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Hereditarily indecomposable inverse limits of graphs

by

K. Kawamura (Tsukuba), H. M. Tuncali (North Bay)
and E. D. Tymchatyn (Saskatoon)

Abstract. We prove the following theorem: Let G be a compact connected graph
and let f : G→ G be a piecewise linear surjection which satisfies the following condition:
for each nondegenerate subcontinuum A of G, there is a positive integer n such that
fn(A) = G. Then, for each ε > 0, there is a map fε : G → G which is ε-close to f such
that the inverse limit (G, fε) is hereditarily indecomposable.

1. Introduction. Throughout the paper, a graph means a compact,
connected, one-dimensional polyhedron. A continuum (i.e. a compact, con-
nected, metric space) is said to be indecomposable if it is not the union of
two proper subcontinua. A continuum is said to be hereditarily indecompos-

able if each subcontinuum is indecomposable. For a continuous surjection
f : X → X of a compact metric space X, (X, f) denotes the inverse limit
of the inverse sequence

X
f
← X

f
← X

f
← X

f
← · · ·

where all coordinate spaces are X’s and all bonding maps are f ’s. In this
paper, we are concerned with the following question:

What properties of a map h : G → G of a graph G imply that for each

ε > 0, there is a map hε : G→ G which is ε-close to h such that (G, hε) is

hereditarily indecomposable?

Properties of maps on graphs which yield inverse limits containing inde-

composable subcontinua have been investigated by several authors. In par-
ticular, Barge and Diamond [2] obtained necessary and sufficient conditions
for piecewise monotone maps whose inverse limits contain indecomposable
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continua. However, the situation for maps of graphs with hereditarily inde-

composable limits is slightly different. Block, Keesling and Uspenskij [4] have
shown that the continuous surjections g of [0, 1] such that ([0, 1], g) is hered-
itarily indecomposable form a nowhere dense set in the space of continuous
surjections of [0,1]. In [6] and [10], two very different surjections of [0, 1]
onto itself are constructed, both of which yield the pseudo-arc (the topo-
logically unique hereditarily indecomposable arc-like continuum) as their
inverse limits.

The map f : [0, 1]→ [0, 1] constructed by Henderson in [6] is simple from
the point of view of topological dynamics. It has exactly two fixed points
0 and 1, and every point x different from 1 satisfies limn→∞ fn(x) = 0. In
contrast, the map f : [0, 1]→ [0, 1] constructed by Minc and Transue in [10]
is topologically transitive, that is, there exists a point x such that the subset
{fn(x) | n ≥ 0} is dense in [0, 1]. Thus it seems to be difficult to obtain a
characterization of the dynamics of maps which yield hereditarily indecom-
posable inverse limits (see also Kuykendall [8]). The purpose of the present
paper is to prove the following theorem, generalizing the construction of the
Minc–Transue map above.

Main Theorem. Let G be a compact connected graph and f : G → G
a piecewise linear surjection which satisfies the following condition:

(∗) for each nondegenerate subcontinuum A of G, there is a positive inte-

ger n such that fn(A) = G.

Then for each ε > 0, there is a map fε : G→ G which is ε-close to f such

that (G, fε) is hereditarily indecomposable.

The proof of the Main Theorem follows that in [10], where G is assumed
to be an arc. We construct inductively small “crooked perturbations” of a
given map to obtain the desired map as the limit of a sequence of these
perturbations. Our main result extends the Minc–Transue theorem [10] to
maps of compact connected graphs satisfying condition (∗). Another per-
turbation of the Minc–Transue map has been considered in [9] in a different
context. Also a similar set of conditions has been considered by Williams
in [12] and [13]. His local expansions on branched 1-manifolds satisfying
Axioms 0-3 ([12], [13]) satisfy the conditions of our main theorem.

2. Preliminaries. In this section, we recall some definitions and results
which are necessary for the proof of the main theorem.

Definition 2.1. (1) A metric ̺ on a graph G is called a convex (or arc

length) metric if, for each pair of points x and y of G, there is an
isometry α of the interval [0, ̺(x, y)] in the real line into G such that
α(0) = x and α(̺(x, y)) = y.



Hereditarily indecomposable inverse limits 197

(2) Let G be a graph with a convex metric ̺. For a subset A of G,
diam(A) denotes the diameter of A with respect to ̺. The ε-neighbor-
hood of A (with respect to ̺) is denoted Nε(A). The interior and
closure of A are denoted by int(A) and cl(A), respectively.

Definition 2.2. Let f : G → G be a map of a graph G with metric
̺ and let ε > 0. A map ω : [0, 1] → G is said to be (f, ε)-crooked if there
exist s and t with 0 < s ≤ t < 1 such that ̺(f ◦ ω(s), f ◦ ω(1)) ≤ ε and
̺(f ◦ ω(t), f ◦ ω(0)) ≤ ε.

Remark. In Definition 2.2, notice that, if there exist intervals I1 and
I2 in [0, 1] disjoint except possibly for a common endpoint and such that
f(ω([0, 1])) ⊂ cl(Nε(f(ω(Ii)))) for i = 1, 2, then ω is (f, ε)-crooked.

First, we state three propositions without proof. They are analogues of
Propositions 1–3 of [10] and the proofs are simple.

Proposition 2.3. Let f : G → G be a map of a graph G. If α ≥ δ,
then every ω : [0, 1]→ G which is (f, δ)-crooked is also (f, α)-crooked.

Proposition 2.4. Let G be a graph with metric ̺ and let f, g : G→ G
be two maps on G.

(1) Suppose ̺(f(t), g(t)) < ε for each t ∈ G. If a map ω : [0, 1]→ G is

(f, δ)-crooked , then ω is also (g, δ + 2ε)-crooked.
(2) Suppose that , for each pair of points x, y ∈ G with ̺(x, y) < δ,

we have ̺(g(x), g(y)) < ε. Then a map ω : [0, 1] → G which is

(f, δ)-crooked is also (g ◦ f, ε)-crooked.

Proposition 2.5. Let G be a graph and δ > 0. Let {fi | i = 1, 2, . . . }
be a sequence of maps of G onto itself which converges uniformly to f . If

a map ω : [0, 1] → G is (fi, δ)-crooked for each i = 1, 2, . . . , then ω is

(f, δ)-crooked.

The proof of the following proposition is similar to that of Proposition 4
of [10]. For the sake of completeness we provide the proof.

Proposition 2.6. Let f : G → G be a map such that for each δ > 0,
there is an integer n > 0 such that each map ω : [0, 1]→ G is (fn, δ)-crooked.
Then the inverse limit (G, f) is hereditarily indecomposable.

Proof. Let X denote the inverse limit (G, f). Suppose that A and B are
subcontinua of X such that A∩B 6= ∅, B \A 6= ∅ and A\B 6= ∅. Let k be an
integer so large that, if πk : X → G is the kth-coordinate projection, then
πk(A)\πk(B) 6= ∅ and πk(B)\πk(A) 6= ∅. Let δ > 0 be such that there exists
x ∈ πk(A)\Nδ(πk(B)) and y ∈ πk(B)\Nδ(πk(A)). Let n be an integer such
that each map ω : [0, 1]→ G is (fn, δ)-crooked. Let ω : [0, 1]→ πn+k(A∪B)
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be an embedding so that fn(ω(0)) = x, fn(ω(1)) = y and πn+k(A)∩ω([0, 1])
is a connected set. Then ω is not (fn, δ)-crooked. This is a contradiction.

The following proposition is an analogue of Proposition 6 of [10].

Proposition 2.7. Let f : G→ G be a map which satisfies condition (∗).
Then for each ε > 0, there exists an integer n > 0 such that for each

subcontinuum A with diam(A) ≥ ε, fn(A) = G.

Proof. Choose pairwise disjoint arcs K1, . . . , Kn in G with diam(Ki) ≤
ε/4 for each i = 1, . . . , n such that each continuum in G \ (K1 ∪ · · · ∪Kn)
has diameter <ε/2. Let mi be a positive integer such that fmi(Ki) = G.
Let m = max{m1, . . . , mn}. If A is a continuum in G with diam(A) ≥
ε, then A contains Ki for some i = 1, . . . , n. Hence fm(A) ⊃ fm(Ki) =
fm−mi(fmi(Ki)) = fm−mi(G) = G.

3. Proof of Main Theorem. Our proof of the Main Theorem follows
that in [10]. We prove that each piecewise linear map of a graph which
satisfies (∗) can be perturbed slightly so as to have a local expansion property
(Lemma 3.2) and further to have a certain crookedness (Lemma 3.3). The
second perturbation corresponds to Lemma in [10] (pp. 1167–1168) and the
first perturbation provides a situation to which the second perturbation can
be applied. Once we obtain these results, the remaining part of the proof
proceeds as in [10]. First we prove the following lemma which is an analogue
of Proposition 5 of [10].

By a fan, we mean a wedge of finitely many arcs. A map f : X → Y of
a compact, metric space X to a continuum Y is said to be weakly confluent

if for each subcontinuum K ⊂ Y , there exists a subcontinuum L ⊂ f−1(K)
such that f(L) = K. It is well known that every map of a continuum onto
an arc is weakly confluent.

Convention. Throughout this section, we fix a convex metric ̺ and a
triangulation T on a compact connected graph G such that each edge e of
T is isometric to the unit interval. Let IdH denote the identity map on a
subgraph H.

In what follows, we often consider a map gR : R→ R∗ defined on an edge
R of a triangulation of G to a subgraph R∗ ⊂ G. We apply Definition 2.2
to gR with the domain R of gR being regarded as the unit interval to say
simply that “gR is (IdR∗ , γ/5)-crooked” etc.

Note that the numbers γ/5 and ε/4k in the statement of Lemma 3.1 are
chosen for a technical reason for later use.

Lemma 3.1. Let G be the above compact connected graph with a tri-

angulation T . For each well-chosen k, ε and γ with k ≥ 1 an integer ,
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0 < γ < ε/4k and 0 < ε < 1/4, there exist a piecewise linear map g : G→ G
and a subdivision T ′ of T which satisfy the following conditions:

(1) Each edge of T ′ has length γ/5.
(2) For each edge R of T ′, we have g(R) = R∗, where R∗ is the largest

subpolyhedron of T ′ contained in the closure of the ε/2-neighborhood

of R. In particular , diam(g(R)) ≥ ε/2.
(3) For each edge e of T , there exists an edge R of T ′ such that each

edge of T ′ which meets R∗ is contained in e.
(4) For each subcontinuum A of G with diam(A) ≥ γ/5 and for each

positive number q, we have

A ⊂ g(A) ⊂ g(Nq(A)) ⊂ Nq+γ/5(g(A)).

(5) For each subcontinuum B of G with diam(B) ≤ γ/5,

diam(g(B)) ≥ 2k diam(B) ≥ 2 diam(B).

(6) Each map ω : [0, 1] → G with diam(ω([0, 1])) < γ/5 is (g, 2γ/5)-
crooked.

(7) ̺(g, IdG) < ε/2 + γ/5.

Remark. The following fact, an easy consequence of (1) and the defini-
tion of R∗, is important in the proof below: If R1 and R2 are adjacent edges
of T ′, then the Hausdorff distance of R∗1 and R∗2 is at most γ/5.

Proof of Lemma 3.1. Let G, T , k, ε and γ be as in the hypothesis. By
replacing γ by a smaller number if necessary, we may suppose that 1/γ is an
integer. Let T ′ be a subdivision of G satisfying (1) and (3). Notice that for
each edge R of T ′, R∗ is a fan containing at most one vertex of T . Denote
the set of all edges of T by {e1, . . . , em}. For each j = 1, . . . , m, take an edge
Rj of T ′ satisfying (3). Then

cl
(
G−

m⋃

j=1

Rj

)
=

s⋃

i=1

Ti,

where the Ti’s are pairwise disjoint fans such that Ti contains exactly one
vertex vi of T . Label the edges of T which meet vi as ei,1, . . . , ei,ki

.
Let R be an edge of T ′ other than R1, . . . , Rm. Then R ⊂ Ti for some i

and hence R∗ ⊂
⋃ki

j=1 eij by the definition of R∗. Let vR,0 and vR,1 be the
endpoints of R, where vR,0 is the endpoint of R closer to vi.

Next we define a piecewise linear map φR : [0, 1] → R∗ as follows. If
R∗ ⊂ ei,j for some j, then let at be the endpoint of R∗ closer to vR,t for
t = 0, 1. The map φR : [0, 1] → R∗ is the simplest piecewise linear map
which carries the 5-tuple (0, 1/4, 1/2, 3/4, 1) onto (vR,0, a1, a0, a1, vR,1) (see
Figure 1).
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Now suppose R∗ is not a subset of ei,j for any j. The subset R∗ is a fan
with the unique branch point vi. Let aj be the endpoint of R∗ in ei,j for j =
1, . . . , ki (note that aj is distinct from vi). Let ξ = 2ki and let φR : [0, 1]→R∗

be the simplest piecewise linear map which carries the (ξ + 1)-tuple
(0, 1/ξ, 2/ξ, . . . , (ξ − 1)/ξ, 1) onto (vR,0, a1, a2, . . . , aki

, aki−1, . . . , a1, vR,1)
(see Figure 2).
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Next we define an (Id[0,1], p)-crooked piecewise linear map bR : R→ [0, 1]
with bR(vR,0) = 0 and bR(vR,1) = 1, where the positive number p is chosen
so that

(8) ̺(z1, z2) < p ⇒ ̺(φR(z1), φR(z2)) < γ/5,

where z1, z2 ∈ R. Hence by Proposition 2.4(2), the map gR = φR ◦ bR : R→
R∗ is (IdR∗ , γ/5)-crooked.

We define bR : R→ [0, 1] to be a nowhere locally constant simplicial map
with respect to some subdivisions P and Q of R and [0, 1] respectively. Let
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vR,0 = p0, p1, . . . , pM−1, pM = vR,1 be the vertices of P so that pi and pi+1

are adjacent. We also assume that the midpoint of R is a vertex pµ of P.
Similarly let 0 = q0 < q1 < · · · < qN = 1 be the vertices of Q. The map bR

satisfies the following conditions:

(9) (crookedness in the sense of Bing [3]) If bR(ps) = qu and bR(pt) = qv

with v − u ≥ 5, then there exist x and y with s < x < y < t such
that bR(px) = qv−1 and bR(py) = qu+1, and

(10) bR([vR,0, pµ]) ⊃ [0, 1/2] and bR([pµ, vR,1]) ⊃ [1/2, 1], where [vR,0, pµ]
is the segment in R connecting vR,0 with pµ, etc.

We further choose P andQ so that ̺(pi, pi+1)=γ/5M for i=1, . . . , M−1
and qj+1− qj = 1/N for j = 1, . . . , N −1. By the crookedness condition (9),
M/N becomes arbitrarily large as M increases to infinity. So the derivative
of bR becomes arbitrarily large in absolute value for large N .

As we stated above, we define gR = φR ◦ bR : R → R∗ for each edge
R other than R1, . . . , Rm. Recall from the construction that φR “contracts”
subintervals of [0, 1] by a factor of order at most 1/ε. Therefore, by taking
N large enough, we obtain the following condition:

(11) diam(gR(B)) ≥ 4k diam(B) for each subinterval B in R.

Also we may require

(12) gR is (IdR∗ , γ/5)-crooked on each interval J of R.

Indeed, if bR(J) contains five consecutive edges of Q, then (9) guaran-
tees the desired crookedness. Otherwise, diam(bR(J)) < 6/N and hence
diam(g(J)) < γ/5, by taking sufficiently large N . It follows that gR|J is
trivially (IdR∗ , γ/5)-crooked.

By the construction of φR, we have

(13) gR(B) = R∗ for each subinterval B containing an endpoint of R and
having length at least γ/10.

We next define gRi
: Ri → R∗i for i ∈ {1, . . . , m}. Let P and Q be the edges

of T ′ adjacent to Ri. Note that P ∗∪R∗i ∪Q∗ ⊂ ei by (3). We suppose P ⊂ Tk

and Q ⊂ Tj for some k 6= j.
The vertex vP,0 is closer to vk than vP,1 is, and vQ,0 is closer to vj

than vQ,1 is. So vP,1 is the common endpoint of P and Ri, and vQ,1 is
the common endpoint of Q and Ri. Let ak be the endpoint of R∗i closer
to vk, and aj the endpoint of R∗i closer to vj . Let φRi

: [0, 1] → R∗i be
the simplest piecewise linear map which carries (0, 1/5, 2/5, 3/5, 4/5, 1) onto
(vP,1, aj , ak, aj , ak, vQ,1). Let bRi

: Ri → [0, 1] be an (Id[0,1], p)-crooked piece-
wise linear map with bRi

(vP,1) = 0 and bRi
(vQ,1) = 1 for p as in (8). With

the same conditions as used in defining bR above, let gRi
= φRi

◦ bRi
.

Then
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(14) gRi
is (IdR∗

i
, γ/5)-crooked on each subinterval of Ri, and

(15) diam(gRi
(B)) ≥ 4k diam(B) for each subinterval B of Ri (see Fig-

ure 3).

Let g : G → G be a map defined by g =
⋃
{gR : R ∈ RT ′}. Then g is well

defined and continuous since the endpoints of R are fixed by gR for each

edge R of T ′.
Condition (5) follows from (11) and (15) above. Also (7) follows from

the fact that g(R) = R∗ and by definition of R∗ for an edge R of T ′.
Now we are going to prove (4). Let A be a subcontinuum of G with

diam(A) ≥ γ/5 and let q > 0. As each edge of T has length γ/5, there

exist R in T ′ and v an endpoint of R such that the component B of v
in R ∩ A has diameter at least γ/10. Hence by (10), R∗ ⊂ g(A). Let q =

αγ/5 + β, where α is a nonnegative integer and 0 ≤ β ≤ γ/5, and take
a point x ∈ A with ̺(x, A ∩ R) = q. Since g maps adjacent edges of T ′

to within Hausdorff distance γ/5 of each other (see the Remark before the
proof), we have ̺(g(x), R∗) ≤ αγ/5 + β + γ/5 ≤ q + γ/5. Thus g(Nq(A)) ⊂

Nq+γ/5(g(A)). The other inclusions follow easily from the construction of g.

This proves (4).
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It remains to show that (6) is satisfied. Let ω : [0, 1] → G be a map
with diam(ω([0, 1])) < γ/5. If diam g(ω([0, 1])) ≤ 2γ/5, then ω is trivially
(g, 2γ/5)-crooked. If diam g(ω([0, 1])) > 2γ/5, we have two cases to consider.

Case A: ω([0, 1]) ⊂ R for some edge R of T ′. As g|ω([0,1]) = gR|ω([0,1])

is (IdR∗ , γ/5)-crooked by (12) and (14), there exist intervals K1 and K2 in
ω([0, 1]) disjoint except possibly for a common endpoint such that

gR(ω([0, 1])) ⊂ cl(Nγ/5(gR(Kj))), j = 1, 2.

Using weak confluence of ω, we find intervals I1 and I2 in [0, 1] disjoint
except possibly for a common endpoint such that ω(Ij) = Kj . This proves
that ω is (g, γ/5)-crooked in this case.

Case B: ω([0, 1]) is not contained in any edge of T ′. As diam(ω([0, 1]))
< γ/5, there is a vertex v of T ′ such that v ∈ ω([0, 1]) ⊂ int(st(v, T ′)),
where st(v, T ′) is the union of the edges of T ′ having v as an endpoint. By
construction of g, it follows that there is R with v being an endpoint such
that cl(Nγ/5(g(R ∩ ω([0, 1])))) ⊃ g(ω([0, 1])). Since R ∩ ω([0, 1]) is a subin-
terval of R and g is (IdR∗ , γ/5)-crooked on all subintervals of R, by (11)
and (12), there exist intervals K and L, disjoint except possibly for a com-
mon endpoint, such that

g(R ∩ ω([0, 1])) ⊂ cl(Nγ/5(K)) ∩ cl(Nγ/5(L)).

Hence g(ω([0, 1])) ⊂ cl(N2γ/5(K)) ∩ cl(N2γ/5(L)) and in this case also, ω is
(g, 2γ/5)-crooked and (6) is proved.

This completes the proof of Lemma 3.1.

Remark. It follows from the construction of g that, for each edge R
of T ′, there exist arcs K0 and K1, disjoint except possibly for a common
endpoint, in R such that g(R) = g(Kj) for j = 0, 1.

The next lemma describes a perturbation of f of the main theorem to a
map f0 with local expansion property, while retaining condition (∗).

Lemma 3.2. Let f : G→ G be a piecewise linear map which satisfies (∗).
Then, for each δ with 0 < δ < 1, there exist a piecewise linear map f0 :
G→ G and a positive number γ < δ such that

(1) ̺(f0, f) < δ.
(2) For each subcontinuum A in G with diam(A) < γ/5,

diam(f0(A)) ≥ 2 diam(A).

(3) The map f0 satisfies condition (∗).

Remark. 1) As is seen below, f0 = f ◦ g, where g is the map obtained
in Lemma 3.1. The crookedness condition (9) of Lemma 3.1 plays no role in
the proof of this lemma. We will make use of (9) later in Lemma 3.3.
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2) The proof below shows that the map f0 satisfies the following condi-
tion: there exists an integer n > 0 such that, for every subcontinuum A of
G such that diam(A) ≥ γ/5, we have fn

0 (A) = G.

Proof of Lemma 3.2. Observe first that diam(G) ≥ 1. As f is piecewise
linear and nowhere locally constant, there exist 0 < S1 < 1 < S2 such that
S−1

1 and S2 are integers and

(4) S1 diam(C) ≤ diam(f(C)) ≤ S2 diam(C)

for each subcontinuum C of G.

Let k = 2/S1 and let ε > 0 be a number such that

(5) ε < δ/2S2.

By Proposition 2.7, there exists a positive integer n such that

fn(A) = G for each subcontinuum A of G with diam(A) > ε/4.

Take a positive number γ so that 1/γ is an integer and

(7) γ < min{ε/2, 1/Sn
2 }.

Apply Lemma 3.1 to the above k, ε and γ, to obtain a map g : G → G
which is (ε/2 + γ/5)-close to IdG and a triangulation T ′ of G which satisfy
conditions (1)–(7) of Lemma 3.1. Define a map f0 : G → G by f0 = f ◦ g.
We prove that f0 satisfies the desired conditions.

Condition (1) follows immediately from (4)–(6) above and the condi-
tion (7) of Lemma 3.1.

Let A be a subcontinuum of G with diam(A) ≥ γ/5. As each edge
of T ′ has length equal to γ/5, there exists an edge R of T ′ such that
diam(A ∩ R) ≥ γ/10. By (10) of Lemma 3.1, we have R∗ ⊂ g(A). Also
by (2) of Lemma 3.1, we see that diam(g(A)) ≥ ε/2. By the choice of n,
we have fn(g(A)) = G. From γ < 1/Sn

2 by (7), it follows from (5) and
fn(g(A)) = G that diam(f j(g(A))) ≥ γ for each j ≥ 1 (recall diam(G) ≥ 1).
By (4) of Lemma 3.1, g(f j(g(A))) ⊃ f j(g(A)) for each j ≥ 1. There-
fore f0(f(g(A))) = fgf(g(A)) ⊃ f2(g(A)), and an inductive argument

shows that f j−1
0 (f(g(A))) ⊃ f j(g(A)) for each j ≥ 1. Thus, fn

0 (A) =

fn−1
0 (f(g(A))) ⊃ fn(g(A)) = G, as required.

To prove (2), let A be a nondegenerate subcontinuum of G. If diam(A)
≥ γ/5, then fn

0 (A) = G by the above. Suppose, therefore, that diam(A)
< γ/5. We prove first that diam(f0(A)) ≥ 2 diam(A). By (5) of Lemma 3.1,
diam(g(A)) ≥ 2k diam(A) > (2/S1) diam(A) ≥ 4 diam(A). So

diam(f0(A)) = diam(f(g(A))) ≥ S1 diam(g(A))

≥ S1
2

S1
diam(A) = 2 diam(A),
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which proves (2). If diam(f0(A)) ≥ γ/5, then fn+1
0 (A) = G, and if

diam(f0(A)) < γ/5, then diam(f2
0 (A)) ≥ 22 diam(A). By repeating this

argument finitely many times we see that fm
0 (A) = G for some integer m.

So (3) is satisfied.
This completes the proof.

The map f0 of Lemma 3.2 is further perturbed to obtain, by induction,
a sequence of maps so that the limit map has the crookedness property
required in the hypothesis of Proposition 2.6. The following lemma describes
the general inductive step.

Lemma 3.3. Let h : G→ G be a piecewise linear map which satisfies (∗)
and the condition: there exists 0 < β < 1 such that

(+)β for each subcontinuum A with diam(A) ≤ β,

diam(h(A)) ≥ 2 diam(A).

Then, for each δ with 0 < δ < 1, there exist a map F : G→ G satisfying (∗),
a positive number γ < δ and an integer n > 0 such that

(1) ̺(F, h) < δ.
(2) Fn(A) = G for every subcontinuum A of G with diam(A) ≥ γ/5.
(3) The map F satisfies condition (+)γ/5.

(4) Each map ω : [0, 1]→ G is (Fn, δ)-crooked.

Proof. As in Lemma 3.2, choose S1 and S2 so that S−1
1 and S2 are

integers, 0 < S1 < 1 < S2 and

(5) S1 diam(C) ≤ diam(h(C)) ≤ S2 diam(C)

for each subcontinuum C of G.

Let k = 2/S1. Next choose ε so that each subcontinuum of G with diameter
less than ε contains at most one branch point of G and

(6) ε <
δ

2S2

and an integer n (using Proposition 2.7) in such a way that

(7) hn(A) = G for each subcontinuum A of G with diam(A) > ε/4.

The choice of a positive number γ is more delicate than in Lemma 3.2. The
γ is chosen as follows:

(8) γ < min

{
(S2 − 1)ε

8Sn+1
2

,
ε

4k
,

S1

4Sn
2

,
β

4Sn
2

}
.

We again apply Lemma 3.1 to obtain a map g : G → G and a triangu-
lation T ′ of G which satisfy conditions (1)–(7) of Lemma 3.1. Define a map
F : G→ G by F = h ◦ g. We prove that F satisfies the desired conditions.



206 K. Kawamura et al.

As h satisfies the hypothesis of Lemma 3.2, conditions (1)–(3) follow
from Lemma 3.2. We need only show that (4) holds for F .

We will need the following estimation. Since h satisfies (+)β and γ < β/2
(see (8)), h satisfies

(9) diam(h(A)) ≥ 2min{diam(A), γ/5} for each subcontinuum A.

We also need the following inclusion:

(10) For each subcontinuum A of G with diam(A) ≥ γ/5, for each positive
number q, and for each positive integer j, we have

F j(Nq(A)) ⊂ N
Sj

2
(q+2γ)

(F j(A)).

Indeed, for each subcontinuum A of G with diam(A) ≥ γ/5 and each
q > 0,

F (Nq(A)) = h(g(Nq(A))) ⊂ h(Nq+γ/5(g(A)))

⊂ NS2(q+γ/5)(h(g(A))) = NS2(q+γ/5)(F (A))

by (5) and Lemma 3.1(4). Inductively, using (5) and Lemma 3.1(4),

F j(Nq(A)) ⊂ Nα(F j(A))

for each positive integer j, where α = Sj
2q + γ

5
Sj+1

2
−1

S2−1 . Since

α < Sj
2

(
q + γ

S2

S2 − 1

)
≤ Sj

2(q + 2γ)

(note S2 ≥ 2), we have the inclusion (10).

Now, consider a continuous map ω : [0, 1] → G. We must prove that
ω is (Fn, δ)-crooked. By the remark following Definition 2.2, it suffices to
show that there exist two (disjoint except possibly for a common endpoint)
intervals I0 and I1 in [0,1] such that Fn(ω([0, 1])) ⊂ Nδ(F

n(ω(Ij))) for
j = 0, 1. We may assume that diam(Fn(ω([0, 1]))) ≥ 2δ > γ, or there is
nothing to prove. In what follows ω([0, 1]) is denoted by Im ω for simplicity.
There are two cases to consider.

Case I: There exists an edge R of T ′ contained in Im ω = ω([0, 1]). If
Im ω contains no simple closed curve then ω|ω−1(R) is weakly confluent. If

Im ω contains a simple closed curve, let G̃ → G be the universal cover of

G, T̃ ′ the triangulation of G̃ which is the lifting of T ′, and ω̃ : [0, 1]→ G̃ a

lifting of ω to G̃. If R̃ is a 1-simplex of T̃ ′ contained in ω̃([0, 1]), then ω̃|
ω̃−1(R̃)

is weakly confluent onto R̃. Without loss of generality, we may suppose that

R is the homeomorphic projection of R̃ in G. So ω|ω−1(R) is weakly confluent
onto R.

As in the remark following Lemma 3.1, there exist (disjoint except pos-
sibly for a common endpoint) arcs K0 and K1 in R such that g(R) = g(Kj)



Hereditarily indecomposable inverse limits 207

for j = 0, 1. By the weak confluence of ω restricted to the preimage of R,
there exist (disjoint except possibly for a common endpoint) arcs I0 and I1

in [0, 1] such that ω(Ij) = Kj . By the proof of (2) and (3) of Lemma 3.2
with A replaced by ω(Ij) and f0 replaced by F = f0 ◦g respectively, we have
Fn(ω(Ij)) = G for j = 0, 1.

Case II: Imω = ω([0, 1]) contains no edge of T ′. Here our argument is
completely parallel to the one of [10, p. 1169]. We divide our consideration
into two cases, Case II.a and Case II.b. A detailed argument is provided for
Case IIa, while the argument for Case IIb is sketched briefly.

Let m be the largest integer such that Fm(Imω) contains no edge of T ′.
Then there is a vertex v in T ′ such that Fm(Imω) ⊂ st(v, T ′) = the union of
all edges of T ′ containing v. Note that in this case diam(Fm(Imω)) < 2γ/5.

Case IIa: diam(g(Fm(Imω))) ≥ 2γ. Note that g(Fm(Imω))) is a tree.
As in Case B of Lemma 3.1, there is an edge P of T ′ which has v as an
endpoint such that

g(Fm(Imω)) ⊂ cl(Nγ/5(g(P ∩ Fm(Imω)))).

Since g is (IdP ∗ , 2γ/5)-crooked for each subinterval of P , there exist (disjoint
except possibly for a common endpoint) intervals I0 and I1 in [0, 1] such that

g(Fm(Imω) ∩ P ) ⊂ cl(N2γ/5(g(Fm(ω(Ij))))) for j = 0, 1.

Hence,

(11) g(Fm(Imω)) ⊂ cl(Nγ/5(g(K))) ⊂ cl(N3γ/5(g(Fm(ω(Ij)))))

for j = 0, 1.

So g is (Fm, 3γ/5)-crooked. Now

Fm+1(Imω) = h(g(Fm(Im ω)))

⊂ h(cl(N3γ/5(g(Fm(ω(Ij)))))), j = 0, 1, by (11)

⊂ cl(NS23γ/5(h(g(Fm(ω(Ij)))))) by (5)

⊂ NS2γ(Fm+1(ω(Ij))), j = 0, 1.

As diam(g(Fm(Imω))) ≥ 2γ, by (11) we have diam(g(Fm(ω(Ij)))) ≥ 4γ/5.

By (9), diam(Fm+1(ω(Ij))) ≥ 2min{diam(g(Fm(ω(Ij)))), γ/5} = 2γ/5
> γ/5 for j = 0, 1. Now using (11), (5), (9), (10), (8) and (6), one can
show that

Fn(Imω) ⊂ Fn−m−1(NS2γ(Fm+1(ω(Ij))))

⊂ NSn−m−1

2
(S2γ+2γ)(F

n(ω(Ij))) by (9) and (10)

⊂ Nδ(F
n(ω(Ij))) by (8) and (6), for j = 0, 1.

Hence ω is (Fn, δ)-crooked.
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Case II.b: diam(g(Fm(Imω))) < 2γ. By the choice of m, Fm+1(Imω)
contains an edge R of T ′. This together with (5) yields

γ/5 ≤ diam(Fm+1(Imω)) ≤ 2S2γ < ε by (8).

The above inequality means that Fm+1(Im ω) contains at least a half of an
edge of T ′, but still sits in a tree with at most one branch point. Then one
can proceed as in Case II.a to conclude that ω is (Fn, δ)-crooked as well.

This proves (5), and hence completes the proof.

Proof of Main Theorem. Suppose that a map f : G → G satisfies
condition (∗) in the Main Theorem and an ε > 0 is given. First, using
Lemma 3.2, we construct a map f0 satisfying (∗) and (+)β, where f0 is
ε/2-close to f . Then as in [10], Lemma 3.3 enables us to construct a se-
quence {fi : G → G | i ≥ 0} of surjections and an increasing sequence
{n(i) | i ≥ 0} of integers such that

(a) n(0) = 0.
(b) d(fi, fi+1) < ε/2i+1.

(c) Each map ω : [0, 1]→ G is (f
n(k)
i , (ε/2k − ε/2k+i))-crooked for each

k = 1, . . . , i + 1.

(d) For each subcontinuum A of G with diam(A) > ε/2k, f
n(k)
i (A) = G

for each k = 0, 1, . . . , i.

By (b), the limit map fε = limi→∞ fi exists and fε is ε/2-close to f0.
Since f0 is ε/2-close to f , fε is ε-close to f . Condition (c) and Proposi-
tions 2.5 and 2.6 guarantee that (G, fε) is hereditarily indecomposable. This
completes the proof of the Main Theorem.

4. Applications. For every integer p ≥ 1, there exists a topolo-
tgically unique hereditarily indecomposable circle-like continuum Σ(p) =
lim←(Si, fi : Si+1 → Si), where each Si is a simple closed curve and
deg fi = p ([5] and [11]), and it is called the pseudo-solenoid of type p
if p > 1 and the pseudo-circle if p = 1. The p-adic solenoid is denoted by
S(p) (S(1) is the simple closed curve).

We assume that each simple closed curve under consideration is the
unit circle in the complex plane, i.e. S1 = {z ∈ C | |z| = 1}. The map
fp : S1 → S1 defined by fp(z) = zp gives the p-adic solenoid as its inverse
limit (S1, fp). If p > 1, it is easy to see that fp satisfies the conditions of
the Main Theorem. If p = 1, it is easy to construct a map φ1 : S1 → S1 of
degree 1 satisfying the condition of the Main Theorem. Applying the Main
Theorem to fp and φ1 respectively (with the help of the uniqueness of Σ(p)),
we have the following inverse sequence representation of Σ(p) by a single
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bonding map. The authors are grateful to Professor P. Minc for pointing
out the p = 1 case.

Corollary 4.1. The pseudo-solenoid or pseudo-circle Σ(p) (p ≥ 1)
can be represented as an inverse limit (S1, gp) of a map gp : S1 → S1 of the

simple closed curve with degree p.

Suppose that gp : S1 → S1 is a map as in the above corollary. By
the homotopy lifting property of fp, it is easy to construct a sequence
{hi : S1 → S1} of surjections such that hi ◦ gp = fp ◦ hi+1. The sequence
induces a surjective map h∞ = lim←(hi) : Σ(p) → S(p). Applying Propo-
sition B of [7], we can choose (hi) so that hi = hi+1 for each i. The next
corollary gives a little more information on these maps.

Corollary 4.2. Suppose that p > 1. For each ε > 0, there exist sur-

jections g, h : S1 → S1 such that

(1) the inverse limit (S1, g) is homeomorphic to Σ(p),
(2) h ◦ g = fp ◦ h and hence h induces a surjection h∞ : Σ(p)→ S(p),
(3) ̺(h, id) < ε.

Proof. Since fp is a positively expansive open map, it has the following
property called the pseudo-orbit tracing property : for each ε > 0, there is
a δ > 0 such that for each sequence {xi | i ≥ 0} of points of S1 with
̺(fp(xi), xi+1) < δ for each i ≥ 0, there exists a point x of S1 such that
̺(f i

p(x), xi) < ε for each i.

Apply the Main Theorem to obtain a map g : S1 → S1 such that
̺(fp, g) < δ and (S1, g) is hereditarily indecomposable, and hence, is the
pseudo-solenoid of type p. For each x in S1, consider the sequence {gi(x) |
i ≥ 0}. Then ̺(f(gi(x)), gi+1(x)) < δ for each i ≥ 0, and the pseudo-orbit
tracing property guarantees the existence of a point h(x) of S1 such that
̺(f i

p(h(x)), gi(x)) < ε for each i ≥ 0. The remaining part of the proof pro-
ceeds as those of the topological stability of expansive homeomorphisms with
the pseudo-tracing property (see for example, [1, Theorem 5.8, p. 684]).

Remark. For a connected graph G, IdG does not satisfy condition (∗).
However, as in the above argument for the case p = 1, the construction of
Lemma 3.1 yields a piecewise linear map approximating IdG and satisfy-
ing (∗). Thus IdG can be approximated by a map h : G → G such that
(G, h) is hereditarily indecomposable.
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