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Structure of the McMullen domain

in the parameter planes for rational maps

by

Robert L. Devaney (Boston)

Abstract. We show that, for the family of functions Fλ(z) = zn +λ/zn where n ≥ 3
and λ ∈ C, there is a unique McMullen domain in parameter space. A McMullen domain
is a region where the Julia set of Fλ is homeomorphic to a Cantor set of circles. We
also prove that this McMullen domain is a simply connected region in the plane that is
bounded by a simple closed curve.

Our goal in this paper is to describe some of the dynamical behavior
arising in the families of rational maps given by

Fλ(z) = zn + λ/zn

where λ 6= 0 is a complex parameter and n is a positive integer. In particular,
we investigate the structure of a region in the parameter plane that we call
the McMullen domain. Parameters drawn from this region have the property
that the Julia sets of the corresponding functions are Cantor sets of simple
closed curves.

Each of the functions Fλ has a total of 2n “free” critical points. However,
like the well studied quadratic family Qc(z) = z2 + c, each function really
has only one free critical orbit since all forward orbits of the critical points
behave symmetrically. Hence the λ-plane is a natural parameter plane for
these families.

As another similarity with the quadratic family, the point at ∞ is a
superattracting fixed point for each λ when n > 1, and so it may be the
case that the critical orbits enter the basin of this fixed point. Unlike the
quadratic family, however, there are three distinctly different manners in
which the critical orbits may escape to ∞, and this in turn determines
the topological structure of the Julia sets for the escape parameters. We
denote the immediate basin of attraction of ∞ by Bλ. One possible escape
scenario is that the critical values all lie in Bλ. Since 0 is a pole, there is a
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neighborhood of 0 that is mapped into Bλ. Now either this neighborhood is
itself contained in Bλ, or else 0 lies in a disjoint preimage of Bλ, in which
case we denote this preimage by Tλ. In the latter case, note that Fλ maps
Tλ in n-to-one fashion onto Bλ while Fλ|Bλ is also n-to-one. Hence the
only preimages of Bλ are Bλ itself and Tλ. So a second possible scenario
occurs when the critical values lie in Tλ rather than Bλ. Finally, the third
possibility arises when some higher iterate of the critical values lies in Tλ.
The following theorem describes the Julia sets that result from these three
different situations [7]:

Theorem (The Escape Trichotomy). For the family of functions

Fλ(z) = zn + λ/zn

with n ≥ 2 and λ ∈ C:

(i) If the critical values lie in Bλ, then the Julia set is a Cantor set.

(ii) If the critical values lie in Tλ, then the Julia set is a Cantor set of

simple closed curves.

(iii) If the critical values lie in any other preimage of Tλ, then the Julia

set is a Sierpiński curve.

A Sierpiński curve is a planar set that is characterized by the following
five properties: it is a compact, connected, locally connected and nowhere
dense set whose complementary domains are bounded by simple closed
curves that are pairwise disjoint. It is known from work of Whyburn [19]
that any two Sierpiński curves are homeomorphic. In fact, they are homeo-
morphic to the well known Sierpiński carpet fractal. From the point of view
of topology, a Sierpiński curve is a universal set in the sense that it contains
a homeomorphic copy of any planar, compact, connected, one-dimensional
set [15]. The first example of a Sierpiński curve Julia set was given by Milnor
and Tan Lei [14]. See also Ushiki [18].

Case (ii) of the Escape Trichotomy was first observed by McMullen [11],
who showed that this phenomenon occurs in each family provided that n 6=
1, 2 and |λ| is sufficiently small.

In Figures 1 and 2 we display a Julia set drawn from the family Fλ(z) =
z3+λ/z3 corresponding to each of the three cases in the Escape Trichotomy.

In Figure 3 we display the parameter plane for the family Fλ(z) = z3 +
λ/z3. The black regions indicate parameter values for which the critical orbit
does not escape to ∞. Again in analogy with the quadratic polynomial
family, for these parameters the Julia set is a connected set. The colored
regions in this picture represent λ-values for which the critical orbit tends
to ∞. The exterior region corresponds to parameter values for which the
Julia set is a Cantor set; we call this set the Cantor set locus. The small
region in the center corresponds to parameter values for which the Julia set
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Fig. 1. Several Julia sets from the the family z3 + λ/z3. The Julia set in Figure (a) is a
Cantor set; Figure (b) is a Cantor set of simple closed curves.

Fig. 2. Another Julia set from the family z3 + λ/z3; this Julia set is a Sierpiński curve.

is a Cantor set of simple closed curves. We call this region the McMullen

domain. The other colored regions correspond to parameters for which the
Julia set is a Sierpiński curve. These are called Sierpiński holes.

It is known [1], [5] that there are infinitely many disjoint Sierpiński holes
for each of these families for each n > 1. Roesch [17] has shown that each
Sierpiński hole is homeomorphic to a disk when n = 2.

In Figure 4 we have displayed the parameter plane in the case n = 4. The
McMullen domain is again the centrally located colored region in this plane,
and all of the other such regions that are bounded are Sierpiński holes.

Note that, in the case n = 3, there appear to be two large copies of
a Mandelbrot set that straddle the positive and negative real axes, and
when n = 4, there are three symmetrically-located copies of Mandelbrot
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Fig. 3. The parameter plane for the family z3 + λ/z3.

Fig. 4. The parameter plane for the family z4 + λ/z4 and a magnification around the
McMullen domain.

sets. These are called the principal Mandelbrot sets for Fλ. By the Douady–
Hubbard theory of polynomial-like maps, it is known that there are n − 1
such sets in the parameter plane for zn + λ/zn and that these sets are
homeomorphic to the standard quadratic Mandelbrot set [3]. Moreover, for
parameters drawn from these sets, there is an invariant subset on which Fλ

is conjugate to the corresponding quadratic polynomial on its Julia set.
Our goal in this paper is to investigate further properties of the param-

eter plane for these maps and, in particular, the structure of the McMullen
domain. Our main goal is to prove:

Theorem. There is a unique McMullen domain in the parameter plane

for each n ≥ 3. Moreover , this region is an open disk that is bounded by a

simple closed curve.
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We observe that it is rare in complex dynamics for an “escape” region to
be bounded by a nice simple closed curve. For example, the boundary of the
escape locus for quadratic polynomials is the boundary of the Mandelbrot
set, which is far from being a simple closed curve.

1. Elementary mapping properties. In this paper we restrict atten-
tion to the family of rational maps given by

Fλ(z) = zn + λ/zn

where, in view of McMullen’s result, we assume that n ≥ 3.
In the dynamical plane, the object of principal interest is the Julia set

of Fλ, which we denote by J(Fλ). The Julia set is the set of points at
which the family of iterates {Fn

λ } fails to be a normal family in the sense
of Montel. It is known that J(Fλ) is also the closure of the set of repelling
periodic points for Fλ as well as the boundary of the set of points whose
orbits escape to ∞ under iteration of Fλ. See [13].

The point at ∞ is a superattracting fixed point for Fλ and we denote the
immediate basin of ∞ by Bλ. It is well known that Fλ is conjugate to z 7→ zn

in a neighborhood of ∞ in Bλ (see [16]). There is also a pole of order n for
Fλ at the origin, so there is a neighborhood of 0 that is mapped into Bλ

by Fλ. If this neighborhood is disjoint from Bλ, then we denote the preimage
of Bλ that contains 0 by Tλ. So Fλ maps both Bλ and Tλ in n-to-one fashion
over Bλ. We call Tλ the trap door since any orbit that eventually enters the
immediate basin of ∞ must “fall through” Tλ en route to Bλ.

The map Fλ has 2n other critical points given by λ1/2n. We call these
points the free critical points for Fλ. There are, however, only two critical
values, and these are given by ±2

√
λ. We denote a free critical point by cλ

and a critical value by vλ. The map also has 2n prepoles given by (−λ)1/2n.
Note that all of the critical points and prepoles lie on the circle of radius
|λ|1/2n centered at the origin. We call this circle the critical circle and denote
it by Cλ.

The map Fλ has some very special properties when restricted to circles
centered at the origin:

Proposition.

(i) Fλ takes the critical circle 2n-to-one onto the straight line connecting

the two critical values ±2
√

λ.

(ii) Fλ takes any other circle centered at the origin to an ellipse whose

foci are the critical values.

Proof. For (i), let λ = |λ| exp(iµ). We compute

Fλ(|λ|1/2neiθ) = |λ|1/2((cosnθ + cos(µ − nθ)) + i(sinnθ + sin(µ − nθ)))

= |λ|1/2(x + iy).
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A straightforward computation then shows that

d

dθ

(
y

x

)
= 0,

so that the image of the critical circle has constant slope and so is a line
segment. One checks easily that the extremities of this segment occur at
±2

√
λ.

For (ii), another computation shows that, on the circle of radius r cen-
tered at the origin, we have

|Fλ(reiθ) + 2
√

λ| + |Fλ(reiθ) − 2
√

λ| = 2(rn + |λ|/rn),

which is constant. So the image of this circle is an ellipse with foci at the
critical values ±2

√
λ.

We call the image of the critical circle the critical segment. We call the
straight ray connecting the origin to ∞ and passing through one of the crit-
ical points (resp., prepoles) a critical point ray (resp., prepole ray). Similar
straightforward computations show that each of the critical point rays is
mapped in two-to-one fashion onto one of the two straight line segments of
the form tvλ, where t ≥ 1 and vλ is the image of the critical point on this
ray. So the image of a critical point ray is one of two straight rays connecting
±vλ to ∞. Hence the critical segment together with these two rays forms a
straight line through the origin.

Similarly, each of the 2n prepole rays is mapped in one-to-one fashion
onto the same straight line given by it

√
λ, where t is now any real number.

Note that the image of the prepole rays is the line that is perpendicular to
the line tvλ for t ∈ R which contains the critical segment and the images of
the critical point rays.

Let Sλ be an open sector bounded by two prepole rays corresponding
to adjacent prepoles on Cλ, i.e., Sλ is a sector in the plane with angle
2π/2n. We call Sλ a critical point sector since it contains at its “center”
a unique critical point of Fλ. Similarly, let Pλ be the open sector bounded
by two critical point rays corresponding to adjacent critical points on Cλ.
We call Pλ a prepole sector. The next result follows immediately from the
above:

Proposition (Mapping properties of Fλ).

(i) Fλ maps each critical point sector in two-to-one fashion onto the

open half-plane that is bounded by the image of the prepole rays and

contains the critical value that is the image of the unique critical

point in the sector.

(ii) Fλ maps each prepole sector in one-to-one fashion onto the entire

plane minus the two half-lines ±tvλ where t ≥ 1.
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(iii) Fλ maps the region in both the interior and the exterior of the criti-

cal circle onto the complement of the critical segment as an n-to-one

covering map.

We now turn to the symmetry properties of Fλ in both the dynamical
and parameter planes. Let ν be the primitive (2n)th root of unity given by
exp(πi/n). Then, for each j, we have Fλ(νjz) = (−1)jFλ(z). Hence, if n is
even, we have F 2

λ (νjz) = Fλ(z). Therefore the points z and νjz land on the
same orbit after two iterations and so have the same eventual behavior for
each j. If n is odd, the orbits of Fλ(z) and Fλ(νjz) are either the same or
else they are the negatives of each other. In either case it follows that the
orbits of νjz behave symmetrically under z 7→ −z for each j. Hence the
Julia set of Fλ is symmetric under z 7→ νz. In particular, each of the free
critical points eventually maps onto the same orbit (in case n is even) or
onto one of two symmetric orbits (in case n is odd). Thus these orbits all
have the same behavior and so the λ-plane is a natural parameter plane for
each of these families.

Let Hλ(z) be one of the n involutions given by Hλ(z) = λ1/n/z. Then
we have Fλ(Hλ(z)) = Fλ(z), so that the Julia set is also preserved by each
of these involutions. Note that each Hλ maps the critical circle to itself

and also fixes a pair of critical points ±
√

λ1/n. Moreover, Hλ maps circles
centered at the origin outside the critical circle to similar circles inside the
critical circle and vice versa. It follows that two such circles, one inside and
one outside the critical circle, are mapped onto the same ellipse by Fλ.

The parameter plane (see Figures 3 and 4) for Fλ also has several sym-
metries. First of all, we have

Fλ(z) = Fλ(z)

so that Fλ and Fλ are conjugate via the map z 7→ z. Therefore the parameter

plane is preserved by the map λ 7→ λ.
We also have (n−1)-fold symmetry in the parameter plane for Fλ. To see

this, let ω be the primitive (n−1)st root of unity given by exp(2πi/(n−1)).
Then, if n is even, we compute that

Fλω(ωn/2z) = ωn/2(Fλ(z)).

As a consequence, for each λ ∈ C, the maps Fλ and Fλω are conjugate under
the linear map z 7→ ωn/2z. In particular, since, when λ is real, the real line
is preserved by Fλ, it follows that the straight line passing through 0 and
ωn/2 is preserved by Fλω.

When n is odd, the situation is a little different. We now have

Fλω(ωn/2z) = −ωn/2(Fλ(z)).
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Since Fλ(−z) = −Fλ(z), we therefore see that F 2
λω is conjugate to F 2

λ via

the map z 7→ ωn/2z. This means that the dynamics of Fλ and Fλω are
“essentially” the same, though subtly different. For example, if Fλ has a
fixed point, then under the conjugacy, this fixed point and its negative are
mapped to a 2-cycle for Fλω. Again, since the real line is invariant when λ
is real, it follows that the straight line passing through both ±ωn/2 is also
invariant under Fλω.

To summarize the symmetry properties of Fλ, we have:

Proposition (Symmetries in the dynamical and parameter planes). The

dynamical plane for Fλ is symmetric under the map z 7→ νz where ν is a

primitive (2n)th root of unity. The parameter plane is symmetric under both

z 7→ z and z 7→ ωz where ω is a primitive (n − 1)st root of unity.

The following result shows that the McMullen domain and all of the
Sierpiński holes are located inside the unit circle in parameter space.

Proposition (Location of the Cantor set locus). Suppose |λ| ≥ 1 and

n > 2. Then vλ lies in Bλ so that λ lies in the Cantor set locus.

Proof. Suppose |z| ≥ 2|λ|1/2 ≥ 2. Then we have

|Fλ(z)| ≥ |z|n − |λ|/|z|n ≥ |z|n − |λ|1−n/2 ≥ |z|n−1 > |z|
since n > 2. Hence |F j

λ(z)| → ∞ so the region |z| ≥ 2|λ|1/2 lies in Bλ. In
particular, vλ ∈ Bλ.

For each n, let λ∗ = λ∗
n be the unique real solution to the equation

|vλ| = 2|
√

λ| = |λ|1/2n = |cλ|.
Using this equation, we compute easily that

λ∗ = (1/4)n/(n−1).

The circle of radius λ∗ plays an important role in the parameter plane, for
if λ lies on this circle, it follows that both of the critical values lie on the
critical circle for Fλ. If λ lies inside this circle, then Fλ maps the critical
circle strictly inside itself. We call the circle of radius λ∗ in parameter plane
the dividing circle. We will be primarily concerned in later sections with
values of the parameter that lie inside the dividing circle.

2. The boundary of the basin of infinity. Our main goal in this
section is to show that the boundary of Bλ, which we denote by ∂Bλ, is
a simple closed curve for all parameter values that lie inside the dividing
circle in parameter plane. We then derive a particular parametrization of
this curve as well as several other properties of this set.

Recall that λ∗ is the radius of the dividing circle in the parameter plane.
Let O be the open disk in parameter plane inside the dividing circle, so
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that |λ| < λ∗ in O. Recall also that, if λ ∈ O, then the critical circle Cλ is
mapped strictly inside itself by Fλ.

Theorem. If λ ∈ O, then the boundary of Bλ is a simple closed curve.

Proof. Since the critical circle Cλ is mapped strictly inside itself, there
is another circle of slightly larger radius that is also mapped strictly inside
itself and n-to-one onto an ellipse surrounding the critical segment. Call
this circle κλ. The preimage of κλ consists of a pair of simple closed curves,
one of which lies strictly outside this circle. This follows since Fλ maps the
exterior of Cλ as an n-to-one covering of C minus the critical segment. Thus
this exterior preimage is mapped n-to-one onto κλ. Let Aλ denote the closed
annulus bounded by κλ and its exterior preimage. Note that there are no
critical points of Fλ in Aλ, so Fλ is an n-to-one covering map on all of Aλ.

We now quasiconformally modify Fλ on Aλ and its interior as follows.
Let Kλ be the closed disk bounded by κλ. We first replace Fλ in Kλ by a

map F̃λ that is conjugate to z 7→ zn defined inside a closed disk of radius

̺ < 1. So the new map F̃λ takes Kλ strictly inside itself. Then we further

modify Fλ on Aλ − κλ so that the new map F̃λ:

(i) agrees with F̃λ on the inner boundary κλ of Aλ;
(ii) agrees with Fλ on the outer boundary of Aλ;
(iii) maps Aλ−κλ as an n-to-one covering onto the annular region Kλ−

F̃λ(Kλ).

Then standard arguments yield the fact that the new map F̃λ is quasicon-
formally conjugate to the map z 7→ zn inside the preimage of κλ but agrees
with Fλ on the boundary of and outside this preimage. Since the preimage of
κλ is mapped strictly inside itself and there are no critical points (except ∞)
outside this circle, the modified map is then globally conjugate to z 7→ zn.
Hence the new map has the property that the boundary of the basin of ∞
is a simple closed curve. But this boundary agrees with ∂Bλ. Therefore ∂Bλ

is a quasiconformal image of the unit circle.

Remark. Notice that this result holds for all λ-values in O, no matter
what the behavior of the critical orbit.

Because ∂Bλ is a simple closed curve when |λ| < λ∗, we may invoke the
theory of external rays in this case. The following facts are all well known:
see [8] or [16] for details. Since there are no critical points in Bλ when λ ∈ O,
there is a conjugacy hλ : Bλ → C−D between Fλ on Bλ and the map z 7→ zn

on the exterior of the unit circle in C. This conjugacy preserves the symmetry
in the dynamical plane, i.e., hλ(νz) = νhλ(z) where ν is an (n− 1)st root of
unity. The preimage under hλ of the straight ray Arg z = 2πθ is called the
external ray of angle θ. Note that these angles are measured mod 1. Since
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∂Bλ is a simple closed curve, it is known that each external ray limits on a
unique point in the boundary of Bλ called the landing point of the external
ray. We denote the landing point of the external ray of angle θ by zλ(θ).
Then the conjugacy hλ extends to ∂Bλ and we have Fλ(zλ(θ)) = zλ(nθ).
Moreover, if θ is periodic of period k under the map θ 7→ nθ mod 1, then the
landing point zλ(θ) is also periodic of period k for Fλ. Hence such periodic
points are dense in ∂Bλ. Now each periodic point of the form zλ(θ) varies
analytically with λ. Since these points are dense in ∂Bλ, it follows that the
map λ 7→ zλ(θ) is a holomorphic motion, and so zλ(θ) varies analytically
in λ for all values of θ, not just those that correspond to periodic points.
Also, zλ(θ) varies continuously with θ. The function θ 7→ zλ(θ) is thus the
parametrization of ∂Bλ.

We can now use the involutions Hλ to construct a similar parametriza-
tion of the ∂Tλ. Fix any nth root of λ and let Hλ be the corresponding
involution λ1/n/z. Then define wλ(θ) = Hλ(zλ(θ)). Since Hλ interchanges
the boundaries of Bλ and Tλ, the function θ 7→ wλ(θ) parametrizes the
boundary of Tλ. We get different parametrizations of ∂Tλ depending upon
which root of λ we choose.

The following result gives a bound on the location of the boundary of
Bλ as well as a criterion for when a point belongs to Bλ.

Proposition (The escape criterion). Suppose |λ| ≤ λ∗. Then the bound-

ary of Bλ is strictly contained in an open annulus that lies between Cλ and

the circle of radius 1.2 centered at the origin. The inner (resp., outer) bound-

ary of this annulus is mapped strictly inside (resp., outside) itself by Fλ.

Moreover , if |z| ≥ 1.2, then z ∈ Bλ. If |z| ≤ |λ|1/n/1.2, then z ∈ Tλ and

Fλ(z) ∈ Bλ.

Proof. If |z| ≥ 1.2 and |λ| ≤ λ∗ = (1/4)n/(n−1) < 1/4, we have

|Fλ(z)| ≥ |z|n − |λ|
|z|n ≥ |z|n − 1

4(1.2)n
> |z|n − 0.15 > |z|2 > |z|.

It follows that Fλ maps each circle of the form |z| = r ≥ 1.2 strictly outside
itself and hence the entire region |z| ≥ 1.2 is contained in Bλ.

If |λ| < λ∗, the critical circle of Fλ is mapped strictly inside itself and so
the boundary of Bλ lies outside Cλ. Therefore the boundary of Bλ must lie
somewhere strictly inside the annulus bounded by Cλ and circle of radius
1.2 centered at the origin if |λ| < λ∗. If |λ| = λ∗, we need a slightly different
argument. In this case the critical segment now meets Cλ in exactly two
points, namely ±vλ. Consider the preimage of Cλ that lies on or outside
Cλ; call this preimage Dλ. This preimage consists of exactly 2n smooth arcs
having the properties:

(i) each arc meets Cλ in exactly two consecutive critical points;
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(ii) all non-critical points on Dλ lie outside Cλ;
(iii) each arc in Dλ is mapped onto exactly one-half of the critical circle

connecting +vλ to −vλ in one direction or the other.

As a consequence, if ±vλ are not themselves critical points, then Dλ is a
simple closed curve that is mapped strictly inside itself, and so the boundary
of Bλ again lies outside of Dλ and hence outside of Cλ.

If the points ±vλ are also critical points, then it follows that we have one
of three cases: ±vλ are both superattracting fixed points, one is superattract-
ing and fixed while the other is pre-fixed, or else they lie on a superattracting
2-cycle. In each of these cases, neighborhoods of ±vλ are contracted inside
themselves, and so we can modify Dλ to a slightly different curve near ±vλ

which is again mapped strictly inside itself. This produces the inner bound-
ary of the annulus containing ∂Bλ.

Finally, recall that the involution H(z) = λ1/n/z has the property that
Fλ(H(z)) = Fλ(z). This involution takes the region |z| ≥ 1.2 to the closed

disk of radius |λ|1/n/1.2 about the origin. Hence any point in this disk is
mapped into Bλ and so this disk lies in the trap door.

Corollary. If |λ| ≤ λ∗, then neither Bλ nor the boundary of Bλ meets

the critical circle. Similarly, neither Tλ nor the boundary of Tλ meets the

critical circle.

3. Extended rays. We say that a region R is an open sector of width

δ if

R = {z | α < Arg z < α + δ}
for some α. A closed sector of width δ is defined analogously. In order to
construct a parametrization of the boundary of the McMullen domain, we
need the following result that gives a bound on the location of points in the
parametrization of ∂Tλ.

Proposition. Fix an angle θ. Then there exists an open sector R of

width 3π/n such that zλ(θ) is contained in a compact subset of R for all

λ ∈ O.

Before turning to the technical proof of this result, we first introduce the
notion of an extended ray. A simple closed curve ζ0 is called an extended ray

of angle 0 if it has the following properties:

(i) ζ0 passes through the origin and ∞ and is invariant under z 7→ −z;
(ii) Fλ maps ζ0 to itself in two-to-one fashion;
(iii) ζ0 contains the entire external rays of angles 0 and 1/2;
(iv) there is a compact subset of ζ0 homeomorphic to a Cantor set and

on which Fλ is conjugate to the 2-shift;
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(v) all points in ζ0 that do not lie in this Cantor set have orbits that
eventually land on the external rays of angle 0 or 1/2.

For j ∈ Z, let ζj = νj · ζ0 where ν = exp(πi/n). Then, using the symmetry
properties of Fλ, we have Fλ(ζj) = ζ0. We call ζj the extended ray of angle

j/2n. We see that ζj = ζj+n for each j since ζj contains the external rays of
angles j/2n and (j + n)/2n.

To construct ζ0, we first assume that λ 6∈ R
+. Then we index the 2n

critical points of Fλ by cj = cj(λ), j = 0, . . . , 2n − 1, as follows. Since
λ 6∈ R

+, there is a unique critical point c0 that satisfies

0 < Arg c0 < π/n.

We index the remaining critical points in increasing order in the counter-
clockwise direction around the critical circle.

Now consider the closed prepole sector P+
λ = P+ of angle π/n bounded

by the two straight lines connecting the origin to ∞ and passing through
the critical points c0 and c2n−1. Let P−

λ = P− = −P+ and set

P ′

λ = P ′ = P+ ∪ P− ∪ {∞}.
Proposition. Let ζ0 = ζ0(λ) be the set of points whose orbits remain

in P ′ for all iterations. Then ζ0 is an extended ray of angle 0.

Proof. Since λ 6∈ R
+, the straight line boundaries of P ′ are mapped

strictly outside P ′, except at 0 and ∞. Indeed, the images of these straight
rays are the straight rays connecting ±vλ to ∞, and these image rays never
meet P since ±vλ 6∈ P ′. In particular, Fλ maps the interior of both P+ and
P− one-to-one onto the entire plane minus these two rays.

Let Q+ be the closed subset of P+ lying on or outside the critical circle.
Since the portion of the critical circle bounding Q+ is mapped to the critical
segment, it follows that Fλ also maps Q+ strictly outside itself (except at ∞).
Hence there exists a unique fixed external ray lying in Q+. Without loss of
generality, we take this to be the external ray of angle θ = 0. Moreover,
there exists r ≫ 1 such that the circle of radius r is mapped strictly outside
itself in Bλ. If we then restrict attention to the portion of Q+ that lies inside
this circle, it follows that Fλ maps this simply connected region strictly over
itself. Hence there exists a unique repelling fixed point in this region. This
then is the fixed point zλ(0) lying in ∂Bλ and serving as the landing point of
the external ray of angle 0. So ζ0 contains at least the external ray of angle 0
and its landing point, since the orbits of these points never leave P+. Note
that any point in Q+ (with the exception of those on the external ray of
angle 0 and zλ(0)) has orbit that leaves Q+.

By the z 7→ −z symmetry, the region P− also contains the external ray
of angle 1/2 together with zλ(1/2). The point zλ(1/2) and its external ray
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may be fixed or pre-fixed; this depends on whether n is odd or even. In any
event, this ray and its landing point also lie in ζ0.

Since Fλ maps P+ one-to-one over all of P ′, there is a curve lying in P+

and terminating at the origin that is mapped to the external ray of angle
1/2 and so this curve also lies in ζ0. By symmetry there is a similar curve
in P−.

Thus far, ζ0 consists of two curves in P ′: one passing through ∞ and
containing the two external rays, and another curve passing through the
origin which is mapped onto the curve containing the external rays. Our
goal is to extend this curve by taking further preimages of Fλ in P ′.

First, however, we note that there is an invariant Cantor set lying in P.
Indeed, let R denote the portion of P ′ lying inside the circle of radius r
constructed above, and outside the image of this circle under any of the
involutions Hλ. So R is the intersection of the sectors P± with an annulus.
Let R± = R∩P±. Then Fλ maps each of R± one-to-one over both of these
sets, with the boundaries of each mapped strictly outside of R±. Standard
arguments then show that the set of points whose orbits remain for all time
in R is a Cantor set, and the restriction of Fλ to this Cantor set is conjugate
to the shift map on two symbols. Since the orbits of any point in this Cantor
set lie for all iterations in R ⊂ P, it follows that the entire Cantor set also
lies in ζ0. Note that the points zλ(0) and zλ(1/2) are, by construction, part
of this Cantor set, as are their two preimages in P ′. We think of these points
as being “endpoints” of the Cantor set. Note also that any point in ζ0 that
lies in R but not in the Cantor set must have orbit that leaves R. Hence
this orbit must eventually land on one of the two external rays lying in ζ0.

We may thus pull back these two external rays lying in ζ0 using appro-
priate branches of the inverse of Fλ taking values in P±. Each pullback gives
a collection of curves connecting various preimages of the endpoints of the
Cantor set. And the union of these preimages provides all of the remaining
points in ζ0. Since the action of Fλ on the Cantor set is the 2-shift, we can
then construct a homeomorphism between ζ0 and the real line that takes:

(i) the Cantor set portion of ζ0 to the Cantor middle-thirds set in the
unit interval;

(ii) the external rays of angle 0 and 1/2 to the intervals (1,∞) and
(−∞, 0) respectively;

(iii) the various preimages of these rays to the appropriate middle-thirds
removed intervals.

This then yields the curve ζ0. Note that, by construction, Fλ is two-to-one
on ζ0.

Remark. The extended ray ζ0 and its various preimages ζj together
with the boundaries of Bλ and Tλ may be used to describe the symbolic
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dynamics associated with the action of Fλ on the Julia set. See [6] for more
details concerning this construction.

Corollary. For each λ ∈ O − [0, λ∗], the extended ray ζ0 lies in the

sector |Arg z| < π/n.

Proof. This follows from the fact that, since λ 6∈ R
+, the critical points

c0 and c2n−1 satisfy

0 < Arg c0 < π/n and −π/n < Arg c2n−1 < 0.

The rays containing c0 and c2n−1 make up the boundary rays of P+
λ for

each λ.

Lemma. The only two points in the Cantor set portion of ζ0 whose entire

orbits lie on or outside of the critical circle are the fixed point zλ(0) in P+

and −zλ(0) in P−.

Proof. Fλ maps the portion of P+ that lies on or outside of the critical
circle to a half-plane that covers P+ and misses P−. Hence the only orbit
that stays for all time in P+ and does not tend to ∞ is the fixed point zλ(0).
By symmetry, Fλ maps the portion of P− outside the critical circle to the
same half-plane (if n is even) or to the symmetric half-plane (if n is odd).
In either case, only −zλ(0) has orbit that stays in the portions of these two
sectors outside the critical circle and does not tend to ∞.

We now turn to the proof of the proposition that says that, for any λ ∈ O,
the point zλ(θ) always lies in a compact subset of an open sector of width
3π/n that is bounded away from the origin. We first recall that the function
λ 7→ zλ(θ) depends analytically on λ. Hence the image of O under this
function is always a compact set. Thus we must show that each such point
lies in an open sector of the appropriate size. Secondly, by the dynamical
plane symmetry, it suffices to consider only θ-values in the interval [0, 1/2n].
We shall show that, for any such θ, the point zλ(θ) always lies in the open
sector S bounded by the rays Arg z = −π/n and Arg z = 2π/n.

Under the assumption that λ 6∈ R
+, we know that the extended ray

ζ0(λ) (excluding the origin and ∞) lies in a pair of symmetric open sectors
of width π/n that in turn are always contained in the union of the open
sector Arg z = ±π/n and its negative. By the 2n-fold symmetry of Fλ, the
extended ray ζ1(λ) = ν · ζ0(λ) contains the external rays of angles 1/2n and
(n + 1)/2n. Note that Fλ takes ζ1 two-to-one onto ζ0 and that ζ1 (again
excluding the origin and ∞) always lies in the open sector given by

0 < Arg z < 2π/n

and its negative. Since the external rays of angles 0 and 1/2n and their
landing points always lie along the portions of ζ0 and ζ1 in S, this proves
the result in the special cases where θ = 0 or θ = 1/2n.
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So now consider an external ray γ of angle θ with θ ∈ (0, 1/2n). This
external ray cannot meet any point on either ζ0(λ) or ζ1(λ) that eventually
maps to the external rays of angles 0 or 1/2n since external rays do not
intersect. We claim that this ray also cannot meet any point in the Cantor
set portion of these two extended rays. Certainly this ray does not meet
±zλ(0) since these are the landing points of the external rays of angles 0
and 1/2, and no two rays land at the same point. Also, if this ray were
to land at some other point in the Cantor set, then, by the Lemma, some
point on the orbit of this point must lie inside the critical circle. Hence some
iterate of this ray must meet the critical circle. But this is impossible, since
Bλ and all of the external rays lie strictly outside the critical circle by the
Corollary at the end of the previous section.

Thus it follows that γ is trapped between the two portions of the curves
ζ0 and ζ1 that lie in the right half-plane. But these curves lie in the open
sector bounded by Arg z = −π/n and Arg z = 2π/n. Hence the landing
point of this ray is also trapped in this region. This proves the result as long
as λ 6∈ R

+.
In the special case where λ ∈ R

+, there is an ambiguity in the definition
of the sectors P±, since, as λ rotates once around the origin, these sectors
each rotate by π/n radians. However, there is no ambiguity in the definition
of the external ray of angles θ nor its landing point zλ(θ). This follows since,
when λ ∈ R

+, the real line is invariant, and the external rays of angles 0
and 1/2 both lie in R. Similarly, the rays of arguments jπ/n are all mapped
to R. Hence these lines each contain the external rays of angle jπ/n and so
no other external ray can intersect these lines as shown above. This takes
care of the case λ ∈ R

+.
Finally, we note that zλ(θ) lies in a compact portion of S bounded away

from the origin. Indeed, for any λ ∈ O, by the escape criterion, ∂Bλ is
contained inside the circle of radius 2 centered at the origin and outside
the trap door. Since the boundary of Tλ lies outside of the circle of radius
|λ|1/n/2, this proves the result provided λ 6= 0. But if λ = 0, then all points
of the form z0(θ) lie on the unit circle and so the set containing all such zλ(θ)
is a compact subset of S bounded away from the origin. This completes the
proof.

4. The McMullen domain. Let M denote the McMullen domain, i.e.

M = {λ | vλ ∈ Tλ},
so that the Julia set of Fλ is a Cantor set of circles if λ ∈ M. In this section
we combine the results of the previous two sections to show that, for each
n ≥ 3, M consists of a single, open, simply connected region surrounding
the origin and bounded by a simple closed curve.
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We first show that there is a component of the McMullen domain sur-
rounding the origin in the parameter plane.

Proposition. Suppose that

|λ| < (1/4)2n/(n−2).

Then vλ lies in Tλ so λ ∈ M.

Proof. Since n ≥ 3, we have

2n

n − 2
>

n

n − 1
.

Therefore

|λ| < (1/4)2n/(n−2) < (1/4)n/(n−1) = λ∗.

Now

|λ|1/2−1/n = |λ|(n−2)/2n < 1/4,

so we have

|vλ| = 2|λ|1/2 <
|λ|1/n

2
<

|λ|1/n

1.2
.

By the escape criterion in Section 2, it follows that vλ ∈ Tλ. So λ ∈ M.

This Proposition proves the existence of a component of the McMullen
domain that surrounds the origin in parameter space when n ≥ 3. We denote
this component by M0; we next show that M0 is bounded by a simple closed
curve.

Recall that, for each λ ∈ O, the boundary of Bλ is a simple closed curve
that can be parametrized by the function θ 7→ zλ(θ). Similarly, the boundary
of Tλ is a simple closed curve that we can parametrize by the function
θ 7→ wλ(θ). Moreover, the functions zλ(θ) and wλ(θ) depend analytically
on λ.

Theorem. For each angle θ, there is a unique λ = λθ ∈ O such that

vλθ
= wλθ

(θ). In particular , λθ lies on the boundary of M0 and λ 7→ λθ

parametrizes this boundary.

Proof. Fix an angle θ. From the results in Section 3, we know that for
each λ ∈ O, the point zλ(θ) lies in a compact subset of a sector of the form

α < Arg z < α + 3π/n

where α is independent of λ. Furthermore, by the escape criterion, each zλ(θ)
lies outside Cλ in this sector. Note that, for different values of θ, we must
choose different values of α. As shown in the construction of the extended
rays, for θ ∈ [0, 1/2n], we may choose α = −π/n. But for larger values of θ,
we must rotate this sector. In particular, as θ winds once around the circle,
the sectors determined by α also wind once around the origin.
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If we apply any of the involutions Hλ to this sector, we obtain another
similar sector, say S, which is of the form

β < Arg z < β + 3π/n

where now β is independent of λ. Moreover, for each λ ∈ O, wλ(θ) lies in a
compact portion of S that is bounded away from the origin but inside Cλ.
For λ ∈ O, the largest radius that the critical circle can have occurs when
|λ| = (λ∗)1/2n.

When n = 3, the sector S is a half-plane and, when n > 3, S is smaller
than a half-plane. Let ℓ be the ray in parameter plane that consists of all
λ-values whose argument is of the form −(β + 3π/2n). So ℓ is the negative
of the ray that is the central line in S and so ℓ lies outside S. Moreover, if
λ ∈ C − ℓ, then we may choose a branch of the square root of λ that maps
C−ℓ onto a half-plane that contains S. Let G(λ) = 2

√
λ denote this branch.

Let O′ = O − ℓ and consider G|O′. The largest magnitude that G can

achieve in O′ is 2
√

λ∗, but recall that 2
√

λ∗ = (λ∗)1/2n. Hence G maps O′

one-to-one onto the portion of the disk of this radius in the half-plane that
contains S. Therefore G(O′) covers the compact region that contains each
wλ(θ) for each θ. So, for each fixed value of θ, we may consider the function
Pθ : O′ → O′ defined by

Pθ(λ) = G−1(wλ(θ)).

Pθ is analytic in λ and maps the simply connected region O′ to a compact
subset of itself. By the Schwarz Lemma, there exists a unique fixed point λθ

for this map. For the parameter value λθ, the critical value 2
√

λθ therefore
lies at the point wλθ

(θ) ∈ ∂Tλθ
.

We claim that λθ lies on the boundary of M. To prove this we must show
that there are λ-values arbitrarily close to λθ for which vλ ∈ Tλ. For λ ∈ O
and r ≥ 1, let γλ(r) denote the point on the external ray of the given angle
θ for Fλ for which |hλ(γλ(r))| = r, i.e., γλ(r) is the unique point on this
external ray that is mapped to the circle of radius r via the conjugacy hλ.
So γλ(1) = zλ(θ) is the landing point in ∂Bλ of the external ray of angle θ.

It is known that the function λ 7→ γλ(r) varies analytically in λ and
continuously in r. For r close to 1, we may thus consider the analytic function
λ 7→ G−1(Hλ(γλ(r))). For r sufficiently close to 1, γλ(r) also lies in a compact
subset of O′ in S. As above, there then exists a unique fixed point λr for
this function. But this means that Fλr

(vλr
) ∈ Bλr

. However, vλr
6∈ Bλr

since λr ∈ O so that Bλr
lies outside the critical circle whereas vλr

lies
inside this circle. Thus λr ∈ Tλr

. This shows that there are λ-values in any
neighborhood of λθ that also lie in M, so λθ ∈ ∂M.

Now the parameter λθ depends continuously on θ. Thus the function
θ 7→ λθ parametrizes a simple closed curve in O which therefore serves as
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the boundary of a single component of M. Since the curve λθ surrounds the
origin in parameter space, this component must therefore be M0.

As a consequence, we have the fact that M0 is an open and simply
connected subset of parameter plane. We finally must show that M0 is the
only component of the McMullen domain. Suppose N is a second component
of M. Then N cannot meet the dividing circle in the parameter plane. This
follows since, if |λ| = λ∗, then we know that T λ lies strictly inside the critical
circle whereas vλ lies on the critical circle in this case. So we cannot have
vλ ∈ Tλ. Also, using the following result, we deduce that, in the complement
of M0 and the Cantor set locus in R

+, the orbit of the critical point in R
+

is bounded. Hence N cannot meet R
+:

Theorem. There is a homeomorphic copy of the Mandelbrot set lying

symmetrically about R
+ in parameter plane. The cusp of the main cardioid

in this set lies on the boundary of the connectedness locus, while the Misiu-

rewicz parameter at the tip of the tail of this set lies on the boundary of M0.

For a proof, we refer to [3]. By the parameter plane symmetry, it also
follows that N cannot meet any of the lines tω where t > 0 and ω is an
(n−1)st root of unity, for there we have a similar copy of a Mandelbrot set.

We next claim that N is simply connected. To see this, let γ be a simple
closed curve in N . Then γ cannot surround the origin, since N is confined
to lie in a sector bounded by ωj · R

+ and ωj+1 · R
+ for some j. Hence we

can choose a well defined branch of vλ = 2
√

λ on and in the interior of γ.
Since γ is compact and lies in N , there exists an n such that, for each λ ∈ γ,
Fn

λ (vλ) lies outside the circle of radius 2 and hence Fn
λ (vλ) ∈ Bλ. Since the

function Nn(λ) = Fn
λ (vλ) is analytic, it follows that all λ-values inside γ are

also mapped outside the circle of radius 2. But then these λ-values must all
lie in N since they all escape to ∞ just as those on γ do. Hence N is simply
connected.

Now consider the function Nn(λ) = Fn
λ (vλ) defined on all of N . This

function never takes the value ∞ since vλ = 2
√

λ 6= 0 for any λ ∈ N .
If λ ∈ ∂N , then |Nn(λ)| is bounded by 2 for all n since the orbit of vλ

does not escape to ∞. But Nn takes arbitrarily large values for n large and
λ ∈ N . This means that Nn violates the Maximum Principle and so Nn is
not analytic. This yields a contradiction and shows that no such domain N
exists. This proves that M0 is the unique component of M.
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Math. d’Orsay 84-2, Univ. Paris-Sud, Orsay, 1984.

[9] —, —, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup.
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