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Abstract. For the family of rational maps zn + λ/zn where n ≥ 3, it is known
that there are infinitely many small copies of the Mandelbrot set that are buried in the
parameter plane, i.e., they do not extend to the outer boundary of this set. For parameters
lying in the main cardioids of these Mandelbrot sets, the corresponding Julia sets are
always Sierpiński curves, and so they are all homeomorphic to one another. However, it
is known that only those cardioids that are symmetrically located in the parameter plane
have conjugate dynamics. We produce a dynamical invariant that explains why these maps
have different dynamics.

1. Introduction. In recent years there have been a number of papers
dealing with the family of rational maps

Fλ(z) = zn +
λ

zn

where λ is a complex parameter. It turns out that there are several different
ways that Sierpiński curves (i.e., sets homeomorphic to the Sierpiński carpet
fractal) arise as Julia sets for these maps. For example, if the free critical
orbits enter the basin of ∞ after iteration κ ≥ 3, then it is known that the
Julia set is a Sierpiński curve. In Figure 1 we display the parameter plane
(the λ-plane) and a magnification near λ = 0 for this family when n = 2.
All of the white disks in these pictures are Sierpiński holes, i.e., the Julia
set corresponding to each parameter in these regions is a Sierpiński curve.
So these Julia sets are all homeomorphic. There are infinitely many such
holes in the parameter plane, and it is known [3], [15] that there are exactly
(n − 1)(2n)κ−3 Sierpiński holes with escape time κ. However, only those
parameters that lie in a few symmetrically located holes have topologically
conjugate dynamics on their Julia sets; the dynamical behavior on Julia sets
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Fig. 1. The parameter plane and a magnification around the origin for the family z2+λ/z2.
The white disks are all Sierpiński holes. The origin is located at the “tip of the tail” of
the Mandelbrot set that appears to straddle the positive real axis.

arising from other Sierpiński holes is completely different [11]. For example,
when n = 2, only the holes that are symmetric under complex conjuga-
tion contain parameters whose associated maps are topologically conjugate
on their respective Julia sets. Recently, Moreno Rocha [14] has developed
a combinatorial invariant in the dynamical plane for these maps that ex-
plains why maps drawn from non-conjugate Sierpiński holes have different
dynamics.

In this paper we will describe another way that Sierpiński curve Julia
sets arise in these families when n ≥ 3. For these maps, it is known that
there is a McMullen domain surrounding the origin in parameter space.
This domain is an open disk that contains parameters for which the Julia
set is a Cantor set of simple closed curves [12]. The McMullen domain is
surrounded by infinitely many disjoint closed curves Sk with k = 0, 1, . . .
which have the property that, on each Sk, there are alternately (n− 2)nk +
1 centers of Sierpiński holes with escape time k + 3 and centers of main
cardioids of Mandelbrot sets with base period k + 1 [10]. These rings are
therefore called Mandelpinski necklaces. We shall show in this paper that
parameters drawn from each of the main cardioids of the Mandelbrot sets
along these necklaces when k ≥ 2 also have Julia sets that are Sierpiński
curves; we therefore call these regions Sierpiński cardioids. For parameters
in Sierpiński cardioids the dynamical behavior is quite different from the
behavior that arises when the parameter lies in a Sierpiński hole. In the
Sierpiński hole case, the complement of the Julia set consists of infinitely
many components in which all points have orbits that eventually escape to
∞. But in the case of the Sierpiński cardioids, there are also infinitely many
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other components where orbits eventually tend to a (finite) attracting cycle.
So the dynamical behavior in these Sierpiński cardioids is very different from
the Sierpiński hole case [8]. In Figure 2 we display several magnifications
around the McMullen domain for the family when n = 3. Clearly visible in
these pictures are rings around the central disk that contain numerous white
regions (Sierpiński holes). But, between each pair of such disks on a given
ring, there is a tiny grey region that is actually a copy of the Mandelbrot set.

Fig. 2. Magnifications of the parameter plane around the McMullen domain (the central
white disk) for the family z3 + λ/z3

It is known [11] that only those cardioids that are symmetrically located
in the parameter plane via complex conjugation or by rotation via a certain
root of unity have the same dynamics. Consequently, just as in the Sierpiński
hole case, we have an exact count of the number of main cardioids along the
Mandelpinski necklaces that have parameters with the same dynamics [3],
[7], [10]. So the question arises: what makes parameters drawn from these
non-symmetrically located cardioids have different dynamics? Another goal
in this paper is to construct a dynamical invariant for each of these param-
eters that specifies exactly why two parameters from different Sierpiński
cardioids have non-conjugate dynamics. Roughly speaking, this invariant
specifies the itinerary of the attracting cycle as it moves around relative to
certain invariant Cantor necklaces that divide the Julia set into dynamically
well-defined sectors.

2. Preliminaries. Let Fλ(z) = zn + λ/zn where λ ∈ C is a parameter
and n ≥ 3. When |z| is large, Fλ(z) ≈ zn, so Fλ has an immediate basin of
attraction at∞, which we denote by Bλ. Each Fλ also has a pole of order n at
the origin; hence there is an open neighborhood of 0 that is mapped into Bλ.
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Now, either this neighborhood is disjoint from the immediate basin Bλ, or
else the neighborhood is contained in Bλ. In the former case, we denote the
entire preimage of Bλ that contains the origin by Tλ. We call this region
the trap door since any point z 6∈ Bλ for which F kλ (z) lies in Bλ for some
k > 0 has the property that there is a unique point on the orbit of z that
lies in Tλ.

Besides 0 and∞, Fλ has 2n additional critical points given by cλ = λ1/2n.
However, Fλ has only two critical values given by vλ = ±2

√
λ since n of the

critical points are mapped to +vλ and the other n to −vλ. In fact, there
really is only one free critical orbit for Fλ up to symmetry. Indeed, if n
is even, we have Fλ(z) = Fλ(−z) so that Fλ(2

√
λ) = Fλ(−2

√
λ). Therefore

each of the critical orbits lands on the same point after two iterations. If n is
odd, then we have Fλ(−z) = −Fλ(z), so the orbits of ±2

√
λ are symmetric

under z 7→ −z.
We call the straight rays given by tcλ with t > 0 the critical point rays.

Note that

Fλ(tcλ) = λ1/2
(
tn +

1

tn

)
,

so it follows easily that each critical point ray is mapped 2-to-1 onto the
straight ray tvλ with t ≥ 1 that extends from vλ to ∞. We call this ray the
critical value ray. Each Fλ also has 2n prepoles pλ given by pλ = (−λ)1/2n,
so Fλ(pλ) = 0. Note that all of the critical points and prepoles lie on the
circle of radius |λ|1/2n centered at the origin. We call this circle the critical
circle. One checks easily that Fλ maps the critical circle 2n-to-1 onto the
straight line segment connecting ±vλ and passing through the origin. We
call this line segment the critical segment.

Recall that the Julia set J(Fλ) for the rational map Fλ has several equiv-
alent characterizations. It is known [13] that the Julia set is the closure of
the set of repelling periodic points, as well as the boundary of the set of
points whose orbits tend to ∞. Also, J(Fλ) is the set of points in C at
which the family of iterates {Fnλ } is not a normal family in the sense of
Montel.

There are several symmetries in the dynamical plane. First, let ω =
exp(πi/n). Then we have Fλ(ωz) = −Fλ(z), so, as above, either the orbits
of z and ωz coincide after two iterations (when n is even), or else they
behave symmetrically under z 7→ −z (when n is odd). In either event, the
dynamical plane and the Julia set both possess 2n-fold symmetry, as do
Bλ and Tλ. Let Hλ(z) be one of the n involutions given by λ1/n/z. Then
Fλ(Hλ(z)) = Fλ(z), so the dynamical plane and Julia set are also symmetric
under each Hλ. Note that Hλ(Bλ) = Tλ.

The following result was proved in [9].
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Theorem 1 (The Escape Trichotomy). Let Fλ(z) = zn + λ/zn and
consider the orbit of the critical value vλ.

(1) If vλ lies in Bλ, then J(Fλ) is a Cantor set.
(2) If vλ lies in Tλ, then J(Fλ) is a Cantor set of disjoint simple closed

curves, each of which surrounds the origin.
(3) If F kλ (vλ) lies in Tλ where k ≥ 1, then J(Fλ) is a Sierpiński curve.

Finally, if vλ does not lie in either Bλ or Tλ, then J(Fλ) is a connected set.

We remark that case (2) of the above result was proved by McMullen [12].
This part of the theorem does not hold if n = 1 or n = 2; this is one of the
reasons we restrict attention in this paper to the case n ≥ 3.

A Sierpiński curve is any planar set that is homeomorphic to the well-
known fractal called the Sierpiński carpet. By a result of Whyburn [18], there
is a topological characterization of any such set: any planar set that is com-
pact, connected, locally connected, nowhere dense, and has the property that
any pair of complementary domains are bounded by simple closed curves
that are pairwise disjoint is known to be homeomorphic to the Sierpiński
carpet.

We turn now to the parameter plane for these families, i.e., the λ-plane.
There are two different symmetries in the parameter planes for these maps.
First, Fλ and Fλ are easily seen to be conjugate via z 7→ z. Hence the
parameter plane is symmetric under complex conjugation. Second, let ν =
exp(2πi/(n−1)). Then we have νFλ(z) = Fν2λ(νz), so the parameters λ and
ν2jλ correspond to maps that have conjugate dynamics. Thus the parameter
plane is also symmetric under the rotation λ 7→ ν2λ. In particular, if n is
even, then all parameters of the form νjλ have conjugate dynamics, but if
n is odd, it is known [11] that the parameters λ and ν2j+1λ do not have
conjugate dynamics.

In fact, the parameter plane actually is symmetric under the rotation
λ 7→ νλ, although, when n is odd, this symmetry is no longer given by a
conjugacy between Fλ and Fνλ. One computes easily that

Fνλ(ν1/2z) = −ν1/2(Fλ(z)).

Since Fλ(−z) = −Fλ(z) when n is odd, it follows that F 2
νλ is conjugate to F 2

λ

via the map z 7→ ν1/2z when n is odd. This means that the dynamics of Fλ
and Fνλ are “essentially” the same, though subtly different. For example,
if Fλ has a fixed point, then under the conjugacy, this fixed point and its
negative (which is also fixed) are mapped to a 2-cycle for Fνλ. Nevertheless,
the Julia sets of Fλ and Fνλ are homeomorphic under z 7→ ν1/2z, and so
this implies that the parameter plane for n odd is also symmetric under the
rotation λ 7→ νλ. The parameter plane can thus be separated into n − 1
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symmetry sectors Pj , j = 0, 1, . . . , n− 2, given by

2jπ

n− 1
≤ Arg λ <

2(j + 1)π

n− 1
.

The boundary curves of these sectors contain parameters for which the crit-
ical values lie on a pair of critical rays.

Because of the Escape Trichotomy, the parameter plane for Fλ divides
into three distinct regions. Let L be the set of parameters for which vλ ∈ Bλ,
so J(Fλ) is a Cantor set. We call L the Cantor set locus. As in the case of the
Mandelbrot set and quadratic polynomials, there is a well-defined Böttcher
coordinate Φ defined on L. It is known [16] that Φ : L → C−D is an analytic
homeomorphism and that the preimages of all straight rays in C − D land
on a unique point in the boundary of L and that the boundary of L is a
simple closed curve surrounding 0 in the parameter plane.

Let M denote the set of parameters for which vλ ∈ Tλ; it is called the
McMullen domain. It is known [2] thatM is an open disk punctured at the
origin and bounded by a simple closed curve.

Let C denote the complement of L ∪ M; it is called the connectedness
locus since J(Fλ) is a connected set if λ ∈ C. It is known [3], [15] that C
contains precisely (n − 1)(2n)κ−3 Sierpiński holes with escape time κ ≥ 3.
These are open disks in C in which each corresponding map has the property
that the critical orbit lands in Bλ at iteration κ, or equivalently, the orbit of
the critical value lands in Tλ at iteration κ− 2; see Figure 3. Each of these
Sierpiński holes is also known to be bounded by a simple closed curve [16].

M L

H3

H3

H3

Fig. 3. The parameter plane when n = 4. The open disks marked H3 are the Sierpiński
holes with escape time 3.
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In Figure 3, there are three clearly visible copies of the Mandelbrot set.
Indeed, it is known [4] that there are n−1 copies of the Mandelbrot set that
straddle the rays given by Arg λ = tνk for t > 0. These sets are called the
principal Mandelbrot sets in the parameter plane. The cusps of the main
cardioids of these sets all lie on the boundary of L while the tips of the
tails of these sets (i.e., the parameters corresponding to c = −2 in the usual
Mandelbrot set for z2 + c) all lie on the boundary of M.

3. Rings around the McMullen domain. In this section, we give
a brief sketch of the proof that the McMullen domain is surrounded by in-
finitely many disjoint simple closed curves Sk, k = 0, 1, . . . , with the Sk
converging down to the boundary of the McMullen domain as k →∞. Each
Sk contains exactly (n − 2)nk + 1 parameter values that are the centers of
Sierpiński holes with escape time k + 3 and the same number of centers of
main cardioids of Mandelbrot sets with base period k + 1, i.e., Sierpiński
cardioids. By the center of a Sierpiński hole, we mean the (unique) param-
eter in this disk for which the critical orbit lands on ∞ rather than being
attracted to∞. Also, base period ` means that the critical orbits first return
to the critical circle at iteration `. This does not necessarily mean that the
parameters drawn from such a Sierpiński cardioid have an attracting cycle of
period `. Rather, when n is odd, two critical points ±cλ may each return to
their negatives when they first return to the critical circle. Thus, when this
occurs, the orbit of ±cλ is periodic of period 2`. This happens, for example,
in the principal Mandelbrot set centered along the negative real axis when n
is odd. Here parameters drawn from the main cardioid have period 2 cycles
although the base period is 1.

There is one exception to the statement that these parameters lie at the
centers of main cardioids of Mandelbrot sets: the curve S1 passes through
n − 1 centers of period 2 bulbs in the principal Mandelbrot sets instead of
the centers of main cardioids of Mandelbrot sets with base period 2. Here
the period 2 bulb is the largest hyperbolic component attached to the main
cardioid of the principal Mandelbrot sets; as above, parameters in this bulb
have an attracting cycle of period either 2 or 4 depending upon the period
of the main cardioid.

For simplicity, we shall restrict attention in this section to the case n = 3;
the minor adjustments necessary for the case n > 3 will be described at the
end of the section. The proof for the general case may also be found in [10],
but the argument we give here is somewhat simpler.

Recall that the critical circle in the dynamical plane is given by |z| =
|λ|1/6 and that Fλ maps this circle 6-to-1 onto the critical segment, i.e., the
straight line segment connecting ±vλ = ±2

√
λ. We denote this circle by

C0 = C0(λ). We assume throughout this section that |vλ| < |λ|1/6, so this
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implies that the critical segment lies in the interior of the disk bounded by
the critical circle. As we shall see, this condition will be essential to proving
the existence of the rings Sk. Let O be the set of non-zero parameters for
which this holds. Thus we have

|2
√
λ| < |λ|1/6 for λ ∈ O,

so it follows that O is the open disk of radius 1/8 centered at the origin. For
λ ∈ O, Fλ maps the exterior of the critical circle as a 3-to-1 covering onto
the exterior of the critical segment. Thus there is a simple closed curve in the
exterior of C0 that is mapped 3-to-1 onto C0. Call this curve C1 = C1(λ).
Since the exterior of C1 is then mapped onto the exterior of C0 as a 3-to-1
covering, there is another simple closed curve C2 = C2(λ) that lies outside
C1 and is mapped 3-to-1 onto C1. Continuing in this fashion, we find an
infinite collection of simple closed curves Ck = Ck(λ) for k > 0 satisfying
Fλ(Ck+1) = Ck and hence F kλ (Ck) = C0. Note that the Ck are all disjoint
and it can be shown that they converge outward to ∂Bλ as k →∞.

Since the interior of the critical circle is also mapped as a 3-to-1 covering
of the exterior of the critical segment, there are other simple closed curves
C−k = C−k(λ) for k = 1, 2, . . . such that Fλ maps C−k as a 3-to-1 covering of
Ck−1 just as above. The C−k now converge down to ∂Tλ as k →∞. Since C0

contains six critical points and six prepoles, it follows that each Ck contains
2 · 3|k|+1 points that map under F kλ onto the critical points and the same
number of points that map to the prepoles. The critical points and prepoles
are arranged in alternate fashion around C0, so their preimages on the Ck
are arranged similarly.

We now describe the ring S0 in the parameter plane. This curve consists
of λ-values for which the critical values lie on the critical circle C0 in the
dynamical plane. So, on this set, we must have |λ|1/6 = 2|

√
λ|. As above,

solving this equation shows that S0 is the circle of radius 1/8 in the pa-
rameter plane. We call S0 the dividing circle in the parameter plane. When
λ ∈ S0, the critical circle in the dynamical plane is the circle of radius 1/

√
2

centered at the origin. Note that, as λ rotates around the dividing circle
in a certain direction, the critical points rotate around the critical circle
C0 by 1/6 of a turn while the critical values rotate by half a turn in the
same direction as λ rotates. It then follows easily that there are a pair of
parameters on the dividing circle for which the critical values land on a pair
of critical points (these give the centers of the two principal Mandelbrot
sets with base period 1) and a pair where they land on the prepoles (−λ)1/6

(these are centers of Sierpiński holes). This gives the result for S0. Note that
the parameters in O are precisely those that lie inside the dividing circle S0.

For λ ∈ O with 0 ≤ Arg λ < 2π, let c0 = λ1/6 denote the critical
point satisfying 0 ≤ Arg c0 < π/3 and let c1, . . . , c5 denote the other critical
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points where the cj are arranged in the counterclockwise direction around
the origin. Let I0 denote the closed sector in C bounded by the two critical
point rays that are given by tc0 and tc5 with t ≥ 0. We call this sector
a prepole sector since there is a unique prepole in the “center” of I0. Let
Ij denote the similar prepole sector bounded by tcj−1 and tcj . Note that
the interior of each Ij is mapped 1-to-1 onto C minus the two critical value
rays tvλ where t ≥ 1. One of the critical point rays that bounds each Ij is
mapped onto one of these critical value rays while the other critical point
ray is mapped to the other critical value ray. If Arg λ = 0, then the critical
value rays lie in I0 ∩ I1 and I3 ∩ I4, whereas, if we allow Arg λ to increase
to 2π, the critical value rays now lie in I2 ∩ I3 and I0 ∩ I5. When λ 6∈ R+,
the critical value rays lie in the interiors of I1 ∪ I2 and I4 ∪ I5. In particular,
if λ 6∈ R+, then the critical value rays do not meet I0 or I3.

We now define a parametrization of each Ck which we shall denote
by Ck(θ). Each Ck(θ) will be 3|k| · 2π periodic. We begin by parametriz-
ing C0. We set C0(0) to be the point of intersection of the critical circle
C0 and I0 ∩ I1, i.e., the critical point c0. Since C0 is an actual circle, we
may then parametrize C0 in the natural way; however, for reasons that
will become clearer later, we choose to make this parametrization increase
in the clockwise direction around the origin rather than the conventional
counterclockwise direction. So the parametrization C0(θ) is periodic with
period 2π.

Now C1 is mapped 3-to-1 onto C0, so we define C1(0) to be the unique
point in the region I0 that is mapped to C0(0) provided that λ 6∈ R+. If
λ ∈ R+, we choose C1(0) to be the preimage of C0(0) that lies in R+ and out-
side C0. So C1(0) depends continuously on λ provided that 0 ≤ Arg λ < 2π.
Then we define C1(θ) to be the point in C1 that is mapped to C0(θ) where
we choose C1(θ) so that this function is continuous in θ. Since C1 is mapped
3-to-1 onto C0, it follows that C1(θ) is 3 · 2π periodic in θ. Note that this
also parametrizes C1 in the clockwise direction. Then we continue induc-
tively for k > 1 by first defining Ck(0) as above to be the unique point
in I0 that is mapped to Ck−1(0) (with a similar modification if λ ∈ R+),
and then we extend this by defining Ck(θ) to be the unique point that is
mapped to Ck−1(θ) and so that this map is continuous in θ. Therefore Ck
is 3k · 2π periodic in θ. To define C−k(θ), recall that there is an involution
Hλ(z) = λ1/3/z for which Fλ(Hλ(z)) = Fλ(z). Here we choose the involu-
tion Hλ that fixes c0(λ). Then we define C−k(θ) = Hλ(Ck(θ)). Note that
this parametrizes C−k in the counterclockwise direction, which is the reason
why we chose to parametrize C0(θ) in the clockwise direction. So C−k(θ) is
3|k| · 2π periodic in θ.

We shall now consider only portions of the curves Ck. Let γ0 denote the
portion of C0 defined for 0 ≤ θ ≤ 4π/3 = 30π + π/3. Note that γ0 extends
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from the boundary of I0 ∩ I1 in the clockwise direction to the boundary of
I2 ∩ I3, i.e., two-thirds of a turn in the clockwise direction. The curve γ0
therefore extends in the clockwise direction from the critical point c0 to c2
and passes through c5, c4, and c3. For k > 0 let γk denote the portion of Ck
defined for 0 ≤ θ ≤ 3kπ + π/3. Then γk(0) lies in I0 for each k.

For later use, note that the point zk = γk(π/6) also lies in I0 for each k.
The forward orbit of zk lies in I0 until this orbit reaches 0, and F kλ (zk) is
thus the unique prepole in I0. The points zk will lie in the invariant Cantor
necklace that we shall define in the next section.

Since Ck is 3k · 2π-periodic and γk is defined only for 0 ≤ θ ≤ 3kπ+π/3,
we observe that γk occupies a little more than one-half of the full curve Ck.
In particular, we have γk(3

kπ) = −γk(0) by the z 7→ −z symmetry, and
so, for each k, γk(3

kπ) lies in I3 and is mapped to c3 = γ0(π) by F kλ . Since
F kλ (γk(0)) = c0, it follows that the other endpoint γk(3

kπ+ π/3) also lies in

the sector I3 and is mapped to γ0(4π/3) = c2 by F kλ since, for each k, we
have

F kλ (γk(3
kπ + π/3)) = γ0(3

kπ + π/3) = γ0(π + π/3).

Hence, γk is a curve that passes clockwise through a portion of I0, then
through all of I5 and I4, and finally through a portion of I3 as θ increases.
Moreover, by the z 7→ −z symmetry, γk(3

kπ+π/6) also lies in I3 for each k,
and F kλ (γk(3

kπ+π/6)) is the unique prepole in I3. These are points that lie
in the opposite portion of the Cantor necklace defined in Section 4.

We now define γ−k(θ) for k > 0; this definition will be somewhat different
from that of γk(θ) when k > 0. First note that Fλ maps the portion of C−1
that lies in I1∪I2 onto the entire circle C0. The two endpoints of this portion
of C−1 are sent to the same point on the critical value ray that lies in I1∪I2.
Hence there is an arc in C−1 that is a preimage of γ0 under Fλ in I1 ∪ I2.
We define γ−1(θ) to be this preimage of γ0(θ) under Fλ. So γ−1(θ) is defined
for 0 ≤ θ ≤ 30π + π/3, just as γ0(θ) is. Continuing in a similar fashion, we
let γ−k(θ) be the point lying on the portion of the curve C−k in I1 ∪ I2 that
is mapped by Fλ to γk−1(θ). So γ−k(θ) is defined for 0 ≤ θ ≤ 3k−1π + π/3,
just as γk−1 is; see Figure 4.

Proposition 2. When Arg λ = 0 and k > 0, all of the points γ−k(0)
lie in R+. When Arg λ = 2π, the endpoints of γ−k corresponding to θ =
3k−1π + π/3 lie in R−.

Proof. The first part of the result follows immediately from the definition
of γ−k(0). As Arg λ increases by 2π, the point c0 rotates a sixth of a turn in
the counterclockwise direction and so the point γ0(π+ π/3) now lies in R−.
Since R− is invariant when Arg λ = 2π, it then follows that each of the
endpoints of γ−k with θ = 3k−1π + π/3 also lies in R−.
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Fig. 4. The curves γk

We now define the rings Sk for k > 0 in the parameter plane. Recall
that O is the set of non-zero parameters for which vλ lies inside the critical
circle. Let Dr be a closed disk of radius r > 0 surrounding the origin and
lying strictly inside the McMullen domain. Let Õ = O − (Dr ∪ R+). Note
that Õ is a simply connected open set. Let θk = 3k−1π + π/3, so γ−k(θ) is
defined for θ in the interval [0, θk].

Proposition 3. Suppose λ ∈ Õ and let vλ denote the critical value of
Fλ that lies in the upper half-plane. Fix k ≥ 1 and θ in the open interval
(0, θk). Then there is a unique λ = λkθ in Õ for which the critical value vλ
lands on γ−k(θ). Moreover, λkθ varies continuously with θ.

Proof. For each θ in (0, θk), we have two maps defined on the region Õ
in the parameter plane. The first map is V (λ) = vλ where vλ is the unique
critical value in the upper half-plane. Since the outer boundary of Õ is the
dividing circle |λ| = 1/8, it follows that Vλ maps Õ univalently onto the
open region D given by |z| < 1/

√
2 and Im z > 0 minus a small half-disk

around the origin. Hence V −1 is well defined on D.

The second map defined on Õ is the map µθ(λ) = γ−k(θ) where θ is a
given value in the open interval (0, θk). Hence µ maps all parameters in Õ
strictly inside the region D, since for each λ, γ−k(θ) lies strictly inside C0(λ)
and outside Tλ. In particular, µθ(λ) is bounded away from 0 since |λ| > r.
Consequently, the map V −1◦µθ takes Õ strictly inside itself. By the Schwarz
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Lemma, V −1 ◦ µθ has a unique fixed point in Õ. This is the parameter λkθ ,
which then varies continuously with θ in the open interval (0, θk).

To complete the construction of the ring Sk, we next show that the
curve θ 7→ λkθ becomes a simple closed curve when we add in the endpoints
of [0, θk].

Proposition 4. The parameter λkθ varies continuously with θ. As θ → 0
(resp., θ → θk), λ

k
θ tends to a unique parameter λk0 (resp., λkθk) in R+ for

which the critical value in the upper half-plane lands on γ−k(0) ∈ R+ (resp.,

γ−k(θk) = −γ−k(0) ∈ R−). Furthermore, λk0 = λkθk ∈ R+, so θ 7→ λkθ is a
simple closed curve.

Proof. To prove this, we modify the parametrizations of the curves γk
and the domain in the parameter plane on which the two maps V (λ) and
µθ(λ) are defined. First, let Ô = O − (Dr ∪ R−). So Ô is also a simply
connected open set in C. Then the map V (λ) is the critical value that lies
in the right half-plane. Let γ0 be the portion of the critical circle defined for
0 ≤ |θ| < π/2 + π/6. So γ0 now lies in the sectors I0, I1, I2, and I5. Then
define γk for k > 0 to be the portion of Ck defined for 0 ≤ |θ| < 3kπ/2+π/6.
So these new γk’s are just rotations of the previously defined curves. Finally
we define γ−k to be the portion of the preimage of γk−1 that resides in
I0 ∪ I1.

Then one checks easily that, as above, when λ ∈ Ô, the map µkθ(λ) now

takes values in the open region D̂ given by |z| < 1/
√

2 and Re z > 0 minus a
small half-disk in the upper half-plane centered at the origin, which is again
the image of Ô under V . So the previous proof reproduces a continuous
curve of parameters λkθ for which the critical value lies at µθ(λ).

Now suppose that Arg λ = 0. By Proposition 3, each γk(0) lies in R+.
Moreover, using standard results from real dynamics in the Mandelbrot set,
there is a unique superstable parameter for which we have

vλ < c0 = F kλ (c0) < F k−1λ (c0) < · · · < F 2
λ (c0).

This then is the parameter λk0. Since the new points λkθ vary continuously
with θ, this shows that the earlier parametrization defined for 0 < θ < θk
extends continuously to λk0 ∈ R+.

When Arg λ = 2π, a similar modification of the proof of Proposition 3
shows that there again is a unique parameter for which the orbit of vλ lies
in R− and we have

0 > vλ > c2 = F kλ (c2) > F k−1λ (c2) > · · · > F 2
λ (c2).

This is the parameter λkθk , using the parametrization from Proposition 3.

Since we have symmetric behavior on R+, it follows that λk0 = λkθk . By

continuity, as Arg λ → 0 or 2π, the parameters λkθ converge to λk0 = λkθk .
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Therefore the parameters λkθ lie along a simple closed curve surrounding the
origin in the parameter plane.

We therefore define the ring Sk in the parameter plane to be the curve
given by θ 7→ λkθ . So S1 consists of parameters for which the critical points
first map to the critical values which lie inside the critical circle, and then
the critical values map back onto the critical circle. For k > 1, Sk consists of
parameters for which the critical points again map inside the critical circle.
But then the next images lie outside the critical circle. And then these orbits
remain outside the critical circle for k−1 more iterations until landing back
on the critical circle at iteration k + 1.

From the results in [3], it is known that the parameters in Sk for which
the critical orbit lands on a critical point at iteration k+ 1 lie at the centers
of the main cardioid of the Mandelbrot sets with base period k+1 (with two
exceptions on the ring S1 where they lie at the centers of the period 2 bulbs
of the principal Mandelbrot sets). These parameters are given by λkθ where
θ = `π/3 and ` is an integer with 0 ≤ ` ≤ 3k. We therefore denote these
special parameters by λk` . Thus there are exactly 3k + 1 such parameters
along Sk.

As we will show in Section 5, the Julia sets corresponding to parameters
in the main cardioids of these Mandelbrot sets are all Sierpiński curves (when
k > 1), and hence they are all homeomorphic to one another. It is known
that any two parameters drawn from the same Sierpiński cardioid have con-
jugate dynamics on their Julia sets. It is also known [11] that only those
parameters that are drawn from a given cardioid or the complex conjugate
cardioid have conjugate dynamics on their Julia sets. All other parameters
drawn from different Sierpiński cardioids necessarily have distinct dynamical
behavior. This result follows from Thurston’s Theorem [11]. In Section 7, we
produce a dynamical invariant that shows why these non-complex conjugate
cardioids have non-conjugate dynamics. For this it will suffice to provide a
dynamical invariant for the parameters at the centers of these cardioids, i.e.,
for the λk` .

We now describe the minor modifications of the above proof needed to
prove the existence of the rings Sk when n > 3. The proof of the existence
of S0 is exactly as above, only now this dividing circle is the circle of radius
2−2n/(n−1) centered at the origin, and it contains n−1 parameters for which
the critical values land on critical points and the same number for which
they land on prepoles.

When n > 3, there are now 2n critical points and prepoles, and the
curves Ck are mapped n-to-1 onto their images. There are also 2n prepole
sectors and we may define Ij for j = 0, 1, . . . , n − 1 and Ck(θ) for k > 0
exactly as above. We then choose the portions γk(θ) in Ck for k > 0 to
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be defined for 0 ≤ θ ≤ (n − 2)nkπ + π/n. Note that these portions of Ck
now wind further around the origin than they did in the case n = 3. For
example, when n = 4, each γk(θ) winds a little more than once around the
origin; when n = 5, each γk(θ) winds a little more than one and a half times
around the origin. We again let γ−k(θ) be the preimage of γk−1(θ), but this
time γ−k(θ) lies in I1 ∪ · · · ∪ In−1. Note that, as λ rotates once around the
origin, the sectors I1 ∪ · · · ∪ In−1 remain as before in the upper half-plane.
Then the previous proof again produces the parameters λkθ that define Sk.

As earlier, the point zk = γk(π/2n) also lies in I0 for each k. So the
forward orbit of zk again lies in I0 until this orbit reaches 0, and F kλ (zk) is
the unique prepole in I0.

4. Dynamical sectors. In the previous section, we used the prepole
sectors Ij to construct the rings Sk around the McMullen domain in the
parameter plane for

Fλ(z) = zn + λ/zn

where n ≥ 3. Each of these rings passed through a number of centers of
Sierpiński cardioids. We shall prove in Section 5 that the Julia set corre-
sponding to each parameter drawn from one of these cardioids when k > 1
is always a Sierpiński curve, and hence all of these Julia sets are homeomor-
phic. However, only certain symmetrically located cardioids contain param-
eters that have conjugate dynamics. To produce a dynamical invariant that
shows why parameters from certain Sierpiński cardioids have non-conjugate
dynamics, we need to construct different sectors that are more dynamically
defined. The boundaries of these sectors will include objects known as Can-
tor necklaces.

To define a Cantor necklace, we begin with the special case called the
Cantor middle-thirds necklace. This set is the subset of the plane constructed
as follows. Start with the Cantor middle-thirds set lying in the unit inter-
val on the x-axis. Then adjoin open disks in place of each of the removed
open intervals along this axis. The resulting set is the Cantor middle-thirds
necklace. Then a Cantor necklace is any planar set that is the image of the
middle-thirds necklace under a continuous, 1-to-1, and onto map.

The construction of the dynamical sectors was first made in [5], but for
completeness, we sketch it here. We assume now that λ ∈ O−M whereM
is the McMullen domain. For such λ-values, all of the preimages of Tλ are
open disks. If λ ∈ O−M, then we may choose a circle in Bλ that is centered
at the origin and mapped to a simple closed curve that lies well outside this
circle. There is another circle in Tλ that is mapped to the same curve. Let
R0 be the closed portion of the sector I0 that is contained between these
two circles, and let Rn = −R0.
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Assume for the moment that λ 6∈ R+. Then the critical values do not
lie in the regions R0 or Rn, and so the critical value rays ±tvλ for t ≥ 1
(which are the images of the straight line boundaries of I0 and In) do not
meet R0 or Rn. Therefore Fλ maps each of R0 and Rn over the entire set
R0 ∪ Rn. Moreover, each point in R0 ∪ Rn has a unique preimage in R0 as
well as a similar unique preimage in Rn. Then standard arguments from
complex dynamics show that the set of points whose orbits remain for all
iterations in R0 ∪Rn is an invariant Cantor set on which Fλ is conjugate to
the one-sided shift map on two symbols. Call this invariant set Λλ. By the
z 7→ −z symmetry in the dynamical plane, we have Λλ = −Λλ.

One checks easily that there is a fixed point pλ in Λλ that lies in R0∩∂Bλ.
Then −pλ lies in Rn ∩ ∂Bλ. When n is even, Fλ(−pλ) = pλ, but when n
is odd, −pλ is fixed by Fλ. These are clearly the only points in Λλ ∩ ∂Bλ
since Fλ is conjugate to z 7→ zn on ∂Bλ, so all other points in ∂Bλ have
orbits that eventually leave R0∪Rn. Similarly, there are a pair of preimages
of ±pλ, one of which, qλ, lies in R0∩∂Tλ, and the other, −qλ, lies in Rn∩∂Tλ.
If n is even, these points are both preimages of −pλ, whereas if n is odd,
−qλ is a preimage of pλ, and qλ is a preimage of −pλ. As above, these
are the only points in Λλ ∩ ∂Tλ. Now consider the four points that are the
preimages of ±qλ that lie in R0∪Rn. These four points lie on the boundaries
of a pair of preimages of Tλ, one of whose centers lies in R0 and the other
in Rn. Then the eight preimages of these points lie on the boundaries of
four pre-preimages of Tλ whose centers lie in R0 or Rn. Continuing in this
fashion, we find a collection of 2j preimages of Tλ whose centers lie in R0∪Rn
at the jth stage. Here the center of a given preimage of Tλ is the unique
point in this set that eventually maps onto 0. So consider the set that is the
union of Λλ together with Tλ and all of these special preimages of Tλ. Call
this set N . Then N is a set that is a continuous, 1-to-1, onto image of the
middle-thirds Cantor necklace and so N is a Cantor necklace. Note that Fλ
maps N 2-to-1 over itself together with Bλ.

Let N0 be the portion of N that connects the fixed point pλ to qλ in R0.
Then N0 is also a Cantor necklace and Fλ maps N0 1-to-1 over all of N . Let
Nj be the image of N0 under the rotation z 7→ ωjz where ω = exp(πi/n).
Then Fλ also maps each Nj 1-to-1 over N .

We now define the dynamical sectors Ij . The sector Ij will be the region
contained between the Cantor necklaces Nj and Nj+1 and the portions of
∂Bλ and ∂Tλ connecting these two bounding necklaces. Thus we see that
Ij = ωjI0. Also, c0(λ) lies between N0 and N1, so it follows that each critical
point cj(λ) lies in the dynamical sector Ij . As above, ∂Bλ and ∂Tλ meet
each boundary point of the two Cantor necklaces in Ij in a unique point, so
the portion of the boundary of each Ij in ∂Bλ and ∂Tλ is an arc.
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We can easily extend the construction of the Cantor necklaces to the case
where λ ∈ R+. In this case Fλ maps one of the boundaries of the sectors I0
and In into itself, but the above construction of the Cantor set still works.
The only difference is that N0 (resp., Nn) now meets the real axis at the
point pλ ∈ R+ (resp., −pλ ∈ R−), but this is the only point in N0∩R (resp.,
Nn ∩ R). This defines the dynamical sectors for λ ∈ O −M.

5. Sierpiński curve Julia sets. Recall that we are primarily concerned
with parameters that are drawn from the main cardioids of Mandelbrot sets
whose centers lie along the ring Sk. All of the parameters in each of these
regions correspond to maps that have an attracting cycle of some given
period. So the Fatou set for these maps consists of the union of the full
basins of attraction of this cycle as well as the full basin of ∞. Our goal in
this section is to prove the following result:

Theorem 5. Suppose λ lies in the main cardioid of a Mandelbrot set
whose center lies in the ring Sk with k ≥ 2, i.e., a Sierpiński cardioid. Then
the Julia set of Fλ is a Sierpiński curve.

Proof. By a theorem of Whyburn [18], it is known that any planar set
that is compact, connected, nowhere dense, locally connected, and has the
property that any two complementary domains are bounded by simple closed
curves that are pairwise disjoint is homeomorphic to the Sierpiński carpet.
In our case, proving four of these properties is straightforward as they follow
from well-known basic properties of the Julia set [13]. To be specific, since
we have the Fatou domain Bλ, J(Fλ) is not the entire Riemann sphere
and therefore is compact and nowhere dense. Since the free critical orbits
all tend to the attracting cycle, Fλ is hyperbolic on J(Fλ) and hence the
Julia set is locally connected. All of the components of the basins of the
attracting cycles and ∞ are all open disks and so the complement of these
disks, namely J(Fλ), is a connected set.

Thus we have only to show that the boundaries of the Fatou components
are simple closed curves that are pairwise disjoint. As shown in [17], ∂Bλ
is a simple closed curve and so all of the boundaries of the preimages of
Bλ are also simple closed curves. The polynomial-like mapping argument
in [3] that proves the existence of these Mandelbrot sets then shows that
the boundaries of all the basins of the attracting cycles (as well as all of their
preimages) are also simple closed curves. Hence we need only show that all
of these different boundaries are pairwise disjoint.

First, since Fλ maps the critical circle strictly inside itself, ∂Bλ lies out-
side this circle. By the Hλ symmetry in the dynamical plane, ∂Tλ then lies
strictly inside this circle. So ∂Bλ and ∂Tλ are disjoint. It then follows that
all of the preimages of ∂Bλ must be disjoint from one another.
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Second, consider the boundaries of the preimages of the basin of the
attracting cycle. Suppose that the boundaries of two of these preimages
meet. Then, iterating forward, the boundaries of each of the basins of the
attracting cycle must meet the boundary of at least one other such basin of
the attracting cycle. In particular, the boundary of the basin that contains
the critical value must meet the boundary of some other attracting basin.
However, since the critical values both lie inside the curve C−1, it is known [6]
that there is an invariant simple closed curve ξ0 that winds around the origin
in the annulus bounded by C0 and C−1. Moreover, this curve lies in the Julia
set and Fλ is conjugate to z 7→ z−n on this curve. Then there is a preimage
of this invariant curve ξ−1 that also lies in J(Fλ) and winds around the
origin in the annulus between C−1 and C−2.

Since we are assuming that the cycle has period greater than two, the
periodic critical value for the map at the center of the main cardioid of this
Mandelbrot set lies on C−k for some k ≥ 2. Hence this point lies inside the
curve ξ−1 that is contained in the annular region between C−2 and C−1.
Now points on this curve map to the invariant curve ξ0 in the Julia set, so
it follows that this scenario must hold for all parameters in the given main
cardioid. But then the other attracting basin whose boundary meets that of
the basin containing the critical value must lie outside the invariant curve ξ0
between C0 and C−1, since all of the other basins of the attracting cycle lie
outside this curve. Therefore, one of the above attracting basins must pass
through either ξ0 or ξ−1, which cannot happen since these curves lie in the
Julia set.

Finally, the boundaries of the preimages of Bλ and the attracting basins
are also disjoint. This follows since, if any two were to meet, then taking
forward images of these boundaries would imply that all of the boundaries
of the attracting basins would meet ∂Bλ. In particular, the attracting basin
that contains the critical point would stretch all the way from ∂Bλ to ∂Tλ
because of the Hλ symmetry in the dynamical plane that interchanges ∂Bλ
and ∂Tλ and fixes the critical point. But then this basin would meet the
invariant curve that lies in the Julia set as described above.

In the case where the base period is two, the two attracting basins are
only separated by the invariant curve between C0 and C−1 and so it is then
possible for the two boundaries of the attracting basins to meet at a point
in the Julia set on this curve. This does happen when the parameter lies in
a period 2 bulb of a principal Mandelbrot set.

6. Precritical and superattracting itineraries. In this section we
define itineraries of the attracting periodic orbits that are associated with
parameters in the Sierpiński cardioids along each of the rings around the
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McMullen domain. Since the itineraries will be the same for all parameters
lying in this cardioid, it will suffice to produce the itinerary for the map at
the centers of these cardioids, i.e., the parameters λk` defined in Section 3
for which the periodic orbit is superattracting.

Recall that the dynamical sector Ij contains the critical point cj =
cj(λ). Then each of these sectors is mapped 2-to-1 over n adjoining sec-
tors (plus the n− 1 intermediate Cantor necklaces). Specifically, the sectors
I0, I2, . . . , I2n−2, are each mapped over

⋃n−1
j=0 Ij while the other n sectors

I1, I3, . . . , I2n−1 are mapped over the complementary set,
⋃2n−1
j=n Ij .

Next recall that the curves γk(θ) are the portions of Ck defined for
0 ≤ θ ≤ (n − 2)nkπ + π/n when k ≥ 0. As described earlier, there is a

unique point zk in the necklace N0 for which F jλ(zk) ∈ N0 for j = 0, . . . , k

and F k+1
λ (zk) = 0, that is, the orbit of zk lies at the centers of certain

preimages of Tλ in N0 that lie outside of the first preimage of Tλ in N0

and then map closer and closer along the necklace to this preimage as j
increases. As discussed in Section 3, the point zk is given by γk(π/2n). By
the z 7→ −z symmetry, the point γk(n

kπ + π/2n) then lies in the necklace
Nn for each k.

By our construction of γk, it follows that, for each j, there are n preim-
ages of critical points in each of γ1 ∩ Ij ; n2 second preimages of critical
points in each of γ2 ∩ Ij ; and, in general, nk kth preimages of the critical
points in γk ∩ Ij . Then, for each k > 0, there are exactly nk points on the
portion of γ−k lying in Ij that are mapped by F kλ to critical points. Now
consider only the n−2 dynamical sectors I1, . . . , In−2 that, by construction,
lie in the upper half-plane. We call the (n − 2)nk preimages of the critical
points under F kλ that lie on γ−k in the sectors I1, . . . , In−2 the k-precritical
points.

We now assign an itinerary to each of the (n− 2)nk k-precritical points
in these n − 2 dynamical sectors. This itinerary is a sequence of k + 1 dig-
its that indicates which sector Ij the successive iterates of these points
lie in. So the itinerary of a k-precritical point is a sequence of the form
(s−ksk−1sk−2 . . . s0) where the digit sj implies that the corresponding point
on γj lies in the sector Isj . So the given precritical point with this itinerary
lies in the sector Is−k ; its image lies in the sector Isk−1

; its second image
in Isk−2

; and so forth until its kth image is the critical point in Is0 .

There is one additional k-precritical point that we need to consider. This
is the precritical point that lies on the real axis when λ ∈ R+. This orbit
remains in I0 for all iterations, so its itinerary is just (00 . . . 0). For all of the
other itineraries, by construction, the first digit s−k satisfies 1 ≤ s−k ≤ n−2,
whereas for all subsequent digits sj , we have 0 ≤ sj ≤ 2n− 1. For example,
when n = 3, the k-precritical points (that are not of the form (0 . . . 0)) all lie
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in I1 and the three itineraries of the 1-precritical points in γ−1 are 15, 14,
and 13 since Fλ|I1 covers I5, I4, and I3. Then the nine itineraries of the
2-precritical points in γ−2 are

155 154 153

142 141 140

135 134 133

When n = 4, the k-precritical points now lie in I1 ∪ I2 (excluding again
(0 . . . 0)). The itineraries of the 1-precritical points are then 17, 16, 15, 14,
23, 22, 21, and 20. So the itineraries of the 2-precritical points are

177 176 175 174 163 162 161 160

157 156 155 154 143 142 141 140

237 236 235 234 223 222 221 220

217 216 215 214 203 202 201 200

We can obtain a list of the allowable itineraries of the k-precritical points
inductively as follows. Consider the case n = 3. The allowable itineraries for
the precritical points on γ−1 are, as above, 15, 14, and 13. We obtain the
allowable itineraries for the precritical points on γ−2 by taking each allowable
itinerary on γ−1 and adding a new final digit that corresponds to the sectors
that the sector corresponding to the original final digit is mapped over. For
example, I5 is mapped over I5, I4, and I3, so 5 can only be followed by
5, 4, or 3. Thus we can expand 15 to 155, 154, and 153. Similarly, 4 can
only be followed by 2, 1, or 0, so 14 can be expanded to 142, 141, and 140.
This produces the list of allowable itineraries above. Continuing inductively
produces the list of allowable itineraries of the j-precritical points in γ−j
given the list in γ−j+1.

Recall that, in Section 3, we showed that there was a unique parameter
λk` for which the critical value in the upper half-plane landed on the point
γ−k(θ) where θ = `π/3 and 0 ≤ ` ≤ 3k. Let us not consider the case
where ` = 0 since we know that this parameter lies on the real axis and the
corresponding map has a superattracting periodic orbit on the positive real
axis with itinerary (0 . . . 0).

Proposition 6. Given an allowable itinerary s = (s−ksk−1 . . . s0) for a
k-precritical point, there exists a unique parameter λs in O − R+ such that
the critical value in the upper half-plane for the map Fλs is the k-precritical
point with itinerary s.

Proof. Since λ 6∈ R+, it follows that the necklaces Nj for j = 1, . . . , n−1
always lie in the upper half-plane since the sectors I1 through In−1 have
this property. Thus the dynamical sectors Ij for j = 1, . . . , n − 2 always
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lie in the upper half-plane. Let zs(λ) be a k-precritical point for Fλ. Then
zs(λ) always lies in the upper half-plane and varies analytically with λ.
So Proposition 3 guarantees that there is a unique λ for which vλ = zs(λ).
This is the parameter λs.

We now define the itineraries of the superattracting cycles for the param-
eters λs. Let s = (s−ksk−1 . . . s0) be an allowable itinerary of a k-precritical
point. Let λs be the parameter given in Proposition 6 and let zs be the point
with itinerary s on which the critical value in the upper half-plane lands.
It need not be the case that zs lies on a superattracting periodic orbit of
period k + 1. There are two different reasons for this. We do observe that
F kλs(zs(λs)) is the critical point that lies in the sector Is0 . If s0 is even, then
Fλs maps this critical point to the critical value in the upper half-plane, i.e.,
to the point zs(λs). Hence, in this case, zs(λs) does indeed lie on a super-
attracting periodic orbit of period k + 1 and the full itinerary of this orbit
is (s−ksk−1 . . . s0). But if s0 is odd, then the image of this critical point is
the critical value in the lower half-plane, namely −zs, and thus zs is not
periodic with period k + 1.

What happens in this case depends upon whether n is even or odd. If n is
even, then Fλ(−zs) = Fλ(zs). So the point−zs lies on a superattracting cycle
of period k+1. Therefore the itinerary of this orbit is (s∗−ksk−1 . . . s0) where
s∗−k = n + s−k. For example, in the case n = 4, we have the 1-precritical
itinerary (17). But 1 cannot follow 7 since I7 is mapped over Ij where j = 4,
5, 6, or 7. Therefore, this precritical itinerary can be replaced with (57),
which does correspond to a superattracting cycle of period 2. Similarly, the
2-precritical itinerary (177) can be replaced with (577) to get an itinerary of
a superattracting cycle. In general, for any k-precritical itinerary that ends
in an odd number, the first digit s−k should be replaced by n + s−k to get
the itinerary of the superattracting cycle.

If n is odd, then, by the z 7→ −z symmetry, the orbit of −zs is symmetric
with the orbit of zs. That is, F k+1

λs
(−zs) = zs. Hence zs lies on a superattract-

ing cycle of period 2(k+ 1) and its itinerary is (s−ksk−1 . . . s0s
∗
−ks
∗
k−1 . . . s

∗
0)

where now s∗j = sj +n mod 2n. For example, in the case n = 3, we have the
1-precritical itinerary (15). Again, 1 cannot follow 5, but 4 can. The precrit-
ical itinerary corresponding to the negative of this point is then (42). So we
can replace the precritical itinerary (15) with (1542), which corresponds to a
superattracting cycle of period 4. Similarly, the 2-precritical itinerary (155)
can be replaced by (155422), which now corresponds to a superattracting
cycle of period 6.

7. The dynamical invariant. In the previous section, we assigned an
itinerary to the superattracting cycle associated to a parameter that lies at
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the center of each Sierpiński cardioid attached to the rings Sk surrounding
the McMullen domain. As we showed, each of these itineraries was a differ-
ent sequence. Now we know that certain of these superattracting parameters
have conjugate dynamics. Since the superattracting cycles for two such con-
jugate maps Fλ and Fµ are preserved by the conjugacy, it would be nice if
the corresponding superattracting itineraries were the same. However this
is not true in general. To remedy this, we will use the techniques introduced
in Section 4 to construct additional invariant Cantor necklaces N j where
N 0 is the original Cantor necklace N .

Recall that if λ /∈ R+, then the fact that the critical values do not lie in
R0 or Rn, combined with the existence of a fixed point p0λ = pλ in R0∩∂Bλ,
yielded the invariant Cantor necklace N = N 0 in R0 ∪Rn ∪ Tλ. Now, since
Fλ is conjugate to z 7→ zn on ∂Bλ, ∂Bλ contains exactly n− 1 fixed points.
In [14], Moreno Rocha gives a formula for the locations of these fixed points
in terms of the symmetry sector in parameter space in which λ lies. Recall
that these n − 1 symmetry sectors are given by Pj for j = 0, 1, . . . , n − 2
where λ ∈ Pj if

2jπ

n− 1
≤ Arg λ <

2(j + 1)π

n− 1
.

Then, if λ ∈ Pk, the results in [14] show that Rj ∩ ∂Bλ contains exactly one
fixed point if:

• j = 0, or
• j is even with 0 < j < k + 1 or k + 1 + n < j < 2n− 1, or
• j is odd with k + 1 < j < k + 1 + n.

We call Rj with j as above a fixed point sector. Moreover, the critical values
±vλ lie in the critical value sectors Rk+1 and Rk+1+n, so no critical value
sector is a fixed point sector.

It is then clear that, for λ ∈ Pk, all n − 1 fixed points in ∂Bλ yield
invariant Cantor necklaces contained within the union of their corresponding
fixed point sectors Rj and the antipodal sectors Rj+n. When n is odd,
opposite fixed points on ∂Bλ will correspond to the same necklace, so that
we have n−1 invariant Cantor necklaces when n is even and (n−1)/2 when
n is odd. We denote these necklaces by N l, where l ∈ {1, . . . , n − 1} (here
N l coincides with N−lmod (n−1) if n is odd), and plλ ∈ N l is the lth fixed
point in Bλ counting counterclockwise from p0λ.

Following the construction in Section 4, let N l
0 be the portion of N l

extending from plλ to the fixed point preimage on ∂Tλ lying in the same
fixed point sector as plλ. Then let N l

j for j ∈ {1, . . . , 2n− 1} be the image of

N l
0 under the rotation z 7→ ωjz, where ω = exp(πi/n). This then gives an

alternate partition into dynamical sectors I lj , where I lj is the region between
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N l
j and N l

j+1, and the portions of ∂Bλ and ∂Tλ connecting these bounding
necklaces.

We can then define an itinerary for the k-precritical points with respect
to any one of these new partitions. For a given k-precritical point, the n− 1
or (n−1)/2 (depending on the parity of n) itineraries produced usually bear
no relation to one another. Moreover, if Fλ and Fµ are critically finite and
conjugate, as described in the Introduction and proved in [11], we know that
the conjugacy is given by a rotation, or a rotation composed with complex
conjugation. If the conjugacy is given by a rotation, the itinerary for Fλ
will not be the same as the itinerary for Fµ as defined in Section 6, but
will coincide with the itinerary for Fµ with respect to a different partition
(suitably relabeled). If the conjugacy is given by a rotation and complex
conjugation, then the itinerary for Fλ will be related in a nice way to the
itinerary for Fµ with respect to a relabeling of a new partition. Thus to
construct an actual conjugacy invariant, we must canonically choose one of
the invariant Cantor necklaces for each parameter, and use its corresponding
partition to define the itinerary. We make this precise below.

If λ ∈ P0 is a superattracting parameter on Si, then we associate the
same itinerary to λ as in the previous section, using the partition associated
to N 0. Now, as shown in [11], two critically finite parameters µ and λ are
known to have conjugate dynamics if and only if µ = ν2jλ or µ = ν2jλ for
some j ∈ Z, where ν is a primitive n − 1st root of unity. Thus, if µ ∈ Pk
is a superattracting parameter on Si, there exist either one (if n is odd) or
two (if n is even) parameters λ ∈ P0 ∩ Si with Fλ conjugate to Fµ. This
is because both λ1 = ν−kµ and λ2 = νk+1µ lie in P0. When n is odd,
only Fλ1 is conjugate to Fµ if k is even, and only Fλ2 is conjugate to Fµ
if k is odd. But when n is even, both Fλ1 and Fλ2 are conjugate to Fµ
regardless of the parity of k, since ν−k = νn−k−1 and νk+1 = νk+n, and
one of each pair (−k, n − k − 1) and (k + 1, k + n) will always be an even
power of ν.

Now suppose µ ∈ Pk. Let λ be the parameter in P0 with Fµ conjugate
to Fλ, choosing the one of smaller argument if n is even. Let pmµ be the fixed
point in ∂Bµ sent to p0λ under the conjugacy. Assign to µ the itinerary for Fµ
obtained via the necklace Nm, relabeled so that the sector adjacent to pmµ
in the counterclockwise direction is Im0 . Call two itineraries (a1a2 . . . ) and
(b1b2 . . . ) complex conjugate if the corresponding symbols are related by aj+
bj = 2n− 1 mod 2n. Note an itinerary is transformed into its conjugate by
relabeling the partition in the opposite (clockwise) direction. Thus any two
superattracting parameters with conjugate maps will have either the same
itinerary, or conjugate itineraries if the conjugacy is given by the composition
of a rotation and complex conjugation.
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The one exception to this occurs again when λ0 ∈ R+, since the param-
eter νλ0 = νλ0 now lies in the symmetry sector P1. Hence the itinerary
(00 . . . 00) is unique in this respect.

This enables us to produce a list of all the superattracting itineraries
corresponding to parameters lying in the main cardioids of Mandelbrot sets
attached to the ring Sk by simply listing the itineraries corresponding to
parameters in P0 modulo the above constraints. For example, the superat-
tracting itineraries with base period 3 when n = 3 are given by

(000), (155422), (154), (153420), (142), (141414),

while the corresponding itineraries for the case n = 4 are

(000), (577), (176), (575), (174), (563).

The complex conjugate itineraries when n = 4 are then given by

(200), (601), (202), (603), (214).

This produces a dynamical invariant that differentiates the non-conjugate
parameters in the cardioids along the rings Sk.

Finally, this gives a count of the number of conjugacy classes of maps in
the Sierpiński cardioids attached to Sk.

Proposition 7. The number of conjugacy classes of maps drawn from
the Sierpiński cardioids along Sk is

(n− 2)nk + 1

n− 1
+ 1 if n is odd,

(n− 2)nk + n

2(n− 1)
if n is even.

Proof. When n is odd, the number of parameters in the symmetry sector
P0 is ((n − 2)nk + 1)/(n − 1). But this does not count the parameter νλ
where λ ∈ R+, which is then the only other conjugacy class. So we add 1 to
the above count to get the number of conjugacy classes when n is odd.

When n is even, the number of parameters in the symmetry sector P0 is
again ((n−2)nk+1)/(n−1). The map corresponding to a parameter along R+

is not conjugate to any other map in this symmetry sector. However, any
other parameter λ in this sector is conjugate to νλ, which also lies in P0.
Therefore the count of the number of conjugacy classes in this case is

(n− 2)nk + 1

n− 1
+ 1

2
=

(n− 2)nk + n

2(n− 1)
.

8. Final comments. In this paper we have proved that the Julia sets
arising from Sierpiński cardioids attached to the rings Sk for k ≥ 2 are all
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Sierpiński curves. This is not necessarily the case when k < 2. For example,
when k = 0, there are n − 1 cardioids of the principal Mandelbrot sets
that the ring S0 passes through. However, it is known that the Julia sets
arising from parameters in these regions are very different: they are so-called
checkerboard Julia sets [1]. In this case, the boundaries of the basins of
attraction of the attracting cycles now meet the boundaries of the preimages
of Bλ at infinitely many points, although these boundaries of the basins of
attraction never touch each other. Thus these sets are not Sierpiński curves.

When k = 1, as mentioned earlier, the ring S1 now passes through n− 1
period 2 bulbs of the principal Mandelbrot sets. In this case, the corre-
sponding Julia sets now contain Fatou domains that are homeomorphic to
the “basilica,” i.e., the filled Julia set for z2−1. As a consequence, infinitely
many of the boundaries of the basins of the attracting cycle now touch each
other, so again the Julia set is not a Sierpiński curve.
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