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Abstract. We show that if we add any number of Cohen reals to the ground model
then, in the generic extension, a locally compact scattered space has at most (2ℵ0)V levels
of size ω. We also give a complete ZFC characterization of the cardinal sequences of regular
scattered spaces. Although the classes of regular and of 0-dimensional scattered spaces are
different, we prove that they have the same cardinal sequences.

1. Introduction. Let us start by recalling that a topological space X is
called scattered if every non-empty subspace of X has an isolated point. Via
the well-known Cantor–Bendixson analysis then X decomposes into levels;
the αth Cantor–Bendixson level of X will be denoted by Iα(X). The height
of X, ht(X), is the least ordinal α with Iα(X) = ∅. The width of X, wd(X),
is defined by

wd(X) = sup{|Iα(X)| : α < ht(X)}.
Our main object of study is the cardinal sequence of X, denoted by CS(X),
which is the sequence of cardinalities of the non-empty Cantor–Bendixson
levels of X, i.e.

CS(X) = 〈|Iα(X)| : α < ht(X)〉.
The cardinality of a T3, in particular of a locally compact, scattered T2 (in

short: LCS) spaceX is at most 2 |I0(X)|, hence clearly ht(X) < (2|I0(X)|)+ and

|Iα(X)| ≤ 2|I0(X)| for each α. (Locally compact scattered spaces are closely
related to superatomic boolean algebras via Stone duality and the study of
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their cardinal sequences was actually originated within that subject.) Thus,
in particular, under CH there is no scattered T3 space of height ω2 and
having only countably many isolated points. After I. Juhász and W. Weiss
([5, Theorem 4]) had proved in ZFC that for every α < ω2 there is an LCS
space X with ht(X) = α and wd(X) = ω, it was a natural question if the
existence of an LCS space of height ω2 and width ω follows from ¬CH.
This question was answered in the negative by W. Just who proved ([6,
Theorem 2.13]) that if one blows up the continuum by adding Cohen reals
to a model of CH then in the resulting generic extension there is no LCS
space of height ω2 and width ω. On the other hand, in their ground breaking
work [1], J. Baumgartner and S. Shelah produced a model in which there
is an LCS space of height ω2 and width ω, moreover they proved in ZFC
that for each α < (2ω)+ there is a scattered 0-dimensional T2 space X with
ht(X) = α and wd(X) = ω.

Building on the idea of the proof of this latter result, in Section 3 we
succeed in giving a complete characterization of the cardinal sequences of
both T3 and zero-dimensional T2 scattered spaces. Although the classes of
regular and of zero-dimensional scattered spaces are different, it will turn
out that they yield the same class of cardinal sequences. We should add that,
with quite a bit of extra effort, in [8], J. C. Mart́ınez extended the former
result of Baumgartner and Shelah by producing a model in which for every
ordinal α < ω3 there is an LCS space of height α and width ω. The question
if it is consistent to have an LCS space of height ω3 and width ω remains a
big mystery.

In Section 2 we strengthen the result of Just by proving, in particular,
that in the same Cohen real extension no LCS space may have ω2 count-
able (non-empty) levels. It seems to be an intriguing (and natural) problem
whether the non-existence of an LCS space of width ω and height ω2 implies
in ZFC the above conclusion, or more generally: when is a subsequence of
the cardinal sequence of an LCS space again such a cardinal sequence? In
connection with this problem let us remark that (as shown in [2] or [3]), in
the side-by-side random real extension of a model of CH the combinatorial
principle Cs(ω2) introduced in [4, Definition 2.3] holds, and consequently
in such an extension there is no LCS space X of height ω2 and width ω.
In fact, by [4, Theorem 4.12], Cs(ω2) implies that {α ∈ ω2 : |Iα(X)| = ω}
is non-stationary in ω2. However, we do not know if our above mentioned
result, namely Theorem 2.1, is implied by Cs(ω2).

The moral of our above discussion may be concisely formulated as fol-
lows: The cardinal sequences of regular or zero-dimensional scattered spaces
are only subject to the trivial inequality |X| ≤ 2|I0(X)|, however those of the
LCS spaces are much harder to determine, in particular, they are sensitive
to the model of set theory in which we look at them.
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2. Countable levels in Cohen real extensions. Let us now formu-
late the promised strengthening of Just’s result. We note that no assumption
(such as CH) is made on our ground model.

Theorem 2.1. Set κ = (2ω)+ and add any number of Cohen reals to
our ground model. Then in the resulting extension no LCS space contains a
κ-sequence {Eα : α < κ} of pairwise disjoint countable subspaces such that
Eα ⊃ Eβ for all α < β < κ. In particular , for any LCS space X we have
|{α : |Iα(X)| = ω}| < κ.

In fact, we shall prove a more general statement, but to formulate it we
need a definition. A family D = {〈Dα

0 ,D
α
1 〉 : α ∈ I} of pairs (of sets) is said

to be dyadic over a set T if Dα
0 ∩Dα

1 = ∅ for each α ∈ I and

D[ε] =
⋂
{Dα

ε(α) : α ∈ dom ε}
intersects T for each ε ∈ Fn(I, 2). We simply say that D is dyadic if it is
dyadic over some T , i.e. D[ε] 6= ∅ for each ε ∈ Fn(I, 2). (As usual, Fn(I, 2)
denotes the set of all finite partial functions from I into 2.)

Now, it is obvious that in an LCS space

• the compact open sets form a base that is closed under finite unions,
• there is no infinite dyadic system of pairs of compact sets.

Consequently, Theorem 2.2 below immediately yields Theorem 2.1 above.

Theorem 2.2. Set κ = (2ω)+ and add any number of Cohen reals to the
ground model. Then in the resulting generic extension the following state-
ment holds: If X is any T2 space containing pairwise disjoint countable
subspaces {Eα : α < κ} such that Eα ⊃ Eβ for α < β < κ and X = E0 (i.e.
E0 is dense in X), and moreover , for each x ∈ X, we have fixed a neigh-
bourhood base B(x) of x in X that is closed under finite unions then there
is an infinite set a ∈ [κ]ω, for each α ∈ a there are disjoint finite subsets
L0
α and L1

α of Eα, and for each x ∈ L0
α ∪ L1

α there is a basic neighbourhood
V (x) ∈ B(x) such that the infinite family of pairs{〈 ⋃

x∈L0
α

V (x),
⋃

x∈L1
α

V (x)
〉

: α ∈ a
}

is dyadic.

This topological statement in the Cohen extension in turn will follow
from a purely combinatorial one concerning certain matrices, namely The-
orem 2.7.

To formulate this theorem we again need some notation and definitions.
For an ordinal α the interval [ωα, ωα+ ω) will be denoted by Iα.

Given two sets A and B we write f : A
p→ B to denote that f is a partial

function from A to B, i.e. a function from a subset of A into B. As usual,
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we let
Fn(A,B) = {f : |f | < ω and f : A

p→ B}.
If A ⊂ On then for any partial function f : A

p→ B we set

γ(f) =

{
min dom f if dom f 6= ∅,
supA if dom f = ∅.

We let
Ω = {〈A,B〉 ∈ [ω]<ω × [ω]<ω : A ∩B = ∅},

and for ` = 〈A,B〉 ∈ Ω we set π0(`) = A and π1(`) = B.
If S and T are sets of ordinals, we denote by M(S, T ) the family of all

S × ω-matrices consisting of subsets of T , i.e. A ∈ M(S, T ) means that
A = 〈Aα,i : α ∈ S, i ∈ ω〉, where Aα,i ⊂ T for each α ∈ S and i < ω.

For A ∈M(S, T ), f : S
p→ S, and s : S

p→ Ω the pair (f, s) is said to be
A-dyadic (over U) if the family of pairs{〈⋃

{Af(α),n : n ∈ π0(s(α))},
⋃
{Af(α),n : n ∈ π1(s(α))}

〉
:

α ∈ dom f ∩ dom s
}

is dyadic (over U). If the pair 〈idS , s〉 is A-dyadic (over U) then s is simply
called A-dyadic (over U). It is this latter notion of A-dyadicity of a single
partial function that is really important (that for pairs is only of technical
significance). Hence we state below an alternative characterization of it.

For A ∈M(S, T ), s : S
p→ Ω, and ε ∈ Fn(dom s, 2) we write

A[s, ε] =
⋂

α∈dom ε

⋃
{Aα,n : n ∈ πε(α)(s(α))}.

Observation 2.3. If A ∈ M(S, T ) then s : S
p→ Ω is A-dyadic over U

iff A[s, ε] ∩ U 6= ∅ for each ε ∈ Fn(dom s, 2) and
⋃
{Aα,n : n ∈ π0(s(α))} ∩

⋃
{Aα,n : n ∈ π1(s(α))} = ∅

for each α ∈ dom s.

The following easy observation will be applied later, in the proof of
Lemma 2.9:

Observation 2.4. If g : S
p→ S and s : S

p→ Ω satisfy dom s ⊂ ran g,
and the pair (g, s◦g) is A-dyadic over U , then s is A-dyadic over U as well.

Definition 2.5. Fix a cardinal κ and let D ∈ M(κ, κ). For s : κ
p→ Ω

we say that s is D-min-dyadic (m.d.) if s is D-dyadic over Iγ(s).
Moreover, we say that the matrix D is m.d.-extendible if for each finite

D-min-dyadic partial function s : κ
p→ Ω and for each γ < γ(s) there is an

` ∈ Ω such that s ∪ {〈γ, `〉} is also D-min-dyadic, i.e. D-dyadic over Iγ .
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Since I0 = ω, we clearly have the following.

Observation 2.6. If D ∈ M(κ, κ) is m.d-extendible and s : κ
p→ Ω is

a finite D-min-dyadic partial function then s is D-dyadic over ω.

Finally, a matrix D ∈ M(κ, κ) will be called ω-determined if Dα,n ∩
Dα,m ∩ ω = ∅ implies Dα,n ∩Dα,m = ∅ whenever α < κ and n < m < ω.

We now have all the necessary ingredients to formulate and prove the
promised combinatorial statement that will be valid in any Cohen real ex-
tension.

Theorem 2.7. Set κ = (2ω)+ and add any number of Cohen reals to
the ground model. Then in the resulting generic extension for every ω-
determined and m.d.-extendible matrix D ∈ M(κ, κ) there is an infinite

D-dyadic partial function h : κ
p→ Ω.

Before proving Theorem 2.7, however, we show how Theorem 2.2 can be
deduced from it.

Proof of Theorem 2.2 using Theorem 2.7. We can assume without any
loss of generality that Eα = Iα for each α < κ. We will define an appropriate
matrix D ∈M(κ, κ).

To this end, for coding purposes, we first fix a bijection % : [ω]2 → ω and
let η : ω → ω and ν : ω → ω be the “co-ordinate” functions of its inverse,
i.e. k = %({ν(k), η(k)}) and ν(k) < η(k) for each k < ω.

Since X is T2, for each n < ω we can simultaneously pick basic neigh-
bourhoods Bα

n (m) ∈ B(ωα + m) of the points ω · α + m ∈ Eα = Iα for all
m < n such that the sets {Bα

n(m): m < n} are pairwise disjoint.
Now we define D = 〈Dα,k : 〈α, k〉 ∈ κ× ω〉 ∈ M(κ, κ) as follows:

Dα,k = Bα
η(k)(ν(k)) ∩ κ.

This matrix D is clearly ω-determined because E0 = I0 = ω is dense in X.
It is a bit less easy to establish the following

Claim. D is also m.d.-extendible.

Proof. Let s : κ
p→ Ω be a finite D-min-dyadic partial function and let

γ < γ(s).
Since the sets {D[s, ε] : ε ∈ dom s2} are all open in the subspace κ and

they all intersect Iγ(s), and moreover every element of Iγ(s) is an accu-
mulation point of Iγ , it follows that D[s, ε] ∩ Iγ must be infinite for each

ε ∈ dom s2. Thus we can easily pick two disjoint finite subsets A0 and
A1 of Iγ such that every D[s, ε] intersects both A0 and A1. Let n < ω
be chosen in such a way that A0 ∪ A1 ⊂ {ωγ + m : m < n}, and set
Ki = {%{m,n} : m < n ∧ ωγ + m ∈ Ai} for i < 2. Since % is one-to-one we
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have K0 ∩K1 = ∅, hence ` = 〈K0,K1〉 ∈ Ω, and moreover

(?)
( ⋃

m∈K0

Dγ,m

)
∩
( ⋃

m∈K1

Dγ,m

)
= ∅

because the elements of the family {Bγ
n(m) : m < n} are pairwise disjoint.

Now put t = s ∪ {〈γ, `〉}. Then for each ε ∈ dom t2 we clearly have

(??) Aε(γ) ∩ D[t, ε] 6= ∅,
hence (?) and (??) together imply that the extension t of s is D-dyadic over
Iγ = Iγ(t). Claim

Thus we may apply Theorem 2.7 to the matrix D to obtain an infinite

D-dyadic partial function h : κ
p→ Ω. Set a = domh and for each α ∈ a and

i < 2 put Liα = {ωα+ ν(k) : k ∈ πi(h(α))}. For x ∈ Liα put

V (x) =
⋃
{Bα

η(k)(ν(k)) : x = ωα+ ν(k) and k ∈ πi(h(α))}.
Then V (x) ∈ B(x) because B(x) is closed under finite unions. Since for i < 2,

(⋃
{V (x) : x ∈ Liα}

)
∩ κ =

⋃
{Dα,k : k ∈ πi(h(α))}

and ⋃
{Dα,k : k ∈ π0(h(α))} ∩

⋃
{Dα,k : k ∈ π1(h(α))} = ∅,

we have (⋃
{V (x) : x ∈ L0

α}
)
∩
(⋃
{V (x) : x ∈ L1

α}
)

= ∅
because the latter intersection is an open set which does not intersect the
dense set I0 ⊂ κ. Hence the infinite family

{〈 ⋃

x∈L0
α

V (x),
⋃

x∈L1
α

V (x)
〉

: α ∈ a
}

is indeed dyadic. 2.2

Proof of Theorem 2.7. The proof will be based on the following two
lemmas, 2.9 and 2.10. For these we need some more notation and a new and
rather technical notion of extendibility for set matrices.

Given a set A we define

F(A) = {f ∈ Fn(A,A) : f is injective and dom(f) ∩ ran(f) = ∅}.
Each function f ∈ F(A) can be extended in a natural way to a bijection
f∗ : A→ A as follows:

f∗(a) =





f(a) if a ∈ dom f ,

f−1(a) if a ∈ ran f ,

a otherwise.
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Definition 2.8. If S and T are sets of ordinals then the matrix A ∈
M(S, T ) is called nicely extendible if for each f ∈ F(S) there are a family
N(f) ⊂ Fn(S,Ω) and a function Kf : N(f)→ [S]≤ω such that

(1) the pair (f, s) is A-dyadic whenever f ∈ F(S) and s ∈ N(f),
(2) ∅ ∈ N(f) for each f ∈ F(S),
(3) for f, g ∈ F(S) and s ∈ N(f) if f ∗�Kf (s) = g∗�Kf (s) then s ∈

N(g).
(4) for any f ∈ F(S), s ∈ N(f) and α ∈ S ∩ γ(s) there is ` ∈ Ω such

that s ∪ {〈α, `〉} ∈ N(f).

Clearly, this last condition (4) is what explains our terminology.

Lemma 2.9. If κ > ω1 is regular and A ∈M(κ, ω) is a nicely extendible

matrix then there is an infinite partial function h : κ
p→ ω that is A-dyadic.

Proof. By induction on n ∈ ω we will define functions h0 ⊂ h1 ⊂ · · · ⊂
hn ⊂ · · · from Fn(κ,Ω) such that |hn| = n and for each ν ∈ κ,

(∗)nν there is g ∈ F(κ) such that γ(g) > ν, ran g = domhn and hn ◦ g
∈ N(g).

First observe that h0 = ∅ satisfies our requirements because, according
to (2), condition (∗)0

ν holds trivially for each ν < κ.
Next assume that the construction has been done and the induction

hypothesis has been established for n. For each ν < κ choose a function
gν ∈ F(κ) witnessing (∗)nν+ω1

and then write Kν = Kgν (hn ◦ gν) and pick
ζν ∈ (ν, ν + ω1) \Kν . Clearly the set

L = {ξ ∈ κ : |{ν < κ : ξ /∈ Kν}| < κ}
is countable and so we can pick ξn ∈ κ \ (L ∪ domhn); then the set

J = {ν < κ : ξn /∈ Kν}
is of size κ.

Now set g′ν = gν ∪ {〈ζν , ξn〉} for every ν ∈ J . For every such ν then
ζν , ξn /∈ Kν implies gν

∗�Kν = g′ν
∗�Kν , hence hn ◦ gν ∈ N(g′ν) by (3). Since

ζν < ν + ω1 < γ(gν) = γ(hn ◦ gν), we can now apply (4) to get `ν ∈ Ω such
that (hn ◦ gν) ∪ {〈ζν , `ν〉} ∈ N(g′ν).

We can now fix `n ∈ Ω such that Jn = {ν ∈ J : `ν = `n} is of size κ and
let hn+1 = hn ∪ {〈ξn, `n〉}.

If ν ∈ Jn then hn+1 ◦ g′ν = (hn ◦ gν) ∪ {〈ζν , `n〉} ∈ N(g′ν) and γ(g′ν) > ν,
so g′ν witnesses (∗)n+1

ν . But Jn is unbounded in κ, hence the inductive step
is completed.

By (∗)n0 , for each n < ω there is gn such that domhn = ran gn and
hn ◦ gn ∈ N(gn). Hence, by (1), (gn, hn ◦ gn) is A-dyadic, and so hn is
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A-dyadic according to Observation 2.4. Consequently, h =
⋃{hn : n < ω}

is as required: it is A-dyadic and infinite. 2.9

Given any infinite set I we denote by CI the poset Fn(I, 2), i.e. the
standard notion of forcing that adds |I| Cohen reals.

Lemma 2.10. Let κ = (2ω)+. Then for each λ we have

V Cλ |= “If D ∈M(κ, κ) is both ω-determined and m.d.-extendible

then there is I ∈ [κ]κ such that

D∗ = 〈Dα,n ∩ ω : 〈α, n〉 ∈ I × ω〉 is nicely extendible.”

Proof. Assume that

1Cλ  Ḋ ∈ M(κ, κ) is m.d.-extendible.

Let θ be a large enough regular cardinal and consider the structure Hθ =
〈Hθ,∈, /, κ, λ, Ḋ〉, where Hθ = {x : |TC(x)| < θ} and / is a fixed well-
ordering of Hθ.

Working in V , for each α < κ choose a countable elementary submodel
Nα of Hθ with α ∈ Nα. Then there is I ∈ [κ]κ such that the models {Nα :
α ∈ I} are not only pairwise isomorphic but, denoting by σα,β the unique
isomorphism between Nα and Nβ , we have

(i) the family {Nα ∩ θ : α ∈ I} forms a ∆-system with kernel Λ,
(ii) σα,β(ξ) = ξ for each ξ ∈ Λ,
(iii) σα,β(α) = β.

For each α < κ and n < ω let Ḋα,n be the /-minimal Cλ-name of the

〈α, n〉th entry of Ḋ. Since / is in Hθ and σα,β(α) = β we have

Claim 2.10.1. σα,β(Ḋα,n) = Ḋβ,n for all α, β ∈ I and n ∈ ω.

Let G be any Cλ-generic filter over V . We shall show that

V [G] |= “D∗ = 〈Dα,n ∩ ω : 〈α, n〉 ∈ I × ω〉 is nicely extendible.”

For each f ∈ F(I) define the bijection %f : λ→ λ as follows:

%f (ξ) =

{
σα,f∗(α)(ξ) if ξ ∈ Nα ∩ λ for some α ∈ I,

ξ otherwise.

In a natural way %f extends to an automorphism of Cλ, which will be denoted
by %f as well. Clearly, we have

Claim 2.10.2. If f ∈ F(I), f(α) = β, p ∈ Cλ∩Nα, then σα,β(p) = %f (p).

For f ∈ F(I) let Gf = {%−1
f (p) : p ∈ G} and then set

N(f) = {s ∈ Fn(I,Ω) : s is Ḋ[Gf ]-min-dyadic}
= {s ∈ Fn(I,Ω) : ∃q ∈ Gf q  “s is Ḋ-min-dyadic”}.
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To define Kf , for each s ∈ N(f) pick a condition ps ∈ G such that

%−1
f (ps)  s is Ḋ-min-dyadic

and let
Kf (s) = {α ∈ I : (Nα \ Λ) ∩ dom ps 6= ∅}.

Note that Kf (s) as defined above is finite, although 2.8(3) only requires
Kf (s) to be countable.

To check property 2.8(3) assume that f, g ∈ F(I) and s ∈ N(f) with
g∗�Kf (s) = f∗�Kf (s). Then %−1

g (ps) = %−1
f (ps) and so

%−1
g (ps)  s is Ḋ-min-dyadic,

hence s is also Ḋ[Gg]-min-dyadic, i.e. s ∈ N(g).
Before checking 2.8(1) we need one more observation.

Claim 2.10.3. Ḋf(α),n[G] ∩ ω = Ḋα,n[Gf ] ∩ ω whenever f ∈ F(I), α ∈
dom f , and n < ω.

Proof. Let k ∈ ω. Then k ∈ Ḋf(α),n[G] iff ∃p ∈ G p  “k ∈ Ḋf(α),n”

iff ∃p ∈ G ∩ Nf(α) p  “k ∈ Ḋf(α),n” iff ∃q ∈ Gf ∩ Nα p = σα,f(α)(q) 
“k ∈ Ḋf(α),n” iff ∃q ∈ Gf ∩Nα q  “k ∈ Ḋα,n” iff ∃q ∈ Gf q  “k ∈ Ḋα,n”

iff k ∈ Ḋα,n[Gf ]. 2.10

Now let f ∈ F(I) and s ∈ N(f). By the definition of N(f), s is Ḋ[Gf ]-

min-dyadic and so by Observation 2.6, s is Ḋ[Gf ]-dyadic over ω. But it

follows from 2.10.3 that s is Ḋ[Gf ]-dyadic over ω if and only if the pair

(f, s) is Ḋ[G]-dyadic over ω.
2.8(2) is clear because ∅ is trivially A-min-dyadic for any A ∈M(κ, ω).

Finally, 2.8(4) follows from the definition of N(f) because Ḋ[Gf ] is m.d.-
extendible. 2.10

Now, to complete the proof of Theorem 2.7, first apply Lemma 2.10 to
get I ∈ [κ]κ such that

D∗ = 〈Dα,n ∩ ω : 〈α, n〉 ∈ I × ω〉
is nicely extendible. Then applying Lemma 2.9 to D∗ we obtain an infinite

D∗-dyadic function h : κ
p→ Ω. Since the matrix D is ω-determined the

function h is D-dyadic as well. 2.7

3. Cardinal sequences of regular and 0-dimensional spaces. For
convenience, in this section, space will always mean Hausdorff space. Then
for any regular, scattered space X we have |X| ≤ 2|I0(X)|, hence for such a

space X its cardinal sequence s satisfies length(s) < (2|I0(X)|)+ and s(α) ≤
2s(β) whenever β < α. We shall show below that these properties of a se-
quence s actually characterize the cardinal sequences of regular scattered
spaces.
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In [1], for each γ < (2ω)+, a 0-dimensional, scattered space of height γ
and width ω was constructed. The next lemma generalizes that construction.

For an infinite cardinal κ, let Sκ be the following family of sequences of
cardinals:

Sκ = {〈κα : α < δ〉 : δ < (2κ)+, κ0 = κ and κ ≤ κα ≤ 2κ for each α < δ}.
Lemma 3.1. For any infinite cardinal κ and s ∈ Sκ there is a 0-dimen-

sional scattered space X with CS(X) = s.

Proof. Let s = 〈κα : α < δ〉 ∈ Sκ. Write X =
⋃{{α} × κα : α < δ}.

Since |X| ≤ 2κ we can fix an independent family {Fx : x ∈ X} ⊂ [κ]κ.
The underlying set of our space is X and the topology τ on X is given

by declaring for each x = 〈α, ξ〉 ∈ X the set

Ux = {x} ∪ (α× Fx)

to be clopen, i.e. {Ux,X \ Ux : x ∈ X} is a subbase for τ .
The space X is clearly 0-dimensional and T2.

Claim 3.1.1. If x = 〈β, ξ〉 ∈ U ∈ τ and α < β then U ∩ ({α} × κα) is
infinite.

Proof. We can find disjoint sets A,B ∈ [X \ {x}]<ω such that

x ∈ Ux ∩
⋂

y∈A
Uy \

⋃

z∈B
Uz ⊂ U.

Observe that if 〈γ, ξ〉 ∈ A then β < γ. Thus

U ∩ ({α} × κα) ⊃ {α} ×
( ⋂

y∈A∪{x}
Fy \

⋃

z∈B
Fz

)
,

and the set on the right side is infinite because {Fx : x ∈ X} was chosen to
be independent. 3.1.1

To complete the proof of 3.1, by induction on α < κ, we verify that
Iα(X) = {α} × κα, hence CS(X) = s. Assume that this is true for ν < α. If
x ∈ {α} × κα then

Ux ∩
(
X \

⋃

ν<α

Iν(X)
)

= {x},

hence {α} × κα ⊂ Iα(X). On the other hand, if x = 〈β, ξ〉 ∈ X with β > α
and U ∈ τ is a neighbourhood of x, then, by the claim above, U ∩({α}×κα)
is infinite, hence x is not isolated in X \⋃ν<α Iν(X), i.e., x /∈ Iα(X). Thus
Iα(X) = {α} × κα. 3.1

Theorem 3.2. For any sequence s of cardinals the following statements
are equivalent:

(1) s = CS(X) for some regular scattered space X,
(2) s = CS(X) for some 0-dimensional scattered space X,
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(3) for some natural number m there are infinite cardinals κ0 > κ1 >
· · · > κm−1 and for all i < m sequences si ∈ Sκi such that s =
s0
_s1

_ · · ·_sm−1 or s = s0
_s1

_ · · ·_sm−1
_〈n〉 for some natural

number n > 0.

Proof. (1)⇒(3). By induction on j we choose ordinals νj < ht(X) and
cardinals κj such that ν0 = 0 and κ0 = |I0(X)|, and moreover, for j > 0
with κj−1 infinite,

νj = min
{
ν ≤ ht(X) : |Iν(X)| < κj−1},

and κj = |Iνj (X)|. We stop when κm is finite. For each j < m let δj = νj+1
.
− νj . Then the sequence sj = 〈|Iνj+δ(X)| : δ < δj〉 is in Sκj . Thus CS(X) =
s0
_s1

_ · · ·_sm−1 provided κm = 0 (i.e. Iνm(X) = ∅), and CS(X) =
s0
_s1

_ · · ·_sm−1
_〈κm〉 when 0 < κm < ω.

(3)⇒(2). First we prove this implication for sequences s of the form
s0
_s1

_ · · ·_sm−1 by induction on m. If s ∈ Sκ0 then the statement is just
lemma 3.1

Assume now that s = s0
_s1

_ · · ·_sm−1, where κ0 > κ1 > · · · > κm−1

and si ∈ Sκi for i < m.
According to Lemma 3.1 there is a 0-dimensional space Y with cardinal

sequence sm−1. Using the inductive assumption we can also fix pairwise
disjoint 0-dimensional topological spaces Xy,n for 〈y, n〉 ∈ I0(Y ) × ω, each
having the cardinal sequence s′ = s0

_s1
_ · · ·_sm−2. We then define the

space Z = 〈Z, τ〉 as follows. Let

Z = Y ∪
⋃
{Xy,n : y ∈ I0(Y ), n < ω}.

A set U ⊂ Z is in τ iff

(i) U ∩ Y is open in Y ,
(ii) U ∩Xy,n is open in Xy,n for each 〈y, n〉 ∈ I0(Y )× ω,
(iii) if y ∈ I0(Y ) ∩ U then there is m < ω such that

⋃{Xy,n : m < n
< ω} ⊂ U .

If U is a clopen subset of Y and n < ω then it is easy to check that

Z(U, n) = U ∪
⋃
{Xy,m : y ∈ I0(Y ) ∩ U, n < m < ω}

is clopen in Z. Hence

B = {Z(U, n) : U ⊂ Y is clopen, n < ω}
∪ {T : T is a clopen subset of some Xy,n}

is a clopen base of Z and so Z is 0-dimensional.
Let δ′ = length(s′) and δ = length(s).

Claim 3.2.1. Iα(Z) =
⋃{Iα(Xy,n) : 〈y, n〉 ∈ I0(Y )× ω} for α < δ′.
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Proof. Since Xy,n is an open subspace of Z it follows that Iα(Xy,n) ⊂
Iα(Z). On the other hand,

Y ⊂
⋃
{Iα(Xy,n) : 〈y, n〉 ∈ I0(Y )× ω}

Z

,

hence Y ∩ Iα(Z) = ∅. 3.2.1

Since, by Claim 3.2.1,

Z \
⋃

α<δ′
Iα(Z) = Y,

it follows that for δ′ ≤ α < δ we have

(∗) Iα(Z) = I
α
.
−δ′(Y ).

Thus Z =
⋃
α<δ Iα(Z), hence Z is a scattered space of height δ.

If α < δ′ then, by Claim 3.2.1,

|Iα(Z)| = |I0(y)| · ω · s′(α) = κm−1 · ω · s′(α) = s′(α) = s(α).

If δ′ ≤ α < δ then, by (∗), |Iα(Z)| = |I
α
.
−δ′(Y )| = sm−1(α

.
− δ′) = s(α), and

consequently CS(Z) = s.
Thus we proved the statement for sequences of the form s0

_ · · ·_sm−1.
If s = s0

_ · · ·_sm−1
_〈n〉 then writing s′ = s0

_ · · ·_sm−1 we can first
find pairwise disjoint 0-dimensional scattered spaces Xi,m, 〈i,m〉 ∈ n × ω,
each having cardinal sequence s′. Let

Z = {xi : i < n} ∪
⋃
{Xi,m : i < n,m < ω}.

Declare a set U ⊂ Z open iff

(i) U ∩Xi,m is open in Xi,m for each 〈i,m〉 ∈ n× ω,
(ii) if xi ∈ U then there is ni < ω such that

⋃{Xi,m : ni < m < ω} ⊂ U .

Then Z is 0-dimensional, and

Iα(Z) =

{ ⋃{Iα(Xi,m) : i < n,m < ω} if α < length(s′),

{xi : i < n} if α = length(s′).

Hence again Z is a scattered space with CS(Z) = s.
(2)⇒(1) is trivial. 3.2

We leave it to the reader to verify that the sequences described in item
(3) of Theorem 3.2 are exactly those mentioned at the beginning of the
section with the additional obvious necessary condition that all but the last
term of the sequence are infinite cardinals.

4. An alternative proof. We are grateful to the referee for pointing
out to us the following alternative (and simpler) approach to obtain a proof
of Theorem 2.1. This proof deduces 2.1 not from Theorem 2.2 but from the
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following weaker statement. We emphasize that the proof sketch given below
is due to the referee.

Theorem 4.1. In V , set κ = (2ω)+. Let V [G] be formed by adding any
number of Cohen reals to V . Then in V [G], the following holds: Suppose we
are given:

(1) a separable zero-dimensional T3 space X,
(2) pairwise disjoint countable Eα for α < κ such that Eα ⊃ Eβ for

α < β < κ.

Then we can find a sequence {Kn : n ∈ ω} of clopen sets which is inde-
pendent; that is, if we let Kµ

n be Kn if µ = 0 and X \ Kn if µ = 1, then⋂
i<nK

s(n)
n 6= ∅ for each n < ω and s ∈ 2n.

Proof. To prove this, first work in V [G]. Assume that ω ⊂ X and ω is
dense in X. For each α < κ, let Bα ⊂ P(X) be a countable subalgebra of
the clopen sets such that Bα separates the points of Eα. Let Cα = {K ∩ ω :
K ∈ Bα}. Then Cα is a countable subalgebra of P(ω). Observe that the
map K 7→ K ∩ω is an isomorphism from Bα onto Cα; its inverse is the map
H 7→ H.

Still in V [G], let T be the tree of height ω whose nodes at level n are pairs

(~α, ~H), where ~α = 〈αi : i < n〉 ∈ κn is a sequence of distinct ordinals and
~H = 〈Hi : i < n〉 ∈ (P(ω))n is an independent sequence, with eachHi ∈ Cαi .
Use < for the usual tree order, with the root (∅, ∅) at the top. Assume that
there is no independent ω-sequence, as claimed in the theorem. Then T must
be well-founded, and hence has an ordinal-valued rank function, %, defined
by %(x) = sup{%(y) + 1 : y ∈ T ∧ y < x}.

Still in V [G], we note that since κ ≥ ω2, T must have nodes of un-

countable rank. To prove this, call a node x = (~α, ~H) special if α0 >

α1 > · · · > αn−1 and each
⋂
i<nK

s(i)
i (for s ∈ 2n) meets Eαn−1, where

Ki = H i. We prove that %(x) ≥ αn−1 for such special nodes x. The
proof proceeds by induction on αn−1; it is sufficient to prove that for each

β < αn−1: x has an extension of the form y = (~α′, ~H ′), where y is special,
~α′ = 〈α0, α1, . . . , αn−1, αn〉, with αn = β, and ~H ′ extends ~H; so, we need to

define Hn. Since each clopen set
⋂
i<nK

s(i)
i meets Eαn−1 , and Eβ ⊃ Eαn−1 ,

each
⋂
i<nK

s(i)
i meets Eβ in an infinite set. Since Bβ separates points of

Eβ , we can choose Kn so that it and its complement meet all 2n sets

Eβ ∩
⋂
i<nK

s(i)
i . Then let Hn = Kn ∩ ω.

Now, in V , we have, for each α < κ, a name Ċα which is forced to name
a countable subalgebra of P(ω). Since κ = (2ω)+, we may apply a ∆-system
and thinning-out argument and assume, without loss of generality, that the
names Ċα are disjointly supported and isomorphic; this means that given
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any permutation π of κ, there is an automorphism σ of the forcing order P
such that each σ(Ċα) = Ċπ(α). We do this thinning-out before we define the

tree Ṫ . We also have a name %̇ for the rank function. But now, using the
automorphisms, it is easily proved that %̇ is forced to take on only countable
values, which is a contradiction. To see this: whenever ~α ∈ κ<ω (in V ) is a
sequence of distinct ordinals, let

R~α = {ξ : ∃p ∈ P [p  (∃ ~H [(~α, ~H) ∈ Ṫ ∧ %̇(~α, ~H) = ξ])]}.
Then each R~α is countable (by the ccc) and R~α only depends on the length
of ~α (by the automorphisms). It follows that the union of all the R~α is
countable. Since this union must also be an initial segment of the ordinals,
it is forced that %̇ only takes countable values.
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