcal{P}_{n+1, j}^{K}\right)}{\lambda(I)} .
\end{aligned}
$$

Thus, it is enough to verify that

$$
\begin{equation*}
\sum_{K \in \mathcal{K}_{\sigma, \rho}(I)} \lambda\left(\bigcup \mathcal{P}_{n+1, j}^{K}\right) \geq \frac{1}{4} \lambda(I)(2 l)^{\sigma-\rho} \tag{3.13}
\end{equation*}
$$

By (3.9) and (3.5) we have $n \geq l^{2}$ and $l>4$. By Lemma 3.6 (v) and (3.10),

$$
\lambda(I)=\left\|\mathcal{P}_{n, s}\right\| \geq n^{2}\left\|\mathcal{P}_{n, s+1}\right\| \geq \frac{n}{z_{k}^{\sigma+1}} \geq \frac{4}{z_{k}^{\sigma+1}}
$$

Thus Lemma 3.16 yields

$$
\begin{equation*}
\lambda\left(\bigcup \mathcal{K}_{\sigma, \rho}(I)\right) \geq \lambda(I)(2 l)^{\sigma-\rho} \tag{3.14}
\end{equation*}
$$

Let $K \in \mathcal{K}_{\sigma, \rho}(I)$. From Lemma $3.15(i), 3.10$ and $n+1>8 l$ we have

$$
\lambda(K) \geq \frac{1}{l z_{k}^{\rho}} \geq 8\left\|\mathcal{P}_{n+1, j}\right\|
$$

Thus Lemma 3.8 implies

$$
\begin{equation*}
\lambda\left(\bigcup \mathcal{P}_{n+1, j}^{K}\right) \geq \frac{1}{4} \lambda(K) \tag{3.15}
\end{equation*}
$$

By (3.15), Lemma 3.15(iii) and (3.14) we have
$\sum_{K \in \mathcal{K}_{\sigma, \rho}(I)} \lambda\left(\bigcup \mathcal{P}_{n+1, j}^{K}\right) \geq \frac{1}{4} \sum_{K \in \mathcal{K}_{\sigma, \rho}(I)} \lambda(K)=\frac{1}{4} \lambda\left(\bigcup \mathcal{K}_{\sigma, \rho}(I)\right) \geq \frac{1}{4} \lambda(I)(2 l)^{\sigma-\rho}$.
So, we have verified (3.13).
Lemma 3.18. Let $n_{0} \leq n_{1}<n_{2} \in \mathbb{N}, 1 \leq j_{1}<j_{2}<j_{3} \leq N+1$ and $T_{1}, T_{2} \subset[0,1]$. If there exist $\alpha_{1}, \alpha_{2}>0$ such that

$$
\begin{align*}
& \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{1}+1, j_{2}}^{I_{1}}, T_{1}\right)}{\sharp \mathcal{P}_{n_{1}+1, j_{2}}^{I_{1}}} \geq \alpha_{1}, \tag{3.16}\\
& \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}+1, j_{3}}^{I_{2}}, T_{2}\right)}{\sharp \mathcal{P}_{n_{2}+1, j_{3}}^{I_{2}}} \geq \alpha_{2}, \tag{3.17}
\end{align*}
$$

for every $I_{1} \in \mathcal{P}_{n_{0}, j_{1}}$ and $I_{2} \in \mathcal{P}_{n_{2}, j_{2}}$, then

$$
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}+1, j_{3}}^{I}, T_{1} \cup T_{2}\right)}{\sharp \mathcal{P}_{n_{2}+1, j_{3}}^{I}} \geq \frac{1}{4} \alpha_{1} \alpha_{2}
$$

for every $I \in \mathcal{P}_{n_{0}, j_{1}}$.
Proof. Let $I \in \mathcal{P}_{n_{0}, j_{1}}$. Clearly,

$$
\begin{equation*}
\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}, j_{2}}^{I}, T_{1}\right) \geq \sum_{V \in \mathcal{V}\left(\mathcal{P}_{n_{1}+1, j_{2}}^{I}, T_{1}\right)} \sharp \mathcal{P}_{n_{2}, j_{2}}^{V} . \tag{3.18}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}, j_{2}}^{I}, T_{1}\right)}{\sharp \mathcal{P}_{n_{2}, j_{2}}^{I}} \xrightarrow{3.18, \mathrm{~L}(3.6 \text { (iv) }} \frac{\sum_{V \in \mathcal{V}\left(\mathcal{P}_{n_{1}+1, j_{2}}^{I}, T_{1}\right)} \sharp \mathcal{P}_{n_{2}, j_{2}}^{V}}{2 \sum_{W \in \mathcal{P}_{n_{1}+1, j_{2}}^{I}} \sharp \mathcal{P}_{n_{2}, j_{2}}^{W}} \tag{3.19}\\
& \stackrel{\mathrm{~L} \sqrt{3.6}(\text { (ii) }}{\geq} \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{1}+1, j_{2}}^{I}, T_{1}\right)}{2 \sharp \mathcal{P}_{n_{1}+1, j_{2}}^{I}} \stackrel{\sqrt{3.16}}{\geq} \frac{1}{2} \alpha_{1} .
\end{align*}
$$

Clearly,

$$
\begin{equation*}
\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}+1, j_{3}}^{I}, T_{1} \cup T_{2}\right) \geq \sum_{V \in \mathcal{V}\left(\mathcal{P}_{n_{2}, j_{2}}^{I}, T_{1}\right)} \sharp \mathcal{V}\left(\mathcal{P}_{n_{2}+1, j_{3}}^{V}, T_{2}\right) . \tag{3.20}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}+1, j_{3}}^{I}, T_{1} \cup T_{2}\right)}{\sharp \mathcal{P}_{n_{2}+1, j_{3}}^{I}} \stackrel{3.20}{2} \mathrm{~L}[3.6 \text { iv }) \sum_{V \in \mathcal{V}\left(\mathcal{P}_{n_{2}, j_{2}}^{I}, T_{1}\right)} \sharp \mathcal{V}\left(\mathcal{P}_{n_{2}+1, j_{3}}^{V}, T_{2}\right) \\
& 2 \sum_{W \in \mathcal{P}_{n_{2}, j_{2}}^{I}} \sharp \mathcal{P}_{n_{2}+1, j_{3}}^{W} \\
& \stackrel{\mid 3.17}{\geq} \alpha_{2} \frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{2}, j_{2}}^{I}, T_{1}\right)}{2 \sharp \mathcal{P}_{n_{2}, j_{2}}^{I}} \stackrel{\sqrt{3.19}}{\geq} \frac{1}{4} \alpha_{2} \alpha_{1} .
\end{aligned}
$$

Lemma 3.19. There exists $\varepsilon>0$ such that for every $n, k \in \mathbb{N}$ there exist $\tilde{n} \in \mathbb{N}$ and $\tilde{k} \in \mathbb{N}$ such that $\tilde{n}>n, \tilde{k}>k$ and

$$
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{I}, A_{\tilde{k}, 0, N}\right)}{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}} \geq \varepsilon
$$

for every $I \in \mathcal{P}_{n, N+1}$.
Proof. Set $\varepsilon=2(32 l)^{-N}$. Let $n, k \in \mathbb{N}$. We set $n_{0}=\max \left\{n+1, l^{2}\right\}$. We will construct $\tilde{k}>k, s \leq N$ and sequences $n_{0}<n_{1}<\cdots<n_{s}$ and $0=v_{0}<v_{1}<\cdots<v_{s}=N$ such that

$$
\forall 0<i \leq s \forall v_{i-1}<j \leq v_{i}: n_{i}\left\|\mathcal{P}_{n_{i}, v_{i-1}+2}\right\| \geq \frac{1}{\left|z_{\tilde{k}}^{j}\right|}>\left(n_{i}+1\right)\left\|\mathcal{P}_{n_{i}+1, v_{i}+1}\right\| .
$$

Since $\boldsymbol{z} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$ and (3.4) holds we have lim $\left|z_{i}^{1}\right|=\infty$ and $\left|z_{i}^{j+1}\right| \geq$ $10\left|z_{i}^{j}\right|$ for every $i \in \mathbb{N}, j<N$. Thus, we can find $\tilde{k}>k$ such that $1 /\left|z_{\tilde{k}}^{1}\right| \leq$ $\left\|\mathcal{P}_{n_{0}+1,2}\right\|\left(n_{0}+1\right)$. We set $v_{0}=0$. Assume that we have already constructed n_{0}, \ldots, n_{i} and v_{0}, \ldots, v_{i} for some $i \geq 0$. If $v_{i}=N$ we set $s=i$ and we are done. If $v_{i}<N$ we find $n_{i+1} \in \mathbb{N}$ such that

$$
n_{i+1}\left\|\mathcal{P}_{n_{i+1}, v_{i}+2}\right\| \geq \frac{1}{\left|z_{\tilde{k}}^{v_{i}+1}\right|}>\left(n_{i+1}+1\right)\left\|\mathcal{P}_{n_{i+1}+1, v_{i}+2}\right\| .
$$

Further we find the largest $v_{i+1} \in\left\{v_{i}+1, \ldots, N\right\}$ such that

$$
\frac{1}{\left|z_{\tilde{k}}^{v_{i+1}}\right|}>\left(n_{i+1}+1\right)\left\|\mathcal{P}_{n_{i+1}+1, v_{i+1}+1}\right\|
$$

and we are done. We set $\tilde{n}=n_{s}+1$.
We use Lemma 3.17 replacing σ, ρ, s, j, n, k by $v_{i-1}, v_{i}, v_{i-1}+1, v_{i}+1$, n_{i}, \tilde{k} respectively to obtain

$$
\begin{equation*}
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{i}+1, v_{i}+1}^{V}, A_{\tilde{k}, v_{i-1}, v_{i}}\right)}{\sharp \mathcal{P}_{n_{i}+1, v_{i}+1}^{V}} \geq \frac{1}{4}(2 l)^{v_{i-1}-v_{i}} \tag{3.21}
\end{equation*}
$$

for every $V \in \mathcal{P}_{n_{i}, v_{i-1}+1}$ and $1 \leq i \leq s$.
We will prove by induction that

$$
\begin{equation*}
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{j}+1, v_{j}+1}^{V}, A_{\tilde{k}, v_{0}, v_{j}}\right)}{\sharp \mathcal{P}_{n_{j}+1, v_{j}+1}^{V}} \geq 4^{-j}(2 l)^{-v_{j}} \cdot 4^{-j+1} \tag{3.22}
\end{equation*}
$$

for every $V \in \mathcal{P}_{n_{1}, 1}$ and $1 \leq j \leq s$.
By (3.21) we have (3.22) for $j=1$.
Suppose that $1<j \leq s$ and (3.22) holds for $j-1$. Thus, by (3.21) and Lemma 3.18 replacing $n_{0}, n_{1}, n_{2}, j_{1}, j_{2}, j_{3}, T_{1}, T_{2}$ by $n_{1}, n_{j-1}, n_{j}, 1, v_{j-1}+1$,
$v_{j}+1, A_{\tilde{k}, v_{0}, v_{j-1}}, A_{\tilde{k}, v_{j-1}, v_{j}}$ respectively we have

$$
\begin{aligned}
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{j}+1, v_{j}+1}^{V}, A_{\tilde{k}, v_{0}, v_{j}}\right)}{\sharp \mathcal{P}_{n_{j}+1, v_{j}+1}^{V}} & =\frac{\sharp \mathcal{V}\left(\mathcal{P}_{n_{j}+1, v_{j}+1}^{V}, A_{\tilde{k}, v_{0}, v_{j-1}} \cup A_{\tilde{k}, v_{j-1}, v_{j}}\right)}{\sharp \mathcal{P}_{n_{j}+1, v_{j}+1}^{V}} \\
& \geq \frac{1}{4}\left(4^{-j+1}(2 l)^{-v_{j-1}} \cdot 4^{-j+2}\right)\left(\frac{1}{4}(2 l)^{v_{j-1}-v_{j}}\right) \\
& =4^{-j}(2 l)^{-v_{j}} \cdot 4^{-j+1}
\end{aligned}
$$

Thus we obtain (3.22).
Since $v_{s}=N, s \leq N$ and 3.22 holds, we have

$$
\begin{equation*}
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{V}, A_{\tilde{k}, 0, N}\right)}{\sharp \mathcal{P}_{\tilde{n}, N+1}^{V}} \geq 4^{-s}(2 l)^{-N} \cdot 4^{-s+1} \geq 2 \varepsilon \tag{3.23}
\end{equation*}
$$

for every $V \in \mathcal{P}_{n_{1}, 1}$. Fix $I \in \mathcal{P}_{n, N+1}$. Clearly,

$$
\begin{equation*}
\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{I}, A_{\tilde{k}, 0, N}\right) \geq \sum_{V \in \mathcal{P}_{n_{1}, 1}^{I}} \sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{V}, A_{\tilde{k}, 0, N}\right) \tag{3.24}
\end{equation*}
$$

By (3.24), (3.23) and Lemma 3.6(iv),(ii) we have

$$
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{I}, A_{\tilde{k}, 0, N}\right)}{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}} \geq \frac{\sum_{V \in \mathcal{P}_{n_{1}, 1}^{I}} \sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{V}, A_{\tilde{k}, 0, N}\right)}{2 \sum_{W \in \mathcal{P}_{n_{1}, 1}^{I}} \sharp \mathcal{P}_{\tilde{n}, N+1}^{W}} \geq \varepsilon .
$$

Proof of Lemma 2.4. We need to show that $\mu(A)=0$. Set $\varepsilon=2(32 l)^{-N}$. Let $n, k \in \mathbb{N}$. By Lemma 3.19 there exist $\tilde{n}, \tilde{k} \in \mathbb{N}$ such that

$$
\frac{\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{I}, A_{\tilde{k}, 0, N}\right)}{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}} \geq \varepsilon
$$

for every $I \in \mathcal{P}_{n, N+1}$. Since $A_{\tilde{k}} \subset A_{\tilde{k}, 0, N}$ we have

$$
\begin{aligned}
\mu_{\tilde{n}, \tilde{k}}^{I} & =\frac{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}-\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{I}, A_{\tilde{k}}\right)}{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}} \\
& \leq \frac{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}-\sharp \mathcal{V}\left(\mathcal{P}_{\tilde{n}, N+1}^{I}, A_{\tilde{k}, 0, N}\right)}{\sharp \mathcal{P}_{\tilde{n}, N+1}^{I}} \leq 1-\varepsilon
\end{aligned}
$$

for every $I \in \mathcal{P}_{n, N+1}$. Thus by Lemma 3.13 (ii) we have $\mu_{\tilde{n}, \tilde{k}} \leq(1-\varepsilon) \mu_{n, k}$. Hence $\inf \left\{\mu_{n, k} ; n, k \in \mathbb{N}\right\}=0$, and Lemma 3.13(i) yields

$$
0 \leq \mu(A) \leq \inf \left\{\mu_{n, k} ; n, k \in \mathbb{N}\right\}=0
$$

4. Proof of Theorem 2.5

Notation 4.1. Let $N, n \in \mathbb{N}, \boldsymbol{a} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right), y \in \mathbb{R}$, and let $J \subset \mathbb{R}$ and $\mathcal{J}=\prod_{j=1}^{N} J^{j} \subset[0,1]^{N}$ be open intervals. We set

$$
\begin{aligned}
T(y, J) & =\{x \in[0,1] ;\langle x y\rangle \in\langle J\rangle\}, \\
H_{n}(\boldsymbol{a}, \mathcal{J}) & =[0,1] \backslash \bigcap_{p=1}^{N} T\left(a_{n}^{p}, J^{p}\right), \quad H(\boldsymbol{a}, \mathcal{J})=\bigcap_{n \in \mathbb{N}} H_{n}(\boldsymbol{a}, \mathcal{J}) .
\end{aligned}
$$

Notation 4.2. Let $m \in \mathbb{N}, I \subset[0,1]^{m}$ be an interval and let $\boldsymbol{z} \in$ $\mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{m}\right)$. Then we define

$$
H(\boldsymbol{z}, I)=\left\{x \in[0,1] ; \forall k \in \mathbb{N}:\left\langle x \cdot z_{k}\right\rangle \notin I\right\} .
$$

Remark 4.3. Let $m \in \mathbb{N}$.
(i) If $A \in H^{(m) *}$ then there exist $\boldsymbol{z} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{m}\right)$ and an open interval $W \subset[0,1]^{m}$ such that $A \subset H(\boldsymbol{z}, W)$.
(ii) If $I \subset J \subset[0,1]^{m}$ are open intervals and $\boldsymbol{r} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{m}\right)$, then $H(\boldsymbol{r}, J) \subset H(\boldsymbol{r}, I)$.

Lemma 4.4. Let $N \in \mathbb{N}, \boldsymbol{a}=\left\{a_{j}\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$, $\left\{j_{k}\right\}$ be an increasing sequence of integers and $\mathcal{J} \subset \mathcal{U} \subset[0,1]^{N}$ be open intervals. Then:
(i) $\left\{a_{j_{k}}\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$.
(ii) $H(\boldsymbol{a}, \mathcal{U}) \subset H\left(\left\{a_{j_{k}}\right\}, \mathcal{U}\right)$.
(iii) $H(\boldsymbol{a}, \mathcal{U})=\bigcap_{n \in \mathbb{N}} H_{n}(\boldsymbol{a}, \mathcal{U})$.
(iv) Let $L \in \mathbb{R}^{N \times N}$ be a nonsingular matrix. Then there exists a finite set $M \subset \mathbb{N}$ such that for every increasing sequence $\left\{v_{k}\right\}$ of elements from $\mathbb{N} \backslash M$ we have $\left\{L\left(a_{v_{k}}\right)\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$.
(v) Let $y \in \mathbb{R} \backslash\{0\}$ and $J \subset[0,1]$ be an open interval. Then $T(y, J)=$ $\bigcup_{n \in \mathbb{Z}} \frac{1}{y}(J+n) \cap[0,1]=\bigcup \mathcal{T}(y, J) \cap[0,1]$.
(vi) Let $m \in \mathbb{Z} \backslash\{0\}, y \in \mathbb{R} \backslash\{0\}$ and $u, r \in \mathbb{R}$. Then $T(y, B(u, r)) \supset$ $T(y / m, B(u / m, r /|m|))$, where $B(x, s)=(x-s, x+s)$ for $s>0$.
(vii) Let $y \in \mathbb{R} \backslash\{0\}$, and let $J \subset \mathbb{R}$ and $V \subset\langle J\rangle$ be open intervals. Then $T(y, J) \supset T(y, V)$.
Proof. (i)-(iii), (v) and (vii) are trivial.
(iv) We set $M=\left\{i \in \mathbb{N} ; \exists s \leq N:\left(L\left(a_{i}\right)\right)^{s}=0\right\}$. Let $\left\{v_{k}\right\}$ be an increasing sequence of elements from $\mathbb{N} \backslash M$. Then $\left\{L\left(a_{v_{k}}\right)\right\} \in\left((\mathbb{R} \backslash\{0\})^{N}\right)^{\mathbb{N}}$. Let $\alpha \in \mathbb{Z}^{N} \backslash\{0\}$. Then $L^{T}(\alpha)$ is a nonzero vector, where L^{T} is the transpose of the matrix L. Thus we have

$$
\lim _{n \rightarrow \infty}\left|\left(L\left(a_{v_{k}}\right), \alpha\right)\right|=\lim _{n \rightarrow \infty}\left|\left(a_{v_{k}}, L^{T}(\alpha)\right)\right|=\infty .
$$

Thus, $L\left(a_{v_{k}}\right) \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$.
(vi) Clearly, $\mathcal{T}(y, B(u, r)) \supset \mathcal{T}(y / m, B(u / m, r /|m|))$. Thus (vi) follows from (v).

We will use the following well known approximation theorem.
Lemma 4.5 ([10, Dirichlet's Theorem on Simultaneous Approximations]). Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers and $Q>1$ be an integer. Then there exist integers q, p_{1}, \ldots, p_{n} with $1 \leq q<Q^{n}$ and $\left|\alpha_{i} q-p_{i}\right| \leq 1 / Q$ for all $1 \leq i \leq n$.

Lemma 4.6. Let $N \in \mathbb{N}$, $\boldsymbol{a} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$ and let $\mathcal{U}_{n}=U^{1} \times \cdots \times$ $U^{N-1} \times U_{n}^{N} \subset[0,1]^{N}$ for $n \in \mathbb{N}$ be open intervals. If there exists $\alpha>0$ such that $\lambda\left(U_{n}^{N}\right) \geq \alpha$ for all $n \in \mathbb{N}$ then there exist an increasing sequence $\left\{j_{n}\right\}$ of positive integers and an open interval $\mathcal{J}=U^{1} \times \cdots \times U^{N-1} \times J^{N} \subset[0,1]^{N}$ such that for every $n \in \mathbb{N}$ we have
(i) $4 \lambda\left(J^{N}\right) \geq \lambda\left(U_{j_{n}}^{N}\right)$,
(ii) $H_{n}\left(\left\{a_{j_{n}}\right\}, \mathcal{U}_{j_{n}}\right) \subset H_{n}\left(\left\{a_{j_{n}}\right\}, \mathcal{J}\right)$.

Proof. Since $\inf \left\{\lambda\left(U_{n}^{N}\right) ; n \in \mathbb{N}\right\} \geq \alpha>0$ there exists an increasing sequence $\left\{v_{n}\right\}$ of positive integers such that

$$
4 \inf \left\{\lambda\left(U_{v_{n}}^{N}\right) ; n \in \mathbb{N}\right\}>3 \sup \left\{\lambda\left(U_{v_{n}}^{N}\right) ; n \in \mathbb{N}\right\}
$$

We find $l \in \mathbb{N}$ such that

$$
2 / l \leq \inf \left\{\lambda\left(U_{v_{n}}^{N}\right) ; n \in \mathbb{N}\right\}<3 / l
$$

For all $j \in \mathbb{N}$ we find $b_{j} \in \mathbb{N}_{0}$ and an open interval $J_{j}^{N}=\left(b_{j} / l,\left(b_{j}+1\right) / l\right)$ such that $J_{j}^{N} \subset U_{v_{j}}^{N}$. Since the set $\left\{J_{j}^{N} ; j \in \mathbb{N}\right\}$ is finite there exists an increasing sequence $\left\{p_{n}\right\}$ of positive integers and an open interval J^{N} such that $J_{p_{n}}^{N}=J^{N}$ for all $n \in \mathbb{N}$. We set $\mathcal{J}=U^{1} \times \cdots \times U^{N-1} \times J^{N}$ and $j_{n}=v_{p_{n}}$. Thus,

$$
H_{n}\left(\left\{a_{j_{n}}\right\}, \mathcal{U}_{j_{n}}\right) \subset H_{n}\left(\left\{a_{j_{n}}\right\}, \mathcal{J}\right)
$$

for every $n \in \mathbb{N}$. Clearly,

$$
4 \lambda\left(J^{N}\right)=\frac{4}{l} \geq \frac{4}{3} \inf \left\{\lambda\left(U_{v_{n}}^{N}\right) ; n \in \mathbb{N}\right\}>\sup \left\{\lambda\left(U_{v_{n}}^{N}\right) ; n \in \mathbb{N}\right\} \geq \lambda\left(U_{j_{m}}^{N}\right)
$$

for all $m \in \mathbb{N}$.
The following lemma was inspired by Zajíček 12 .
Lemma 4.7. Let $y, z \in \mathbb{R} \backslash\{0\}, y \neq z$, let $U=B\left(u, r_{1}\right)$ and $V=B\left(v, r_{2}\right)$ be subsets of $[0,1]$, and $\delta \leq \min \{\lambda(V) /|y|, \lambda(U) /|z|\}$. If $4|y|>3|z|$ then

$$
T(y, V) \cap T(z, U) \supset T(z, B(u,|z| \delta / 4)) \cap T\left(y-z, B\left(v-u, r_{2} / 4\right)\right)
$$

Proof. Since $|z| \delta / 4 \leq r_{1}$ we have $B(u,|z| \delta / 4) \subset U$. Thus

$$
T(z, U) \supset T(z, B(u,|z| \delta / 4))
$$

Let $x \in T(z, B(u,|z| \delta / 4)) \cap T\left(y-z, B\left(v-u, r_{2} / 4\right)\right)$. Then there exist $\xi \in$ $B\left(0, r_{2} / 4\right), \mu \in B(0,|z| \delta / 4)$ and $m, n \in \mathbb{Z}$ such that

$$
x=(\xi+v-u+n) \frac{1}{y-z}, \quad x=(\mu+u+m) \frac{1}{z} .
$$

Thus, $x=(\xi+\mu+v+m+n) \frac{1}{y}$. Since $|\xi+\mu| \leq r_{2} / 4+|z| \delta / 4<r_{2} / 4+|y| \delta / 3<$ $r_{2} / 4+2 r_{2} / 3<r_{2}$, we have $\xi+\mu+v \in V$. Thus, $x \in T(y, V)$.

Lemma 4.8. Let $N \in \mathbb{N}, \boldsymbol{a} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$, $\operatorname{let} \mathcal{U}=\prod_{i=1}^{N} U^{i} \subset[0,1]^{N}$ be an open interval, $L \in \mathbb{N}$ and $\delta_{j}=\min \left\{\lambda\left(U^{i}\right) /\left|a_{j}^{i}\right| ; i=1, \ldots, N\right\}$ for every $j \in \mathbb{N}$. Then there exist a nonsingular matrix $\mathcal{L} \in \mathbb{Q}^{N \times N}$, an increasing sequence $\left\{v_{n}\right\}$ of positive integers and an open interval $\mathcal{J}=\prod_{i=1}^{N} J^{i} \subset$ $[0,1]^{N}$ such that
(a) $\boldsymbol{x}:=\left\{\mathcal{L}\left(a_{v_{n}}\right)\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$,
(b) $\forall n \in \mathbb{N}: H_{n}\left(\left\{a_{v_{n}}\right\}, \mathcal{U}\right) \subset H_{n}(\boldsymbol{x}, \mathcal{J})$,
(c) $\forall n \in \mathbb{N} \forall i<N:\left|x_{n}^{N} \lambda\left(J^{i}\right) / x_{n}^{i}\right| \geq L$,
(d) $\lambda\left(J^{N}\right) /\left|x_{n}^{N}\right| \geq \delta_{v_{n}} / 16$.

Proof. Passing to a subsequence and permuting indices if necessary, we can assume that $\left|a_{n}^{i}\right|<\left|a_{n}^{i+1}\right|$ for all $n \in \mathbb{N}$ and $i<N$. We find $Q \in \mathbb{N}$ such that $1 / Q<\min \left\{\lambda\left(U^{i}\right) ; i=1, \ldots, N\right\} /(8 L)$. By Lemma 4.5 for every $j \in \mathbb{N}$ there exist $q_{j}, p_{j}^{1}, \ldots, p_{j}^{N-1} \in \mathbb{Z}$ such that

$$
\begin{align*}
1 \leq q_{j} & \leq Q^{N-1}, \\
\left|q_{j} \frac{a_{j}^{i}}{a_{j}^{N}}-p_{j}^{i}\right| & \leq \frac{1}{Q}, \quad i=1, \ldots, N-1 . \tag{4.1}
\end{align*}
$$

Since $\left|a_{j}^{i}\right| /\left|a_{j}^{N}\right|<1$, we have $\left|p_{j}^{i}\right| \leq Q^{N-1}$ for every $j \in \mathbb{N}$ and $i=1, \ldots$, $N-1$. Passing to a subsequence if necessary, we can assume that there exist $q, p^{1}, \ldots, p^{N-1}$ such that $q=q_{j}, p^{i}=p_{j}^{i}$ for every $j \in \mathbb{N}$. Clearly, there exists $0 \leq s<N$ such that $p^{i}=0$ if and only if $i \leq s$. Denote by u^{i} the center of the interval U^{i} and set

$$
y_{j}^{i}= \begin{cases}a_{j}^{i} & \text { for } i \leq s, \\ a_{j}^{i} / p^{i}-a_{j}^{N} / q & \text { for } s<i<N, \quad j \in \mathbb{N} . \\ a_{j}^{N} / q & \text { for } i=N,\end{cases}
$$

Further we define

- $J^{i}=U^{i}$ for $i \leq s$,
- $\widetilde{J}^{i}=B\left(u^{i} / p^{i}-u^{N} / q, \lambda\left(U^{i}\right) /\left(8\left|p^{i}\right|\right)\right)$ for $s<i<N$,
- $\widetilde{J}_{j}^{N}=B\left(u^{N} / q, \delta_{j}\left|y_{j}^{N}\right| / 4\right)$ for $j \in \mathbb{N}$,
- $J_{j}^{N}=\widetilde{J}_{j}^{N} \cap(0,1)$.

Since $u^{N} / q \in(0,1)$ we have $\lambda\left(J_{j}^{N}\right) \geq \frac{1}{2} \lambda\left(\widetilde{J}_{j}^{N}\right)$. Passing to a subsequence if
necessary and using Lemma 4.4(iv) we see that $\boldsymbol{y}:=\left\{\left(y_{j}^{1}, \ldots, y_{j}^{N}\right)\right\}_{j}$ is in $\mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$. For every $s<i<\tilde{\sim}^{N}$ we find an open interval $J^{i} \subset[0,1]$ such that $\lambda\left(J^{i}\right) \geq \lambda\left(\widetilde{J}^{i}\right) / 2$ and $J^{i} \subset\left\langle\widetilde{J}^{i}\right\rangle$. By Lemma 4.4 (vi) we have

$$
\begin{align*}
T\left(a_{j}^{i}, U^{i}\right) & \supset T\left(\frac{a_{j}^{i}}{p^{i}}, B\left(\frac{u^{i}}{p^{i}}, \frac{\lambda\left(U^{i}\right)}{2\left|p^{i}\right|}\right)\right) \\
T\left(a_{j}^{N}, U^{N}\right) & \supset T\left(y_{j}^{N}, B\left(\frac{u^{N}}{q}, \frac{\lambda\left(U^{N}\right)}{2 q}\right)\right) . \tag{4.2}
\end{align*}
$$

Since

$$
\left|q \frac{a_{j}^{i}}{a_{j}^{N}}-p^{i}\right| \leq \frac{1}{Q}<\frac{\min \left\{\lambda\left(U^{i}\right) ; i=1, \ldots, N\right\}}{8 L} \leq \frac{1}{8}
$$

we have $4\left|a_{j}^{i} / p^{i}\right|>3\left|y_{j}^{N}\right|$. Since $a_{j}^{i} / p^{i}-y_{j}^{N}=y_{j}^{i}$ and $\boldsymbol{y} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$, it follows that $a_{j}^{i} / p^{i} \neq y_{j}^{N}$. We use Lemma 4.7 replacing $y, v, r_{2}, \delta, z, u, r_{1}$ by $a_{j}^{i} / p^{i}, u^{i} / p^{i}, \lambda\left(U^{i}\right) /\left(2\left|p^{i}\right|\right), \delta_{j}, y_{j}^{N}, u^{N} / q, \lambda\left(U^{N}\right) /(2 q)$ respectively to obtain

$$
\begin{align*}
& T\left(\frac{a_{j}^{i}}{p^{i}}, B\left(\frac{u^{i}}{p^{i}}, \frac{\lambda\left(U^{i}\right)}{2\left|p^{i}\right|}\right)\right) \cap T\left(y_{j}^{N}, B\left(\frac{u^{N}}{q}, \frac{\lambda\left(U^{N}\right)}{2 q}\right)\right) \tag{4.3}\\
& \supset T\left(y_{j}^{N}, \widetilde{J}_{j}^{N}\right) \cap T\left(y_{j}^{i}, \widetilde{J}^{i}\right)
\end{align*}
$$

Recall that $y-z$ is replaced by $a_{j}^{i} / p^{i}-y_{j}^{N}=y_{j}^{i}$.
By Lemma 4.4 (vii) and our choice of the sets J^{i}, J_{j}^{N} we have

$$
\begin{equation*}
T\left(y_{j}^{N}, \widetilde{J}_{j}^{N}\right) \cap T\left(y_{j}^{i}, \widetilde{J}^{i}\right) \supset T\left(y_{j}^{N}, J_{j}^{N}\right) \cap T\left(y_{j}^{i}, J^{i}\right) \tag{4.4}
\end{equation*}
$$

By (4.2)-(4.4) we have

$$
\begin{equation*}
H_{n}(\boldsymbol{a}, \mathcal{U}) \subset H_{n}\left(\boldsymbol{y}, J^{1} \times \cdots \times J^{N-1} \times J_{n}^{N}\right) \tag{4.5}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\lambda\left(J_{j}^{N}\right) & \geq \frac{1}{2} \lambda\left(\tilde{J}_{j}^{N}\right)=\frac{1}{4} \delta_{j}\left|y_{j}^{N}\right|=\frac{1}{4} \delta_{j} \frac{\left|a_{j}^{N}\right|}{q} \geq \frac{1}{4} \frac{\min \left\{\lambda\left(U^{i}\right) ; i=1, \ldots, N\right\}}{\left|a_{j}^{N}\right|} \frac{\left|a_{j}^{N}\right|}{q} \\
& =\frac{1}{4} \frac{\min \left\{\lambda\left(U^{i}\right) ; i=1, \ldots, N\right\}}{q}
\end{aligned}
$$

Thus we can use Lemma 4.6 to get an open interval J^{N} and an increasing sequence v_{n} of positive integers such that for every $n \in \mathbb{N}$,

$$
\begin{equation*}
H_{n}\left(\left\{y_{v_{n}}\right\}, J^{1} \times \cdots \times J^{N-1} \times J_{n}^{N}\right) \subset H_{n}\left(\left\{y_{v_{n}}\right\}, J^{1} \times \cdots \times J^{N}\right) \tag{4.6}
\end{equation*}
$$

and

$$
4 \lambda\left(J^{N}\right) \geq \lambda\left(J_{v_{n}}^{N}\right)
$$

We set $x_{n}^{i}:=y_{v_{n}}^{i}$ and $\mathcal{J}=J^{1} \times \cdots \times J^{N}$. By the definition of \boldsymbol{y} we easily see that \mathcal{L} is a triangular matrix without any zero element on the diagonal. Thus we have (a). By 4.5 and 4.6 we get (b). Assume $i \leq s$. Since

$$
\left|\frac{x_{j}^{i}}{x_{j}^{N}}\right|=\left|q \frac{a_{v_{j}}^{i}}{a_{v_{j}}^{N}}-p^{i}\right| \leq \frac{1}{Q}<\frac{\min \left\{\lambda\left(U^{i}\right) ; i=1, \ldots, N\right\}}{8 L},
$$

we have

$$
\left|\frac{x_{j}^{N} \lambda\left(J^{i}\right)}{x_{j}^{i}}\right|=\left|\frac{x_{j}^{N} \lambda\left(U^{i}\right)}{x_{j}^{i}}\right| \geq\left|\frac{x_{j}^{N} \cdot 8 L}{x_{j}^{i} Q}\right| \geq 8 L
$$

Let $s<i<N$. Since

$$
\left|\frac{x_{j}^{i} p^{i}}{x_{j}^{N}}\right|=\left|q \frac{a_{v_{j}}^{i}}{a_{v_{j}}^{N}}-p^{i}\right| \leq \frac{1}{Q}<\frac{\min \left\{\lambda\left(U^{i}\right) ; i=1, \ldots, N\right\}}{8 L},
$$

we deduce

$$
\left|\frac{x_{j}^{N} \lambda\left(J^{i}\right)}{x_{j}^{i}}\right| \geq\left|\frac{x_{j}^{N} \lambda\left(\widetilde{J^{i}}\right)}{2 x_{j}^{i}}\right|=\left|\frac{x_{j}^{N} \lambda\left(U^{i}\right)}{8 x_{j}^{i} p^{i}}\right| \geq\left|\frac{x_{j}^{N} L}{x_{j}^{i} Q p^{i}}\right| \geq L .
$$

Thus we have (c). Clearly,

$$
16 \lambda\left(J^{N}\right) \geq 4 \lambda\left(J_{v_{n}}^{N}\right) \geq 2 \lambda\left(\widetilde{J}_{v_{n}}^{N}\right)=\delta_{v_{n}}\left|x_{n}^{N}\right|
$$

for all $n \in \mathbb{N}$. Thus we have (d).
LEMMA 4.9. Let $N \in \mathbb{N}$, $\boldsymbol{a} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$, let $\mathcal{U}=\prod_{i=1}^{N} U^{i} \subset[0,1]^{N}$ be an open interval, $L \in \mathbb{N}$ and $\delta_{j}=\min \left\{\lambda\left(U^{i}\right) /\left|a_{j}^{i}\right| ; i=1, \ldots, N\right\}$ for every $j \in \mathbb{N}$. Then there exist $\boldsymbol{x} \in\left(\mathbb{R}^{N}\right)^{\mathbb{N}}$, a nonsingular matrix $M \in \mathbb{Q}^{N \times N}$, an increasing sequence $\left\{v_{n}\right\}$ of positive integers and an open interval $\mathcal{J}=$ $\prod_{i=1}^{N} J^{i} \subset[0,1]^{N}$ such that
(a) $\boldsymbol{x}:=\left\{M\left(a_{v_{n}}\right)\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$,
(b) $\forall n \in \mathbb{N}: H_{n}\left(\left\{a_{v_{n}}\right\}, \mathcal{U}\right) \subset H_{n}(\boldsymbol{x}, \mathcal{J})$,
(c) $\forall n \in \mathbb{N} \forall i<N:\left|x_{n}^{i+1} \lambda\left(J^{i}\right) / x_{n}^{i}\right| \geq L$,
(d) $\lambda\left(J^{N}\right) /\left|x_{n}^{N}\right| \geq \delta_{v_{n}} / 16$.

Proof. We use induction on N. The case $N=1$ is trivial. Assume that our statement holds for some $N-1 \in \mathbb{N}$; we show that it also holds for N. By Lemma 4.8 there exist a nonsingular matrix $\mathcal{L} \in \mathbb{Q}^{N \times N}$, an increasing sequence $\left\{p_{n}\right\}$ of positive integers and an open interval $\mathcal{V}=\prod_{i=1}^{N} V^{i} \subset$ $[0,1]^{N}$ such that
(i) $\boldsymbol{y}:=\left\{\mathcal{L}\left(a_{p_{n}}\right)\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$,
(ii) $\forall n \in \mathbb{N}: H_{n}\left(\left\{a_{p_{n}}\right\}, \mathcal{U}\right) \subset H_{n}(\boldsymbol{y}, \mathcal{V})$,
(iii) $\forall n \in \mathbb{N} \forall i<N:\left|y_{n}^{N} \lambda\left(V^{i}\right) / y_{n}^{i}\right| \geq 16 L$,
(iv) $\lambda\left(V^{N}\right) /\left|y_{n}^{N}\right| \geq \delta_{p_{n}} / 16$.

Clearly, $\left\{y^{1}, \ldots, y^{N-1}\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N-1}\right)$. By induction hypothesis there exist $\left\{x_{n}\right\} \in\left(\mathbb{Q}^{N-1}\right)^{\mathbb{N}}$, a nonsingular matrix $\mathcal{Z} \in \mathbb{Q}^{(N-1) \times(N-1)}$, an increasing sequence $\left\{j_{n}\right\}$ of positive integers and open intervals $J^{i} \subset[0,1]$, $0<i<N$, such that
(1) $\left\{x_{n}^{1}, \ldots, x_{n}^{N-1}\right\}:=\left\{\mathcal{Z}\left(y_{j_{n}}^{1}, \ldots, y_{j_{n}}^{N-1}\right)\right\} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N-1}\right)$,
(2) $\forall n \in \mathbb{N}$:

$$
H_{n}\left(\left\{y_{j_{n}}^{1}, \ldots, y_{j_{n}}^{N-1}\right\}, \prod_{i=1}^{N-1} V^{i}\right) \subset H_{n}\left(\left\{x_{n}^{1}, \ldots, x_{n}^{N-1}\right\}, \prod_{i=1}^{N-1} J^{i}\right)
$$

(3) $\forall n \in \mathbb{N} \forall i<N-1:\left|x_{n}^{i+1} \lambda\left(J^{i}\right) / x_{n}^{i}\right| \geq L$,
(4) $\lambda\left(J^{N-1}\right) /\left|x_{n}^{N-1}\right| \geq \frac{1}{16} \min \left\{\lambda\left(V^{i}\right) /\left|y_{j_{n}}^{i}\right| ; i=1, \ldots, N-1\right\}$.

We set $v_{n}=p_{j_{n}}, x_{n}^{N}=y_{j_{n}}^{N}$ and $J^{N}=V^{N}$. We define $\widetilde{\mathcal{Z}} \in \mathbb{Q}^{N \times N}$ by

$$
\widetilde{\mathcal{Z}}_{i, j}= \begin{cases}\mathcal{Z}_{i, j} & \text { for } 0<i, j<N \\ 1 & \text { for } i=j=N+1 \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\widetilde{\mathcal{Z}}$ is nonsingular. We set $M=\widetilde{\mathcal{Z}} \cdot \mathcal{L}$. Thus M is also nonsingular. Using (i) and (1) we easily obtain (a). By (2) we have

$$
\begin{equation*}
\forall n \in \mathbb{N}: H_{n}\left(\left\{y_{j_{n}}^{1}, \ldots, y_{j_{n}}^{N}\right\}, \mathcal{V}\right) \subset H_{n}(\boldsymbol{x}, \mathcal{J}) \tag{4.7}
\end{equation*}
$$

Using (4.7) and (ii) we get (b). Using (3) we obtain (c) for $i<N-1$. From (iii) we have $\min \left\{\lambda\left(V^{i}\right) /\left|y_{j_{n}}^{i}\right| ; i=1, \ldots, N-1\right\}=\lambda\left(V^{N-1}\right) /\left|y_{j_{n}}^{N-1}\right|$. Using this, (4) and (iii) again we get the case $i=N-1$. Formula (iv) easily gives (d).

Proof of Theorem 2.5. The inclusion $H^{(N) *} \supset H_{L}^{(N) *}$ is trivial.
Let $A \in H^{(N) *}$. Then there exists $\boldsymbol{a} \in \mathcal{Q}\left(\mathbb{R} \backslash\{0\}^{N}\right)$ and an open interval $\mathcal{U} \subset[0,1]^{N}$ such that $A \subset H(\boldsymbol{a}, \mathcal{U})$. By Lemma 4.9 there exists $\boldsymbol{x} \in\left(\mathbb{Q}^{N}\right)^{\mathbb{N}}$ and an open interval $\mathcal{J} \subset[0,1]^{N}$ such that $H(\boldsymbol{a}, \mathcal{U}) \subset H(\boldsymbol{x}, \mathcal{J}) \in H_{L}^{(N) *}$. So, $A \in H_{L}^{(N) *}$.

Acknowledgements. This research was supported by Grant No. 22308/B-MAT/MFF of the Grant Agency of the Charles University in Prague and by grant GAČR 201/09/0067. The author is a (junior) researcher in the University Centre for Mathematical Modelling, Applied Analysis and Computational Mathematics (Math MAC).

References

[1] N. K. Bary, A Treatise on Trigonometric Series. Vols. I, II, Macmillan, New York, 1964.
[2] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990,
[3] R. Kaufman, M-sets and measures, Ann. of Math. (2) 135 (1992), 125-130.
[4] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, Cambridge, 1989.
[5] R. Lyons, Characterizations of measures whose Fourier-Stieltjes transforms vanish at infinity, Bull. Amer. Math. Soc. 10 (1984), 93-96.
[6] R. Lyons, The size of some classes of thin sets, Studia Math. 86 (1987), 59-78.
[7] I. I. Pyatetskiĭ-Shapiro, On the problem of uniqueness of the expansion of a function into a trigonometric series, Moskov. Gos. Univ. Uchen. Zap. 155 (1952), no. 5, 5472.
[8] I. I. Piatetski-Shapiro, Selected Works of Ilya Piatetski-Shapiro, Amer. Math. Soc., Providence, RI, 2000.
[9] A. Rajchman, Rectification et addition à ma note "Sur l'unicité du développement trigonométrique", Fund. Math. 4 (1923), 366-367.
[10] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
[11] V. Vlasák, Classes of H^{1} and H^{2} sets have different polars, Real Anal. Exchange Report on the summer symposium in real analysis XXXIII, 2009, 58-60; www.stolaf.edu/analysis/SOSU2009/16-Vlasak.pdf
[12] L. Zajíček, An unpublished result of P. Sleich: sets of type $H^{(s)}$ are σ-bilaterally porous, Real Anal. Exchange 27 (2002), 363-372.
[13] M. Zelený and J. Pelant, The structure of the σ-ideal of σ-porous sets, Comment. Math. Univ. Carolin. 45 (2004), 37-72.

Václav Vlasák
Faculty of Mathematics and Physics
Charles University
Sokolovská 83
18675 Praha 8, Czech Republic
E-mail: vlasakmm@volny.cz

