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Extension of point-�nite partitions of unitybyHaruto Ohta (Shizuoka) and Kaori Yamazaki (Ibaraki)
Abstrat. AsubspaeA of a topologial spaeX is said to beP γ-embedded (P γ(point-�nite)-embedded) in X if every (point-�nite) partition of unity α on A with |α| ≤ γ extendsto a (point-�nite) partition of unity on X. The main results are: (Theorem A) A subspae

A of X is P γ(point-�nite)-embedded in X i� it is P γ-embedded and every ountableintersetion B of ozero-sets in X with B∩A = ∅ an be separated from A by a ozero-setin X. (Theorem B) The produt A × [0, 1] is P γ(point-�nite)-embedded in X × [0, 1] i�
A × Y is P γ(point-�nite)-embedded in X × Y for every ompat Hausdor� spae Y with
w(Y ) ≤ γ i� A is P γ-embedded in X and every subset B of X obtained from zero-sets bymeans of the Suslin operation, with B ∩ A = ∅, an be separated from A by a ozero-setin X. These haraterizations are used to answer ertain questions of Dydak. In partiular,it is shown that, assuming CH, the property of A× [0, 1] to be P γ(point-�nite)-embeddedin X × [0, 1] is stronger than that of A being P γ(point-�nite)-embedded in X.

1. Introdution. By a spae we mean a topologial spae. A partitionof unity α on a spae X is alled point-�nite (resp. loally �nite) if thefamily {coz(f) : f ∈ α} is point-�nite (resp. loally �nite) in X, where
coz(f) = {x ∈ X : f(x) 6= 0}. Let A be a subspae of a spae X and γ anin�nite ardinal. When α = {fλ} and β = {gλ} are partitions of unity on Aand X, respetively, we say that β is an extension of α if fλ = gλ|A for eah λ.Dydak [3℄ de�ned A to be P γ(point-�nite)-embedded (resp. P γ(loally �nite)-embedded) in X if every point-�nite (resp. loally �nite) partition of unity
α on A, with |α| ≤ γ, extends to a point-�nite (resp. loally �nite) partitionof unity on X. Extensive studies of P γ(loally �nite)-embedding have beenmade by Dydak [3℄, [4℄ and the seond author [21℄ and [23℄.2000 Mathematis Subjet Classi�ation: Primary 54C20; Seondary 54C55, 54H05.Key words and phrases: partition of unity, extension, produt, analyti set, P -embedding, P (point-�nite)-embedding, M -embedding, σ-omplete, AR.Researh of the seond author is partially supported by Grand-in-Aid for the Enour-agement of Young Sientists (B) (No. 16740028) of Ministry of Eduation, Siene, Sportsand Culture. [187℄



188 H. Ohta and K. YamazakiIn this paper, we onsider P γ(point-�nite)-embeddings. In partiular, weprove Theorems A and B stated in the abstrat and apply them to answerDydak's questions onerning P γ(point-�nite)-embeddings stated below.Reall from [3℄ that A is P γ-embedded in X if every partition of unity
α on A with |α| ≤ γ extends to a partition of unity on X (see [2℄, [19℄ forthe original de�nition of P γ-embedding). Reall from [18℄ that A is Mγ-embedded in X if for every AR Y with w(Y ) ≤ γ, every ontinuous mapfrom A to Y extends ontinuously over X. It is known (see [3℄) that theseextension properties are related as follows, where A → B means that every
A-embedded subspae is B-embedded:

Mγ → P γ(point-�nite)→ P γ (∗)
←− P γ(loally �nite).Przymusi«ski�Wage [15℄ showed that the arrow (∗) annot be reversedby giving an example of a olletionwise normal spae Z having a losedsubspae whih is not Pω(loally �nite)-embedded, and Dydak [3℄ showedthat the impliation �P γ(loally �nite) → P γ(point-�nite)� is not true ingeneral (see also [24℄). In Setion 3, we give an example of a subspae whihis P γ(point-�nite)-embedded for every γ but not Mω-embedded (Example3.4), and prove that every losed subspae of the spae Z of Przymusi«ski�Wage mentioned above is Mγ-embedded for every γ (Example 3.8). Theseresults answer Dydak's questions [3, Problems 12.10 and 12.11℄ negatively.Moreover, Dydak [3, Problem 13.6℄ asked: If A is P γ(point-�nite)-embeddedin X, is then A× [0, 1] P γ(point-�nite)-embedded in X × [0, 1]? It is knownthat the answers to the similar questions for P γ-, Mγ- and P γ(loally �nite)-embeddings are all positive (see Alò�Sennott [1℄, Sennott [18℄ and Yamazaki[21℄, respetively). As an appliation of Theorem B, we show that the an-swer is negative for P γ(point-�nite)-embeddings under the assumption ofthe ontinuum hypothesis (Examples 3.5 and 3.7).For a set A, |A| denotes the ardinality of A. As usual, a ardinal is aninitial ordinal and an ordinal is identi�ed with the set of smaller ordinals.Let ω denote the �rst in�nite ardinal and ω1 the �rst unountable ardinal.Our terminology and notation follow [5℄ and [13℄.2. P γ(point-�nite)-embeddings and produts. A zero-set in aspae X is a set of the form f−1(0) for some real-valued ontinuous fun-tion f on X and a ozero-set is the omplement of a zero-set. For a spae X,let Z(X) (resp. Coz(X)) denote the family of all zero-sets (resp. ozero-sets)in X. A set A ⊆ X is alled a Suslin-Z-set in X if there exists a family

{Zσ : σ ∈ <ωω} ⊆ Z(X) suh that A =
⋃

t∈ωω

⋂

n<ω Zt|n, where αω denotesthe set of all maps from α to ω and <ωω =
⋃

n<ω
nω (see [16℄). All Baire sets,i.e., members of the smallest σ-algebra inluding Z(X), are Suslin-Z-sets.As usual, we all a Suslin-Z-set and a Baire set in a metri spae an analyti



Extension of partitions of unity 189set and a Borel set, respetively. Now, we onsider the following onditionson a subspae A of a spae X:
(b1) For every Suslin-Z-set B in X with B ∩ A = ∅, there exists U ∈

Coz(X) suh that B ⊆ U and U ∩A = ∅.
(b2) For every Baire set B in X with B∩A = ∅, there exists U ∈ Coz(X)suh that B ⊆ U and U ∩A = ∅.
(b3) For every ountable family {Gn : n < ω} ⊆ Coz(X) with ⋂

n<ω Gn

∩ A = ∅, there exists U ∈ Coz(X) suh that ⋂

n<ω Gn ⊆ U and
U ∩A = ∅.Evidently, (b1) implies (b2) and (b2) implies (b3) (see Remark 2.8 below).Now, we prove the theorems announed in the abstrat.Theorem 2.1. Let A be a subspae of a spae X and γ an in�nite ar-dinal. Then the following are equivalent :(1) A is P γ(point-�nite)-embedded in X,(2) A is P γ-embedded in X and Pω(point-�nite)-embedded in X,(3) A is P γ-embedded in X and satis�es (b3) in X.Proof. (1)⇒(2): Obvious. (2)⇒(3): To prove that A satis�es (b3) in X,take a ountable family {Gn : n < ω} ⊆ Coz(X) with ⋂

n<ω Gn ∩A = ∅. Wemay assume that Gn+1 ⊆ Gn for eah n < ω and G0 = X. Take ontinuousfuntions fn : X → [0, 1/2n], n < ω, with Gn = coz(fn), and de�ne f =
∑

n<ω fn. Note that f(x) > 0 for all x ∈ X. For eah n < ω, de�ne a funtion
f∗

n : A → [0, 1] by f∗
n(x) = fn(x)/f(x) for x ∈ A. Then {f∗

n : n < ω} is apoint-�nite partition of unity on A. Sine A is Pω(point-�nite)-embeddedin X, there exists a point-�nite partition of unity {gn : n < ω} on X suhthat gn|A = f∗
n for eah n < ω. Let

U =
⋃

n<ω

{x ∈ X : gn(x) · f(x) 6= fn(x)}.Then U ∈ Coz(X), ⋂

n<ω Gn ⊆ U sine {gn : n < ω} is point-�nite, and
U ∩A = ∅. Hene, A satis�es (b3) in X.

(3)⇒(1): Let α = {fλ : λ ∈ Λ} be a point-�nite partition of unity on
A with |Λ| ≤ γ. Sine A is P γ-embedded in X, α extends to a partition ofunity β = {gλ : λ ∈ Λ} on X. Let B = {x ∈ X : β is not point-�nite at x}.We show that B is the ountable intersetion of ozero-sets in X. For eah
n < ω and eah x ∈ X, de�ne

kn(x) = max
{

∑

λ∈δ

gλ(x) : δ ⊆ Λ, |δ| ≤ n
}

.Sine β is a partition of unity, the funtions kn : X → [0, 1], n < ω, areontinuous, and for eah x ∈ X, |{λ ∈ Λ : gλ(x) > 0}| ≤ n if and only if
kn(x) = 1. This implies that X \ B =

⋃

n<ω k−1
n (1), and hene, B is the



190 H. Ohta and K. Yamazakiintersetion of ountably many ozero-sets in X. Sine B ∩ A = ∅ and Asatis�es (b3) in X, we an �nd a ontinuous funtion h : X → [0, 1] suhthat B ⊆ coz(h) and coz(h) ∩ A = ∅. For eah λ ∈ Λ, de�ne a funtion g∗λon X by g∗λ(x) = max{gλ(x)−h(x), 0} for x ∈ X. Then {coz(g∗λ) : λ ∈ Λ} ispoint-�nite in X, beause if h(x) = 0, then g∗λ(x) = gλ(x) and x 6∈ B; and if
h(x) > 0, then only �nitely many gλ's exeed h at x sine ∑

λ∈Λ gλ(x) = 1.Sine g∗λ(x) ≤ gλ(x) for eah λ ∈ Λ and eah x ∈ X, it follows from [4,Corollary 2.6℄ that the funtion ∑

λ∈Λ g∗λ is ontinuous. Fix an arbitrary
µ ∈ Λ and de�ne

g∗∗µ (x) = g∗µ(x) + 1−
∑

λ∈Λ

g∗λ(x) for x ∈ X.Finally, putting g∗∗λ = g∗λ for eah λ ∈ Λ\{µ}, we obtain a point-�nite parti-tion of unity {g∗∗λ : λ ∈ Λ} on X extending α. Hene, A is P γ(point-�nite)-embedded in X.We turn to onsidering the problem when A × Y is P γ(point-�nite)-embedded in X × Y for all (or ertain) ompat Hausdor� spaes Y . Weneed the following result due to Alò and Sennott [1℄ as a lemma.Lemma 2.2 (Alò�Sennott). Let A be a P γ-embedded subspae of a spae
X, where γ is an in�nite ardinal. Then A × Y is P γ-embedded in X × Yfor every ompat Hausdor� spae Y with w(Y ) ≤ γ.Sine the ountable union of ozero-sets is a ozero-set, we have thefollowing orollary from Theorem 2.1 and Lemma 2.2.Corollary 2.3. Let A be a P γ(point-�nite)-embedded subspae of aspae X, where γ is an in�nite ardinal. Then A × Y is P γ(point-�nite)-embedded in X × Y for every ountable, ompat metri spae Y .The next lemma is well known, but we an �nd no good referene.Lemma 2.4 (folklore). Let X and Y be spaes and prX : X × Y → Xthe projetion.(1) If Y is separable, then prX arries ozero-sets to ozero-sets.(2) If Y is ompat , then prX arries ozero-sets to ozero-sets and ar-ries zero-sets to zero-sets.(3) If Y is ompat , then prX arries Suslin-Z-sets to Suslin Z-sets.Proof. (1) Let D be a ountable dense set in Y . Then, for every ozero-set
G in X × Y , prX [G] =

⋃

y∈D{x ∈ X : 〈x, y〉 ∈ G} ∈ Coz(X).(2) This follows from the fat that if Y is ompat, then for every real-valued ontinuous funtion h on X ×Y , the funtions f and g on X de�nedby f(x) = sup{h(x, y) : y ∈ Y } and g(x) = inf{h(x, y) : y ∈ Y } for x ∈ Xare ontinuous (see [6, Lemma 1.1℄).



Extension of partitions of unity 191(3) This is a onsequene of (2) sine we an assume that Zt|n ⊆ Zt|mwhenever m < n in the de�nition of a Suslin-Z-set.The next lemma is due to the referee's suggestion.Lemma 2.5. For every Suslin-Z-set B in a spae X, there exists a on-tinuous map f : X → Q, where Q is the Hilbert ube, suh that B = f−1[S]for some analyti set S in Q.Proof. This is a onsequene of the following observation: For any ol-letion of ountably many zero-sets Zn = f−1
n (0), n < ω, in X, onsider thediagonal map f = △n<ωfn : X → Q. Then eah Zn is the inverse image ofa losed set in Q.Now, ombining Lemma 2.5 with Theorem 2.1, Lemmas 2.2 and 2.4, wehave the following theorem.Theorem 2.6. Let A be a subspae of a spae X and γ an in�nite ar-dinal. Then the following are equivalent :(1) A×Y is P γ(point-�nite)-embedded in X×Y for every ompat Haus-dor� spae Y with w(Y ) ≤ γ,(2) A× [0, 1] is P γ(point-�nite)-embedded in X × [0, 1],(3) A× Y is P γ(point-�nite)-embedded in X × Y for some unountable,ompat metri spae Y ,(4) A is P γ-embedded in X and satis�es (b1) in X.Proof. (1)⇒(2)⇒(3): Obvious. (3)⇒(4): Assume that A×Y is P γ(point-�nite)-embedded in X × Y for some unountable, ompat metri spae Y .As every P γ(point-�nite)-embedded subspae is P γ-embedded, it su�es toshow that A satis�es (b1) in X. Let B be a Suslin-Z-set in X with B ∩A = ∅.Then, by Lemma 2.5, there exists a ontinuous map f : X → Q suh that

B = f−1[S] for some analyti set S in Q. It is known that S is the projetionof a Gδ-set G in Q×K, where K is the Cantor set (see [11℄). Sine K an beembedded in Y , we regard G as a Gδ-set in Q×Y . Put H = (f × idY )−1[G],where idY is the identity of Y . Then H is the intersetion of ountablymany ozero-sets in X × Y and B = prX [H]. Sine A × Y satis�es (b3) in
X × Y by Theorem 2.1, there exists U ∈ Coz(X × Y ) suh that H ⊆ U and
U ∩ (A × Y ) = ∅. Finally, put V = prX [U ]. Then V ∈ Coz(X) by Lemma2.4(2), B ⊆ V and V ∩A = ∅. Hene, A satis�es (b1) in X.

(4)⇒(1): Let Y be a ompat Hausdor� spae with w(Y ) ≤ γ. By The-orem 2.1 and Lemma 2.2, it su�es to show that A × Y satis�es (b3) in
X × Y . Let B be the intersetion of ountably many ozero-sets in X × Ywith B ∩ (A× Y ) = ∅. Then it follows from Lemma 2.4(3) that prX [B] is aSuslin-Z-set in X with B ∩ A = ∅. Sine A satis�es (b1) in X, there exists
U ∈ Coz(X) suh that prX [B] ⊆ U and U ∩ A = ∅. Putting V = U × Y ,



192 H. Ohta and K. Yamazakiwe obtain V ∈ Coz(X × Y ) suh that B ⊆ V and V ∩ (A× Y ) = ∅. Hene,
A× Y satis�es (b3) in X × Y .The reader might ask if �ompat metri� an be replaed by �ompatHausdor�� in ondition (3) of Theorem 2.6. In Remark 3.6 below, we showthat metrizability of Y is essential in this ondition.The following orollary an be proved similarly to (3)⇒(4) in Theo-rem 2.6 if we use Lemma 2.4(1) and the fat that every analyti set in
Q is the projetion of a zero-set in Q× P, where P is the spae of irrationalnumbers (see [11℄).Corollary 2.7. Let A be a P γ-embedded losed subspae of a spae X,where γ is an in�nite ardinal , and assume that either X × P is normal or
(X \A)× P is Lindelöf. Then A× Y is P γ(point-�nite)-embedded in X × Yfor every ompat Hausdor� spae Y with w(Y ) ≤ γ.In the remaining part of this setion, we onsider the relationship betweenonditions (bi), i = 1, 2, 3, and the following onditions, from the literature,on a subspae A of a spae X.

(aγ) For every γ-separable ontinuous pseudometri ̺ on X, there exists
F ∈ Z(X) suh that A ⊆ F ⊆ {x ∈ X : (∃ y ∈ A)(̺(x, y) = 0)}.

(c) For every B ∈ Z(X) with B∩A = ∅, there exists U ∈ Coz(X) suhthat B ⊆ U and U ∩A = ∅.Here, a pseudometri d on a spae X is alled γ-separable if the weight of thepseudometri spae (X, d) is not greater than γ. Sennott [18℄ proved that Ais Mγ-embedded in X if and only if A is P γ-embedded in X and satis�es (aγ)in X. On the other hand, it is known (see [8, Theorem 1.18℄) that A satis�es
(c) in X if every real-valued ontinuous funtion on A extends ontinuouslyover X, or equivalently, A is Pω-embedded in X (see [7℄ and [9℄). Obviously,
(b3) implies (c).Proposition 2.8. (aω) implies (b1).Proof. Assume that a subspae A of a spae X satis�es (aω) in X. Let Bbe a Suslin-Z-set in X with B ∩A = ∅. Then, by Lemma 2.5, there exists aontinuous map f from X to the Hilbert ube Q suh that B = f−1[f [B]].Let d be the metri on Q, and de�ne ̺(x, y) = d(f(x), f(y)) for x, y ∈ X.Then ̺ is an ω-separable ontinuous pseudometri on X suh that {x ∈ X :
(∃y ∈ A)(̺(x, y) = 0)} ∩ B = ∅. Hene, by (aω), we an �nd U ∈ Coz(X)suh that B ⊆ U and U ∩A = ∅.Remark 2.9. Summing up the above observations, we have the impli-ations

(aω)⇒ (b1)⇒ (b2)⇒ (b3)⇒ (c)



Extension of partitions of unity 193In the next setion, we give examples showing that (b1) 6⇒ (aω) and (c) 6⇒
(b3), and show that (b3) 6⇒ (b2) and (b2) 6⇒ (b1) assuming the ontinuumhypothesis.3. Examples. As stated in the introdution, we now apply Theorems2.1 and 2.6 to answer Dydak's questions [3, Problems 12.10, 12.11 and 13.6℄.Throughout this setion, R denotes the set of real numbers endowed withthe Eulidean topology τ . When A ⊆ X ⊆ R, XA denotes the spae withthe underlying set X and with the topology {U ∪K : U ∈ τX , K ⊆ X \A},where τX is the subspae topology on X indued from τ . It is known that
XA is a paraompat Hausdor� spae (see [5, Example 5.1.22℄). We begin bydetermining when the subspae A satis�es (bi), i = 1, 2, 3, in XA in terms ofsubsets of R.Lemma 3.1. Let A ⊆ X ⊆ R and S ⊆ X. Then:(1) S is a ozero-set in XA if and only if there exist an open set U in Rand an Fσ-set F in R suh that S ∩ A ⊆ U ∩ X ⊆ S, S ⊆ F and

F ∩A = S ∩A.(2) If S is a Baire set in XA, then there exists a Borel set B in R suhthat S ⊆ B and B ∩A = S ∩A.(3) If S is a Suslin-Z-set in XA, then there exists an analyti set B in
R suh that S ⊆ B and B ∩A = S ∩A.Proof. (1) First, observe that (i) a set S ⊆ X is open in XA if and onlyif there exists an open set U in R with S ∩ A ⊆ U ∩X ⊆ S, and (ii) a set

S ⊆ X is losed in XA if and only if there exists a losed set F in R suhthat S ⊆ F and S ∩A = F ∩A. Now, (1) follows from (i) and (ii) sine, bythe normality of XA, S ∈ Coz(XA) if and only if S is an open Fσ-set in XA.(2) Let S be the family of all sets S ⊆ X suh that there exist Borel sets
B and B′ in R suh that S ∩A ⊆ B ∩X ⊆ S, S ⊆ B′ and B′ ∩A = S ∩A.Then S is a σ-algebra of subsets of X, and Coz(XA) ⊆ S by (1). Hene, allBaire sets in XA belong to S, from whih (2) an be dedued.(3) If S is a Suslin-Z-set in XA, then there exists {Zσ : σ ∈ <ωω} ⊆
Z(XA) suh that S =

⋃

t∈ωω

⋂

n<ω Zt|n. De�ne B =
⋃

t∈ωω

⋂

n<ω clR Zt|n.Then B is an analyti set in R with S ⊆ B. Sine clR Zσ ∩ A = Zσ ∩ A foreah σ ∈ <ωω, B ∩A = S ∩A.Proposition 3.2. Let A ⊆ X ⊆ R. Then:(1) A satis�es (b1) in XA if and only if for every analyti set B in Rwith B ∩A = ∅, there exists an Fσ-set F in R suh that B ∩X ⊆ Fand F ∩A = ∅.(2) A satis�es (b2) in XA if and only if for every Borel set B in R with
B ∩ A = ∅, there exists an Fσ-set F in R suh that B ∩X ⊆ F and
F ∩A = ∅.



194 H. Ohta and K. Yamazaki(3) A satis�es (b3) in XA if and only if for every ountable family {Fn :
n < ω} of Fσ-sets in R suh that ⋂

n<ω Fn ∩ A = ∅ and Fn ∩ A isopen in A for eah n < ω, there exists an Fσ-set F in R suh that
⋂

n<ω Fn ∩X ⊆ F and F ∩A = ∅.Proof. (1) Assume that A satis�es (b1) in XA and let B be an analytiset in R with B ∩A = ∅. Sine the topology of RA is �ner than that of R, Bis a Suslin-Z-set in RA, and hene, B∩X is also a Suslin-Z-set in XA. Thus,it follows from (b1) that there exists U ∈ Coz(XA) suh that B∩X ⊆ U and
U ∩A = ∅. By Lemma 3.1(1), there exists an Fσ-set F in R suh that U ⊆ Fand F ∩ A = U ∩ A. Then B ∩X ⊆ F and F ∩ A = ∅. Conversely, assumethat A satis�es the latter ondition in (1) and let C be a Suslin-Z-set in XAwith C ∩ A = ∅. Then, by Lemma 3.1(3), there exists an analyti set H in
R suh that C ⊆ H and H ∩ A = ∅. By the assumption, we an �nd an
Fσ-set F in R suh that H ∩X ⊆ F and F ∩A = ∅. Sine F ∩X ∈ Coz(XA)by Lemma 3.1(1), A satis�es (b1) in XA. (2) an be proved similarly to (1)using Lemma 3.1(2) instead of Lemma 3.1(3).(3) Assume that A satis�es (b3) in XA and let {Fn : n < ω} be a ountablefamily of Fσ-sets in R suh that ⋂

n<ω Fn∩A = ∅ and Fn∩A is open in A foreah n < ω. For eah n < ω, sine XA is normal, we an �nd En ∈ Coz(XA)suh that Fn ∩X ⊆ En and En ∩ A = Fn ∩ A. Sine ⋂

n<ω En ∩ A = ∅, itfollows from (b3) that there exists U ∈ Coz(XA) suh that ⋂

n<ω En ⊆ Uand U ∩ A = ∅. By Lemma 3.1(1), there exists an Fσ-set F in R suh that
U ⊆ F and F ∩A = U ∩A. Then

⋂

n<ω

Fn ∩X ⊆
⋂

n<ω

En ⊆ U ⊆ Fand F∩A = ∅. Conversely, assume that A satis�es the latter ondition in (3),and take {Gn : n < ω} ⊆ Coz(XA) suh that ⋂

n<ω Gn ∩ A = ∅. For eah
n < ω, by Lemma 3.1(1), there exists an Fσ-set Hn in R suh that Gn ⊆ Hnand Hn ∩A = Gn ∩A. Sine ⋂

n<ω Hn ∩A = ∅ and Hn ∩A is open in A foreah n < ω, it follows from our assumption that there exists an Fσ-set H in
R suh that ⋂

n<ω Hn ∩X ⊆ H and H ∩A = ∅. Then H ∩X ∈ Coz(XA) byLemma 3.1(1), ⋂

n<ω Gn ⊆ H ∩X and (H ∩X) ∩A = ∅. Hene, A satis�es
(b3) in XA.Now, we are in a position to onstrut examples. A subspae A of a spae
X is said to be P -embedded in X if it is P γ-embedded in X for every γ. M -and P (point-finite)-embeddings are de�ned similarly. If A ⊆ X ⊆ R, thenthe losed subspae A of XA is always P -embedded in XA, sine XA isparaompat. The last statement of the following example was proved bythe seond author in [24℄; however, now it is an immediate onsequene ofProposition 3.2(3) and Theorem 2.1.



Extension of partitions of unity 195Example 3.3. Let Q be the set of rational numbers. Then Q fails tosatisfy (b3) in RQ. Hene, Q is not Pω(point-�nite)-embedded in RQ.Example 3.3 shows that (c) 6⇒ (b3) in general. Reall from [5, 5.5.4℄ thatthere exists a set A ⊆ R, alled a Bernstein set, suh that every ompat setin R ontained in either A or R \A is ountable.Example 3.4. Let A be a Bernstein set in R. Then A satis�es (b1) in
RA but fails to satisfy (a)ω in RA. Hene, A×Y is P (point-�nite)-embeddedin RA× Y for every ompat Hausdor� spae Y , but A is not Mω-embeddedin RA.Proof. Let B be an analyti set in R with B ∩ A = ∅. Then B must beountable, sine every unountable analyti set in R ontains a Cantor set(see [10, Theorem 94℄). By Proposition 3.2(1), this implies that A satis�es
(b1) in RA. On the other hand, the Eulidean metri d on R is an ω-separableontinuous pseudometri on RA and {x ∈ RA : (∃y ∈ A)(d(x, y) = 0)} = A.Sine A is not a zero-set in RA, A does not satisfy (a)ω in RA (see also [18,Corollary 5 to Theorem 1℄).Example 3.5. Under CH , there exist sets A and X with A ⊆ X ⊆
R suh that A satis�es (b2) in XA but fails to satisfy (b1) in XA. Hene,
A is P (point-�nite)-embedded in XA, but A × [0, 1] is not Pω(point-�nite)-embedded in X × [0, 1].Proof. By [10, Corollary to Lemma 39.4℄, there exists an analyti set Bin R suh that R \B is not analyti. Put A = R \B and let B be the familyof all Borel sets in R ontaining A. Sine |B| = 2ω, we an enumerate B as
{Bα : α < ω1} by CH. Then ⋂

β<α Bβ ∩ B is unountable for eah α < ω1,beause A is not a Borel set. Thus, we an hoose indutively a point
xα ∈

(

⋂

β<α

Bβ ∩B
)

\ {xβ : β < α}for eah α < ω1. Put X = A∪{xα : α < ω1}. Then, sine X \Bα is ountablefor eah α < ω, it follows from Proposition 3.2(2) that A satis�es (b2) in XA.On the other hand, sine B is an analyti set in R and Bα ∩B 6= ∅ for eah
α < ω1, Proposition 3.2(1) shows that A does not satisfy (b1) in XA.Remark 3.6. Let XA be the spae de�ned in Example 3.5, and let
Ω = ω1 + 1 with the usual order topology. Now, by proving that A × Ωis P (point-�nite)-embedded in XA × Ω, we show that the assumption ofmetrizability of Y is essential in ondition (3) of Theorem 2.6. By Lemma2.2, A×Ω is P -embedded in XA×Ω. Thus, by Theorem 2.1, it su�es to showthat A×Ω satis�es (b3) in XA×Ω. Take a ountable family {Gn : n < ω} ⊆
Coz(XA×Ω) with ⋂

n<ω Gn∩(A×Ω) = ∅. Put An = {x ∈ A : 〈x, ω1〉 6∈ Gn}for eah n < ω. Sine eah An is separable and eah Gn is an Fσ-set, we an



196 H. Ohta and K. Yamazaki�nd α < ω1 suh that Gn∩ (An× (Ω \α)) = ∅ for eah n < ω. Here, we mayassume that α is an isolated ordinal. For eah n < ω, put
Hn = prXA

[Gn ∩ (XA × (Ω \ α))].Then Hn ∈ Coz(XA) by Lemma 2.4(2), and ⋂

n<ω Hn∩A = ∅ as Hn∩An = ∅for eah n < ω. Sine A satis�es (b3) in XA, there exists U ∈ Coz(XA) suhthat ⋂

n<ω Hn ⊆ U and U ∩A = ∅. On the other hand, sine α is ountableompat metrizable, it follows from Corollary 2.3 and Theorem 2.1 thatthere exists V ∈ Coz(XA × α) suh that ⋂

n<ω Gn ∩ (XA × α) ⊆ V and
V ∩ (A × α) = ∅. Finally, putting W = (U × (Ω \ α)) ∪ V , we obtain aozero-set W in XA × Ω suh that ⋂

n<ω Gn ⊆ W and W ∩ (A × Ω) = ∅.Hene, A×Ω satis�es (b3) in XA ×Ω.Example 3.7. Under CH , there exist sets A and X with A ⊆ X ⊆ Rsuh that A satis�es (b3) in XA but fails to satisfy (b2) in XA.Proof. Following [10℄, Σ0
3 denotes the family of all sets whih an bewritten as the union of ountably many Gδ-sets in R, and Π0

4 denotes thefamily of all sets whih an be written as the intersetion of ountably manymembers of Σ0
3. By [10, Corollary to Lemma 39.1℄ there exists a Borel set

A in R suh that A 6∈ Π0
4. Now, let B be the family of all members of

Π0
4 ontaining A. Sine |B| = 2ω, we an enumerate B as {Bα : α < ω1}by CH. Then ⋂

β<α Bβ \A is unountable for eah α < ω1, beause A 6∈ Π0
4.Hene, we an de�ne a set X = A ∪ {xα : α < ω1} similarly to the proofof Example 3.5. Sine X \ Bα is ountable for eah α < ω1, it follows fromProposition 3.2(3) that A satis�es (b3) in XA. On the other hand, R \ A isa Borel set in R, but (R \ A) ∩ Bα 6= ∅ for eah α < ω1. Hene, A does notsatisfy (b2) in XA by Proposition 3.2(2).A similar example to Examples 3.5 and 3.7 was onstruted by Mihael[12℄ for a ountable non-Gδ-set A to show that the produt of a Lindelöfspae XA with P is not neessarily normal under CH.In [15, Example 3℄, Przymusi«ski and Wage onstruted an example ofa olletionwise normal spae Z having a losed subspae K whih is not

Pω(loally �nite)-embedded in Z. Finally, we show that an M -embeddedsubspae is not neessarily Pω(loally �nite)-embedded by proving the fol-lowing:Example 3.8. Every losed subspae A of the olletionwise normalspae Z of Przymusi«ski�Wage is M -embedded in Z.Proof. The spae Z is onstruted from a subspae W of Rudin's Dowkerspae of [17℄. All we need to know about Z is that every Gδ-set in W is openand that Z is the union of W and another spae Y , where W is a Gδ-set in Zand Y is an open (in Z) set whih is the topologial sum of subspaes of W .



Extension of partitions of unity 197From these fats, if a set G is the union of Gδ-sets in Z, then both G ∩Wand G∩Y are Gδ-sets in Z, and therefore, G is a Gδ-set in Z. Now, let A bea losed subspae of Z. Sine Z is olletionwise normal, it follows from [19,Theorem 5.2℄ that A is P -embedded in Z. To show that A satis�es (aγ) in Zfor every in�nite ardinal γ, let ̺ be a γ-separable ontinuous pseudometrion Z. Then the set L = {x ∈ Z : (∃y ∈ A)(̺(x, y) = 0)} is a Gδ-set in
Z sine it is the union of Gδ-sets in Z. Thus, by the normality of Z, thereexists a zero-set F in Z suh that A ⊆ F ⊆ L. Hene, A is M -embeddedin Z.

4. Another appliation and questions. By AR we mean an abso-lute retrat for the lass of metrizable spaes. In [14℄ Morita proved thata subspae A of a spae X is P γ-embedded in X if and only if for everyomplete AR Y with w(Y ) ≤ γ, every ontinuous map from A to Y extendsontinuously over X. As another appliation of Theorem 2.1, we prove thefollowing theorem by a similar argument to the proofs of Morita's theoremsin [14℄ (see also [9, Theorems 2.8 and 2.14℄). We now all a metrizable spae
X σ-omplete if there exist a metri d on X, whih indues the topology of
X, and a ountable over {Xn : n < ω} of X suh that eah Xn is a ompletesubspae of the metri spae (X, d).Theorem 4.1. Let A be a subspae of a spae X and γ an in�nite ar-dinal. Then the following are equivalent :(1) A is P γ(point-�nite)-embedded in X,(2) for every σ-omplete AR Y with w(Y ) ≤ γ, every ontinuous mapfrom A to Y extends ontinuously over X,(3) for every Banah spae B and every onvex Fσ-set Y in B with

w(Y ) ≤ γ, every ontinuous map from A to Y extends to a on-tinuous map from X to Y .Proof. (1)⇒(2): Let f : A→ Y be a ontinuous map to a σ-omplete AR
Y with w(Y ) ≤ γ. We onsider Y a metri spae having a ountable over byomplete subspaes. Then, by Kuratowski�Wojdysªawski's theorem (see [9℄),there exist a Banah spae B and an isometrial embedding i : Y → B suhthat w(Z) ≤ γ, where Z is the onvex hull of i[Y ]. We identify Y and i[Y ].Sine A is P γ-embedded in X and w(clB Z) ≤ γ, f extends to a ontinuousmap g : X → B with g[X] ⊆ clB Z by Morita's theorem mentioned above.Sine Y is an Fσ-set in B, g−1[Y ] is a ountable union of zero-sets in X suhthat A ⊆ g−1[Y ]. Sine A is P γ(point-�nite)-embedded in X, it follows fromTheorem 2.1 that there exists a ontinuous funtion ϕ : X → [0, 1] suh thatthe set F = ϕ−1(0) satis�es A ⊆ F ⊆ g−1[Y ]. Consider the diagonal map
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h = g△ ϕ : X → B × [0, 1]and let p, q denote the projetions of B×[0, 1] onto B and [0, 1], respetively.Then h[F ] = h[X] ∩ q−1(0) is losed in h[X] and p[h[F ]] = g[F ] ⊆ Y .Sine Y is an AR, the restrition p|h[F ] an be extended to a ontinuousmap p∗ : h[X] → Y . Then p∗ ◦ h : X → Y is a ontinuous extension of

(p ◦ h)|A = g|A = f .The impliation (2)⇒(3) follows from the fat that every onvex Fσ-setin a Banah spae is a σ-omplete AR. For a set S, let ℓ1(S) be the Banahspae of all real-valued funtions v on S suh that ‖v‖ ≡∑

s∈S |v(s)| < ∞,and ∆S the subspae of ℓ1(S) onsisting of all v ∈ ℓ1(S) suh that v(s) = 0for all but �nitely many s ∈ S, v ≥ 0, and ∑

s∈S v(s) = 1. Dydak [3℄ provedthat A is P γ(point-�nite)-embedded in X if (and only if) for every set Swith |S| ≤ γ, every ontinuous map from A to ∆S extends to a ontinuousmap from X to ∆S . Sine ∆S is a onvex Fσ-set in ℓ1(S), we have the �nalimpliation (3)⇒(1).Remark 4.2. By Hausdor�'s extension theorem, a metrizable spae is
σ-omplete if and only if it has a ountable over by losed ompletely metriz-able subspaes. The term �σ-omplete� was used by A. H. Stone in [20,Lemma 4℄ without an expliit de�nition.We onlude the paper with some open questions.Question 4.3. Does there exist an example in ZFC of a P -embeddedsubspae whih satis�es (b3) but not (b2)? Does there exist an example inZFC of a P -embedded subspae whih satis�es (b2) but not (b1)?The next question was �rst asked by the seond author in [22, Prob-lem 2.3.4℄, whih asks if there is a P γ(loally �nite)-embedding analogue ofTheorem 2.1.Question 4.4. Let A be a subspae of a spae X and γ an unount-able ardinal. Is then A P γ(loally �nite)-embedded in X if A is P γ- and
Pω(loally �nite)-embedded in X?Aknowledgments. The authors wish to thank the referee for his/herareful reading and many valuable suggestions whih have greatly improvedthe paper. In partiular, they learned from the referee that every Suslin-
Z-set an be expressed as the inverse image of an analyti subset of theHilbert ube (Lemma 2.5). This fat enabled them to make the originalproofs of Theorem 2.6 and Proposition 2.8 very short and lear. Moreover,the statement in Example 3.8 that every losed subspae of Z is M -embeddedin Z is due to the referee. In the previous version, the authors proved thatonly the subspae K is M -embedded in Z.
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