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Strongly determined types and G-ompatnessbyA. A. Ivanov (Wroªaw)
Abstrat. We study onnetions between G-ompatness and existene of stronglydetermined types.0. Introdution. Theories admitting strongly determined types wereintrodued in [6℄. It was shown there that the lass of these theories is verywide. In partiular it ontains all stable theories, PA, the theory of the�eld Qp, all o-minimal theories and theories of various �nitely homogeneousstrutures. Some other interesting examples an be found in Setion 2 of [6℄.A great deal of e�ort of [6℄ was onentrated on demonstration that manyresults from stability theory an be arried over to the muh more generalontext of theories admitting strongly determined types.Hrushovski has pointed out to the authors of [6℄ that a orret version ofLemma 2.2 of [6℄ must involve G-ompatness. This has beome the startingpoint of this paper. Here we study onnetions between existene of stronglydetermined types and G-ompatness. In partiular we repair Lemma 2.2of [6℄ and several appliations of this lemma from [6℄. In Setion 1.1 we givesome neessary information about strongly determined types. In Setion 1.2we introdue G-trivial strongly determined types and in Setion 2 we usethem in the main result of the paper asserting that admitting strongly de-termined 1-types and type-de�nability of the equivalene relation of being ofthe same Lasar strong type imply that this equivalene relation oinideswith the relation of being of the same strong type. In partiular we have thisonlusion if the theory is simple and admits strongly determined 1-types.Some further questions arising in the ase of simple theories are disussed inSetion 3. We give some examples there.It turns out that the sheme of the de�nition of strongly determined typesan be applied in the ase of bounded equivalene relations. This leads us2000 Mathematis Subjet Classi�ation: Primary 03C45.Key words and phrases: G-ompatness, strongly determined type.[227℄



228 A. A. Ivanovto KP-determined and L-determined types, very lose notions whih beomemore natural in some situations. We disuss this in Setion 4.This researh was supported by KBN grant 2 P03A 007 19, and basi-ally arried out when the author held a visiting position at the Instituteof Mathematis, Polish Aademy of Sienes. The author is grateful to thereferee for helpful remarks.In this paper, T will denote a �rst-order theory over a ountable lan-guage. The symbols M,N will denote models of T , whih are assumed to beelementary substrutures of a su�iently saturated monster model C. Weuse A,B to denote subsets of C, assumed to be muh smaller than C. If āis a tuple, we often abuse notation by writing ā ∈ M . If no suh restritionis given, then ā is assumed just to live in C. If r(x̄) is a type in (possiblyin�nitely many) variables x̄, we denote by r(M) the set of tuples (sequenes)from M whih realize r. For any struture M and A ⊆ C, de�ne Aut(M/A)to be the group of automorphisms of M whih are partial maps C → C�xing A pointwise.The following de�nitions and fats are partially taken from [10℄. An A-hyperimaginary is an equivalene lass of an A-type-de�nable equivalenerelation [10℄. It beomes an imaginary if the equivalene relation is A-de�nable. Let bdd(A) be the set of all A-hyperimaginaries whih have asmall orbit under Aut(C/A). A hyperimaginary e is bounded if e ∈ bdd(∅).In this paper we usually onsider hyperimaginaries depending on �nitelymany variables.We reall that for c̄ ∈ C the strong type (resp. KP-strong type) of c̄ over
A is just tp(c̄/acleq(A)) (resp. tp(c̄/bdd(A))). We write S(acleq(A)) (resp.
S(bdd(A))) for the set of strong (resp. KP-strong) types over A dependingon variables of the sorts of the language of T . It is worth noting here thata straightforward de�nition allows us to onsider types of hyperimaginariesover hyperimaginaries. We may also de�ne acleq(A) (resp. bdd(A)), for Aonsisting of hyperimaginaries, as A together with the set of all equivalenelasses of A-de�nable (1) (resp. A-type-de�nable) equivalene relations hav-ing �nite (resp. small) orbits under Aut(C/A). On the other hand, in thispaper we onentrate on theories admitting strongly determined types andthe orresponding de�nition (see [6℄) involves types over sets of basi sorts.Therefore in all our statements sets of hyperimaginaries will appear in somepartiular situations when all imaginaries (hyperimaginaries) from A belongto acleq(A ∩ C) (resp. bdd(A ∩ C)); here by A ∩ C we denote the partof A of the sorts of the language of T . Then acleq(A) (resp. bdd(A)) is just
acleq(A∩ C) (resp. bdd(A∩ C)).(1) By an Aut(C/A)-invariant formula with parameters from C.



Strongly determined types and G-ompatness 229For δ∈{1, 2, . . . , ω} and a set A let EA,δ
L be the �nest bounded Aut(C/A)-invariant equivalene relation on δ-sequenes. The lasses of EA,δ

L are alledLasar strong types (2). For A ⊂ C the relation EA,δ
L an be haraterizedas follows ([1℄): (ā, b̄) ∈ EA,δ

L if there are models M1, . . . ,Mn < C on-taining A and sequenes ā0 (= ā), . . . , ān (= b̄) suh that tp(āi/Mi+1) =

tp(āi+1/Mi+1), 0 ≤ i < n. Equivalently (ā, b̄) ∈ EA,δ
L if there are sequenes

ā0 (= ā), . . . , ān (= b̄) suh that eah pair āi, āi+1, 0 ≤ i < n, extends to anin�nite indisernible sequene over A ([1℄).Let A ⊂ C. We denote by EA,δ
KP the �nest bounded A-type-de�nableequivalene relation on δ-sequenes, and by EA,δ

Sh the intersetion of all �nite
A-de�nable equivalene relations on δ-sequenes. Sequenes ā and b̄ havethe same strong (resp. KP-strong) types over A if and only if they are EA,δ

Sh -equivalent (resp. EA,δ
KP -equivalent). It is known from [9℄ that for ω-ategorialtheories and for �nite A ⊂ C and δ, EA,δ

Sh = EA,δ
KP = EA,δ

L . For small theories
EA,δ

Sh = EA,δ
KP ([7℄, [8℄, [12℄).In the paragraphs above we have slightly hanged the notation from [1℄.The reason is that in the ase when X is a set de�ned over A and B, thenotation EX

KP an be interpreted as both EA,n
KP and EB,n

KP . These relations arenot neessarily the same. Below we often use just EKP when it is lear overwhih set we work.For any struture M and A⊆C, de�ne AutKP(M/A) :=Aut(M/bdd(A))and AutSh(M/A) := Aut(M/acleq(A)). We all the elements of AutSh(M/A)(resp. AutKP(M/A)) Shelah strong automorphisms over A (resp. KP-strongautomorphisms over A); the elements of AutSh(M) = AutSh(M/∅) are alledShelah strong automorphisms (3). We talk similarly of Shelah strong (resp.KP-strong) elementary maps over A.Let M be a saturated struture of unountable ardinality and let
AutL(M) be the group of all Lasar strong automorphisms (�xing thelasses of all bounded invariant equivalene relations). Then GalL(Th(M)) =
Aut(M)/AutL(M), the Galois group of Th(M), does not depend onM . Thefollowing group extensions show relationships among these notions:

1 → AutKP(M)/AutL(M) → GalL → GalKP = Aut(M)/AutKP(M) → 1and
1 → AutSh(M)/AutL(M) → GalL → GalSh = Aut(M)/AutSh(M) → 1.It is known that the groups GalKP and GalSh are ompat. The theory(2) Usual strong types an be alled Shelah strong types.(3) They were introdued by Lasar as strong automorphisms.



230 A. A. Ivanov
Th(M) is alled G-ompat if GalL = GalKP. The main results of the paperare onneted with the question when GalL = GalSh.1. Strongly determined types and equivalene relations. We startthis setion with a short introdution to strongly determined types [6℄.1.1. Strongly determined types. The following de�nition is taken from [6℄.Let A ⊂ C and A ⊂ acleq(A) with A ⊆ A. If q(ȳ) ∈ S(acleq(A)) we say thata type p(x̄, ȳ) ∈ S(A) is a q-onsistent x̄-type if for any sequene ā1, . . . , ānof realizations of q the set ⋃

{p(x̄, āi) : 1 ≤ i ≤ n} is onsistent. A stronglydetermined type over A is a funtion ̺ whih assigns a q-onsistent x̄-type
̺(q)(x̄, ȳ) to every q(ȳ) ∈ S(acleq(A)), and is monotoni: if ȳ′ is a subtupleof ȳ and q(ȳ), q′(ȳ′) ∈ S(acleq(A)) with q(ȳ) ⊢ q′(ȳ′), then the restrition of
̺(q)(x̄, ȳ) to x̄ȳ′ is ̺(q′)(x̄, ȳ′).Suppose that ̺ is a strongly determined type over A. For every B ⊂ Cde�ne

̺B(x̄) =
⋃

{̺(q)(x̄, b̄) : q ∈ S(acleq(A)), b̄ |= q, b̄ ∈ B}.The following notions are at the entre of [6℄. We say that a theory T ad-mits strongly determined types over A (A ⊂ C) if every type of S(A) extendsto a strongly determined one. A theory T admits strongly determined typesif it admits strongly determined types over every set A ⊂ C of parameters.The following lemma shows that in fat the de�nition of strongly deter-mined types does not hange if we strengthen it by the requirement that
̺(q)(x̄, ȳ) is a type over acleq(A). This lemma is a version of Lemma 1.3from [6℄.Lemma 1.1. Let A ⊂ C, A ⊆ A ⊆ acleq(A) and let ̺(x̄) be a stronglydetermined type over A. Then there exists a unique strongly determined type
̺′(x̄) over acleq(A) suh that for any q ∈ S(acleq(A)), ̺′(q) ⊢ ̺(q).Proof. Let M be very rih over A: for all n ∈ ω and all m̄ ∈ M , Mrealizes all n-types from S(acleq(Am̄)). Let c̄ |= ̺M . For q ∈ S(acleq(A))and b̄ |= q, b̄ ∈M , de�ne ̺′(q) := tp(c̄b̄/acleq(A)).To see that the de�nition is orret, suppose that b̄, b̄′ realize the sametype over acleq(A). We may assume that b̄′ ∈ M . Let b̄d̄ ∈ M be of thesame strong type over A as b̄c̄. Choose d̄′ ∈M suh that b̄′d̄′ is of the samestrong type over A as b̄d̄. Then ̺(tp(b̄d̄/acleq(A))) = ̺(tp(b̄′d̄′/acleq(A))).Let E(ȳ, z̄) (where |ȳ| = |b̄| + |c̄|) be a �nite equivalene relation de�nableover A. Sine E(b̄c̄, b̄d̄), we have E(b̄′c̄, b̄′d̄′). It follows by transitivity that
E(b̄c̄, b̄′c̄). As a result b̄c̄ and b̄′c̄ have the same strong type over A. The restis easy.It is lear from the proof that any strongly determined type ̺ over A isdetermined by ̺M , where M is very rih over A.



Strongly determined types and G-ompatness 231Lemma 1.2. Let A ⊂ C and let T admit strongly determined n-types overa set A. Then every strong n-type over A extends to a strongly determinedtype over A.Proof. Let q(x̄) be a type over acleq(A) extending p(x̄), a omplete typeover A. Let ̺(x̄) be a strongly determined extension of p(x̄) and ̺′(x̄) bea strongly determined type over acleq(A) de�ned for ̺ by Lemma 1.1. Let
q1(x̄) be the strong type over acleq(A) de�ned by ̺′ (by ̺′M for a saturatedmodel M). Sine q1 extends p, there is an automorphism α over A taking q1to q. Let α take ̺ to ̺1 (de�ned by α(c̄) for c̄ |= ̺M for su�iently saturated
M). Then ̺1 is a strongly determined extension of q.The following is Lemma 2.1 from [6℄.Lemma 1.3. Let A ⊆ M , and suppose that M is very rih over A. Let
p(x̄) ∈ S(A). Then the following are equivalent :(i) p extends to a strongly determined type over A;(ii) for every �nite set Γ of �nite partial acleq(A)-elementary maps

M →M there exists c̄ ∈ p(M) suh that all maps in Γ are ele-mentary over c̄A.Our �nal remark here is folklore. For example it appears in some formin [5℄.Proposition 1.4. If a theory T admits strongly determined types then
T is G-ompat and its Lasar strong types oinide with (Shelah) strongtypes.Proof. Let M and N be small models of T . We �x some enumerations of
M and N and assume that the orresponding sequenes have the same strongtype. For any formula φ(x1, . . . , xn) ∈ tp(M) �nd a strongly determined type
̺ ontaining φ. Let c̄ |= ̺MN . Then M and N have the same type over c̄.By ompatness there is a model C suh that M and N have the same typeover C. This means that M and N have the same Lasar strong type.This proposition shows that admitting strongly determined types an beonsidered as a very strong version of G-ompatness. In fat our main re-sults below desribe some situations when G-ompatness implies admittingstrongly determined types.1.2. Strongly determined types and type-de�nable equivalene relations.Let A ⊂ C, A ⊆ A ⊆ acleq(A) and let ̺ be a strongly determined typeover A. Let M be su�iently saturated, A ⊆ M , b̄ |= ̺M and e be a �niteequivalene relation de�nable over Ab̄ (4). The group Aut(C/b̄M) naturallyats on the set of all e-lasses. Let ẽ be the equivalene relation de�ned(4) By an Aut(C/Ab̄)-invariant formula with parameters from C.



232 A. A. Ivanovon the appropriate C
l by the ondition that (ā, ā′) ∈ ẽ if and only if theorresponding e-lasses of ā and ā′ are in the same orbit with respet to

Aut(C/b̄M). By the hoie of b̄ any automorphism from AutSh(M/A) =
Aut(M/acleq(A)) extends to an element of Aut(C/b̄{M} acleq(A)) (�xing
M setwise). We have obtained the exat sequene

0 → Aut(C/b̄M) → Aut(C/b̄{M} acleq(A)) → AutSh(M/A) → 0where the kernel Aut(C/b̄M) preserves all ẽ-lasses. Hene we infer that
Aut(C/b̄{M} acleq(A)) indues an ation of AutSh(M/A) on the set of ẽ-lasses.Sine e is a �nite equivalene relation the pointwise stabilizer of the setof ẽ-lasses is a normal subgroup He ⊳ AutSh(M/A) of �nite index.Definition 1.5. We say that ̺ is G-trivial if for any struture M whihrealizes all strong types over A and is AutSh(M/A)-homogeneous for �nitemaps, and any �nite equivalene relation e as above, there is no AutSh(M/A)-invariant equivalene relation E properly re�ning EA,l

Sh on the appropriateM lsuh that the orresponding group He preserves all E-lasses (in other words,for any strong type over A the ation of He on the set of its M -realizationsis transitive).It is worth noting that if an equivalene relation E witnesses non-G-triviality of ̺ then eah EA,l
Sh -lass on M l onsists of ≤ |AutSh(M/A) : He|lasses of E.

Remark. For any α ∈ Aut(M/A) the image of a G-trivial stronglydetermined type is G-trivial. Thus the natural version of Lemma 1.2 forG-trivial strongly determined types still holds (by inspetion of the proof).The proposition below gives three reasons why G-trivial strongly deter-mined types are quite frequent. For ease of notation we restrit ourselves tothe ase when A = A ⊂ C. We need the following notion.We say that a strongly determined type ̺ over A is type-de�nable if forany q(ȳ) ∈ S(acleq(A)) and φ(x̄, ȳ) ∈ ̺(q) there is ψ(ȳ) ∈ q(ȳ) suh that forany r(ȳ) ∈ S(acleq(A)) ontaining ψ(ȳ) the formula φ(x̄, ȳ) belongs to ̺(r).Proposition 1.6. Let A ⊂ C be a ountable set and M be an
AutSh(M/A)-homogeneous struture realizing all strong types over A.(1) Assume that for all l ∈ ω every AutSh(M/A)-invariant equivalenerelation E ⊆ M2l dividing eah EA,l

Sh -lass into �nitely many E-lasses is type-de�nable over acleq(A). Then every strongly deter-mined type over A is G-trivial.(2) If EA
L = EA

KP on �nite tuples (in partiular if Th(M) is simple),then every strongly determined type over A is G-trivial.(3) A type-de�nable strongly determined type over A is G-trivial.



Strongly determined types and G-ompatness 233Proof. (1) Let
p(x̄) = {φ0(x̄), φ1(x̄), . . . , φj(x̄), . . . }be a strong type over A whih is divided by E into �nitely many lasses andlet

Ψ = {ψ0(x̄, ȳ), ψ1(x̄, ȳ), . . . , ψj(x̄, ȳ), . . . }be the type over acleq(A) de�ning E. We may assume that eah φj+1(x̄)implies φj(x̄) and eah ψj+1(x̄, ȳ) implies ψj(x̄, ȳ). Moreover by ompatnesswe may assume that eah ψj(x̄, ȳ) is symmetri and eah formula ψj+1(x̄, ȳ)∧
ψj+1(ȳ, z̄) implies ψj(x̄, z̄).Sine p/E is �nite, there is j suh that p(x̄) ∪ p(ȳ) implies ψj(x̄, ȳ) →
ψj+1(x̄, ȳ). By ompatness some φi(x̄)∧φi(ȳ) implies ψj(x̄, ȳ) → ψj+1(x̄, ȳ).We may also assume that for some n the formula φi(x̄1)∧· · ·∧φi(x̄n) implies∨
{ψj(x̄k, x̄l) : 0 ≤ k < l ≤ n}. Thus ψj de�nes a �nite equivalene on φiwhih oinides with E on p(C). This ontradits the assumption that p isa strong type.As a result we see that there is no AutSh(M/A)-invariant equivalenerelation E properly dividing some EA

Sh-lass into �nitely many E-lasses.This means that every strongly determined type over A satis�es the de�nitionof G-trivial types.(2) Let M be su�iently saturated. That AutSh(M/A)/AutKP(M/A) isa ompat onneted group is folklore (for example it an be dedued fromLemma 4.10 of [10℄ or Remark 3.1 from [8℄). A omplete proof of this isgiven in Theorem 21 of [14℄. By a theorem of Myielski from [11℄ the group
AutSh(M/A)/AutKP(M/A) is divisible and does not have subgroups of �niteindex. On the other hand, if E is an equivalene relation as in the de�nition ofG-trivial strongly determined types, then it is oarser than the orresponding
EA,l

KP (= EA,l
L ). This implies that the subgroup H < AutSh(M/A) �xing all

E-lasses is a proper subgroup of AutSh(M/A) of �nite index whih ontains
AutKP(M/A). This ontradition shows that every strongly determined typeover A is G-trivial.(3) Let ̺ be a strongly determined type over A, b̄ |= ̺M and e be a �niteequivalene relation de�nable over Ab̄. As above de�ne the orrespondingequivalene relation ẽ ⊃ e. The pointwise stabilizer of the set of ẽ-lassesforms a normal subgroup He ⊳ AutSh(M/A) of �nite index.For any ẽ-lass �nd a formula θ(ū, b̄, d̄) with d̄ ∈ M asserting that thetuple ū represents one of the e-lasses of this lass. If d̄′ ∈M is of the samestrong type over A as d̄ then by the hoie of b̄ and (the proof of) Lemma 1.1,
tp(d̄b̄/acleq(A)) = tp(d̄′b̄/acleq(A)) and we see that θ(ū, b̄, d̄′) still desribes
e-lasses of some ẽ-lass. Below we assume that all ẽ-lasses are so de�nedover b̄d̄ by appropriate formulas.



234 A. A. IvanovWe see that the equivalene relation of He-orbits on the AutSh(M/A)-orbit of d̄ is de�ned by the formula over Ab̄ whih is the onjuntion
Φ(w̄′, w̄′′, b̄) of the onditions of the form ∀ū(θ(ū, b̄, w̄′) ↔ θ(ū, b̄, w̄′′)) (forall ẽ-lasses). Sine b̄ |= ̺M , the truth of Φ(d̄′, d̄′′, b̄) is determined by thestrong type of d̄′d̄′′ over A. This means that ¬Φ(w̄′, w̄′′, b̄) for tuples from Mof the type tp(d̄/acleq(A)) is equivalent to some disjuntion of strong typeson w̄′w̄′′ over A.On the other hand, sine ̺ is type-de�nable, any strong type of this formontains a formula over acleq(A) whih implies ¬Φ(w̄′, w̄′′, b̄). We now seethat Φ(w̄′, w̄′′, b̄) is equivalent to a onjuntion of formulas over acleq(A).As a result we have obtained an equivalene relation type-de�nable over
acleq(A) whih divides stp(d̄/A) into �nitely many lasses. The argument ofthe �rst part of the proposition shows that the number of lasses is 1. Thus
θ(C, b̄, d̄) = θ(C, b̄, d̄′) for θ as above and d̄′ of the same strong type over Aas d̄. This shows that ̺ is G-trivial.
Remark. It is worth noting that in the de�nition of G-triviality it onlysu�es to demand that the orresponding property holds over some �xedmodel M (saturated and homogeneous enough). Indeed, let ̺ be a stronglydetermined type over A, M < M ′ be su�iently saturated and homoge-neous models, b̄ |= ̺M , b̄′ |= ̺M ′ and φ(x̄, ȳ, z̄) be a formula over A suhthat φ(x̄, ȳ, b̄) de�nes a �nite equivalene relation e. As above de�ne the or-responding equivalene relation ẽ ⊃ e. The pointwise stabilizer of the set of

ẽ-lasses forms a normal subgroup He ⊳AutSh(M/A) of �nite index.Assume that the de�nition of G-triviality holds for M and b̄. For any ẽ-lass �nd a formula θ(ū, b̄, d̄) with d̄ ∈M asserting that the tuple ū representsone of the e-lasses of this ẽ-lass. If d̄′ ∈M is of the same strong type over
A as d̄ then by the hoie of b̄, tp(d̄b̄/acleq(A)) = tp(d̄′b̄/acleq(A)) and byG-triviality of ̺ over M we dedue that θ(ū, b̄, d̄′) still desribes e-lasses ofthe same ẽ-lass.If now d̄′ belongs to M ′ and is of the same strong type over A as d̄, then

tp(d̄b̄/acleq(A)) = tp(d̄b̄′/acleq(A)) = tp(d̄′b̄′/acleq(A)).This implies that for e′ de�ned by φ(x̄, ȳ, b̄′) the formulas θ(ū, b̄′, d̄′) and
θ(ū, b̄′, d̄) desribe e′-lasses of the same ẽ′-lass (the strong type of b̄′d̄d̄′ over
A oinides with the type of some b̄d̄d̄′′ with d̄′′ ∈M of the type stp(d̄/A)).This implies G-triviality with respet to M ′. The rest is obvious.
Question. Is it possible that in the situation when M is su�ientlysaturated and homogeneous, the group AutKP(M) has a subgroup of �niteindex G suh that the G-orbit equivalene relation on some Mk properlyre�nes Ek

KP?



Strongly determined types and G-ompatness 2352. G-ompatness and strongly determined types. Our main re-sult in this setion gives some su�ient onditions (in terms of strongly de-termined types) for EL = ESh. Then we study to what extent G-ompatnessis needed for existene of strongly determined n-types when n > 1. The fol-lowing statement orrets Lemma 2.2 from [6℄ by adding the assumptionthat EL = EKP on �nite tuples. The idea that Lemma 2.2 should have someassumption onneted with G-ompatness was suggested by E. Hrushovski.Theorem 2.1. Let T be a omplete theory suh that for any �nite A ofthe basi sort , EA
L = EA

KP on �nite tuples, and every 1-type over A extends toa strongly determined type over A. Then for all tuples ā and all n > 0, every
n-type of T over ā has a strongly determined extension over ā. Moreover ,all strongly determined types over ā are G-trivial.This theorem implies that if T is simple and every 1-type over a �niteset extends to a strongly determined type, then any n-type over a �nite setextends to a strongly determined one. The proof is based on the followingtheorem.Theorem 2.2. Let T be a omplete theory suh that for any �nite set
A of the basi sort , EA

L = EA
KP on �nite tuples, and every 1-type over Aextends to a strongly determined type over A. Then for all �nite sets A ofthe basi sort , EA

L = EA
Sh on �nite tuples. In partiular , EA,k

KP = EA,k
Sh forall A and k ≤ ω.Proof. The last statement of the theorem follows from the main state-ment by the de�nition of EA

KP and EA
Sh (for example as in the proof ofTheorem 15 from [7℄).Let Ψ(x̄, ȳ) be a type de�ning Eā

L on n-tuples satisfying p(x̄) ∈ S(ā). Wemay assume that
p(x̄) = {φ0(x̄), φ1(x̄), . . . , φj(x̄), . . . },

Ψ = {ψ0(x̄, ȳ), ψ1(x̄, ȳ), . . . , ψj(x̄, ȳ), . . . },where eah φj+1(x̄) implies φj(x̄) and eah ψj+1(x̄, ȳ) implies ψj(x̄, ȳ). Wewant to prove that Ψ(x̄, ȳ) does not re�ne Eā,n
Sh on p(C). By Proposition1.6(2) we assume below that every 1-type over ā extends to a G-trivialstrongly determined type over ā.The proof is by indution on |x̄|. Let |x̄| = 1. By Lemma 1.2 any strongtype over ā extending p(x) extends to a strongly determined type. Let ̺(x) besuh a type. Let c |= p(x) be of the strong type de�ned by ̺. If ̺c(x) ontains

¬ψj(x, c) for some j, then for any set C ⊂ p(C) onsisting of elements ofthe same strong type as c, any realization of ̺M for a su�iently saturatedstruture M ⊃ C provides an element not EL-equivalent to any elementof C. This ontradits the boundedness of EL.



236 A. A. IvanovWe see that ̺c(x) ontains all ψj(x, c) ∧ φj(x). Then by the de�nitionof a strongly determined type for any c′ of the same strong type as c thetype ̺c′(x) ontains all formulas ψj(x, c
′) ∧ φj(x). Let b |= ̺M (x), where

c, c′ ∈M . Then (c, b) and (c′, b) are in EL. Thus (c, c′) ∈ EL.Towards a ontradition assume that for some �nite A, EA
L 6= EA

Sh on�nite tuples. Choose p(x̄) and ā as above so that n = |x̄| is minimal with
Eā,n

L 6= Eā,n
Sh on tuples satisfying p(x̄). Then n > 1. We may assume that

p(x̄) is not algebrai with respet to the �rst oordinate. Sine we assume
Eā,n

L 6= Eā,n
Sh on p(C), eah ESh-lass from p(C) splits into several EL-lasses.Let p0(x1) be a non-algebrai type over ā ontaining all formulas of theform ∃x2, . . . , xnφj(x̄). Then by an appropriate version of Lemma 1.2 anystrong type over ā extending p0(x1) extends to a G-trivial strongly deter-mined type. Fix suh a strong type and take an appropriate ̺(x1). Let Montain representatives of all Eā,n

L -lasses and b1 |= ̺M . Take a strong type
q1(x1, . . . , xn) ∈ S(acleq(ā)) extending p(x̄) ∪ stp(b1/ā) and �nd b2, . . . , bnsuh that q1(x̄) = stp(b1b2 . . . bn/ā). Sine any strong type over ā extending
p(x̄) an be hosen as q1 for appropriate ̺(x1), the proof of the theorem willbe �nished if we show that q1(C) does not split into several EL-lasses.Let q1(x̄) = {φ′0, . . . , φ

′
i, . . . } with φ′i+1 ⊢ φ′i, i ∈ ω. Here we assumethat eah φ′i de�nes an equivalene lass of some �nite equivalene relationover ā. Below we present all φ′i by formulas over parameters from M with

∃x2, . . . , xnφ
′
i(x̄) ∈ tp(b1/M) under that presentation. We will use the fatthat any automorphism of M strong over ā �xes φ′i(M).Let q2(x2, . . . , xn) = stp(b2 . . . bn/b1ā) = {φ′′0, . . . , φ

′′
i , . . . } with φ′′i+1 ⊢φ

′′
i ,

i ∈ ω. We assume that eah φ′′i de�nes an equivalene lass of a �nite equiv-alene relation de�ned by a formula ei(ū, v̄, b1, ā) over b1ā. We also assumethat φ′i(x̄) implies that the equivalene relation ei(ū, v̄, x1, ā) over x1ā is�nite.The group Aut(C/b1M) naturally ats on the set of all ei-lasses. Let
ẽi ⊃ ei be the equivalene relation de�ned by: (c̄1, c̄2) ∈ ẽ if the ei-lasses of c̄1and c̄2 are in the same Aut(C/b1M)-orbit. For the Aut(C/b1M)-orbit of the
ei-lass orresponding to φ′′i , �nd a formula θi(ū, b1, d̄i) ∈ tp(b2 . . . bn/b1M)with d̄i ∈ M asserting that ū represents one of the ei-lasses of this orbit.If d̄′i ∈ M is of the same strong type over ā as d̄i then by the hoie of b1,
tp(d̄ib1/acleq(ā)) = tp(d̄′ib1/acleq(ā)) and θi(ū, b1, d̄

′
i) still desribes an orbitof ei-lasses (i.e. de�nes an ẽi-lass). Extending d̄i if neessary, we may as-sume that all ẽi-lasses are de�ned over b1d̄i by appropriate formulas. Sine

̺ is G-trivial we �nd thatfor any d̄′i ∈M of the same strong type over ā as d̄i,
θi(C, b1, d̄i) = θi(C, b1, d̄

′
i).



Strongly determined types and G-ompatness 237Let c̄ = (c1, c2, . . . , cn) ∈ M be of the same strong type as b̄ over ā. If forsome j the type tp(b1/M) ontains
∀x2, . . . , xn(φ′j(x̄) ∧ θj(x2, . . . , xn, x1, d̄j) → ¬ψj(x̄, c̄))then for any c̄′ ⊂ M with stp(c̄/ā) = stp(c̄′/ā) and for appropriate d̄′j ∈ Mof the same strong type as d̄j over ā we have

∀x2, . . . , xn(φ′j(x̄) ∧ θj(x2, . . . , xn, x1, d̄
′
j) → ¬ψj(x̄, c̄

′)) ∈ tp(b1/M).By the previous paragraph,
∀x2, . . . , xn(φ′j(x̄) ∧ θj(x2, . . . , xn, x1, d̄j) → ¬ψj(x̄, c̄

′)) ∈ tp(b1/M).Thus b1 . . . bn is not EL-equivalent to any c̄′ ⊂M with stp(b̄/ā) = stp(c̄′/ā).This ontradits the hoie of M .We see that for every j the type tp(b1/M) ontains all
∃x2, . . . , xn(φ′j(x̄) ∧ θj(x2 . . . xn, x1, d̄j) ∧ ψj(x̄, c̄

′))with stp(c̄/ā) = stp(c̄′/ā), c̄′ ⊂M .We now laim that for every c̄′ as above, there is a realization of all
φ′j(b1, x2 . . . xn) ∧ ej(x2 . . . xn, b2b3 . . . bn, b1ā) ∧ ψj(b1x2 . . . xn, c̄

′).To see this we apply ompatness and the following argument. If b′2 . . . b′nrealizes φ′j(b1, x2 . . . xn)∧θj(x2 . . . xn, b1, d̄j)∧ψj(b1x2 . . . xn, c̄
′), then by thede�nition of θ, there is γ ∈ Aut(C/b1M) taking the ej-lass of b′2 . . . b′n tothe ej-lass of b2 . . . bn. Then γ(b′2) . . . γ(b′n) realizes

φ′j(b1, x2 . . . xn) ∧ ej(x2 . . . xn, b2b3 . . . bn, b1ā) ∧ ψj(b1x2 . . . xn, c̄
′).Now assume that b1b′2 . . . b′n realizes all formulas

φ′j(x̄) ∧ ej(x2 . . . xn, b2 . . . bn, x1, ā) ∧ ψj(x̄, c̄
′).Then b2 . . . bn and b′2 . . . b′n have the same strong type over āb1. By indutionthey realize the same Lasar strong type over b1ā. This obviously implies that

b1b
′
2 . . . b

′
n and b1b2 . . . bn have the same Lasar strong type over ā. Then wesee that c̄′ and b̄ have the same Lasar strong type as b1b′2 . . . b′n. Sine c̄′is an arbitrary realization of the strong type q1(x̄), we have a ontraditionwith the assumption that the orresponding Eā

Sh-lass splits into several
Eā

L-lasses.Proposition 2.3. Let T be a omplete theory suh that for any �nite A,
EA

L = EA
Sh on �nite tuples (for example T is ω-ategorial), and every 1-typeover A extends to a strongly determined type over A. Then for all tuples āand all n > 0, every n-type of T over ā has a strongly determined extensionover ā. Moreover eah strongly determined type over ā is G-trivial.Proof. Pik M and ā ∈ M , and let p(x̄) be an n-type of Th(M) over ā.Form an inreasing hain of su�iently saturated strutures, M0 := M ≺
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M1 ≺ · · · ≺ Mn, together with c1, . . . , cn suh that for eah i < n, if p 6⊢
xi ∈ acl(ā{xj : j < i}) then ci ∈ Mi \Mi−1 and ci realizes a 1-type over
Mi−1 de�ning a strongly determined type over (c1, . . . , ci−1, ā), and suhthat (c1, . . . , cn) realizes p.To see that there is a strongly determined type ̺ over ā suh that
(c1, . . . , cn) realizes ̺M it su�es to show that for any b̄, b̄′ ∈ M of thesame strong type over ā the tuples b̄ and b̄′ have the same strong type over
āc̄ (then de�ne ̺(stp(b̄/ā)) := tp(c̄b̄/ā)). Having hosen b̄, b̄′ ∈ M of thesame strong type over ā we prove by indution that for eah i, the tuples
b̄, b̄′ have the same strong type over āc1, . . . , ci. The ase i = 0 is obvious.At step i→ i+ 1 if ci+1 ∈ acl(āc1, . . . , ci), then b̄ and b̄′ realize the samestrong type over āc1, . . . , ci+1. Consider the ase when ci+1 6∈ acl(āc1, . . . , ci).Then there is a strongly determined type ̺′ over āc1, . . . , ci suh that
ci+1 |= ̺′Mi

.Sine EL = ESh there are b̄0 (= b̄), b̄1, . . . , b̄m (= b̄′) suh that everypair b̄l, b̄l+1 belongs to some in�nite āc1 . . . ci-indisernible sequene Il, l =
0, . . . ,m−1. It is lear that all ordered (aording to the enumeration) pairsfrom Il have the same strong type over āc1, . . . , ci. Thus for any realization
dl |= ̺′Il

the tuples b̄l and b̄l+1 have the same strong type over āc1, . . . , ci, dl.This implies that if d |= ̺′
b̄0,...,b̄m

, then all b̄l have the same strong type over
āc1, . . . , ci, d. By the hoie of ci+1 we now see that the tuples b̄ and b̄′ realizethe same strong type over āc1, . . . , ci+1.The last statement of the proposition follows from Proposition 1.6.Proof of Theorem 2.1. By Theorem 2.2 we may use Proposition 2.3.Lemma 2.2 in [6℄ was applied in a few plaes there to show that sometheories admit strongly determined types. It has already been mentioned in[4℄ that most appliations of Lemma 2.2 in [6℄ are una�eted. We an nowshow this by applying Theorem 2.1. For example, Theorem 2.6 of [6℄ statesthat every weakly o-minimal theory admits strongly determined types. Wereall that a theory is weakly o-minimal if every de�nable subset of everymodel is a �nite union of onvex sets. To repair the proof given in [6℄ weneed the following fat:Every automorphism of a big saturated weakly o-minimal struture isLasar strong. In partiular EL = EKP over �nite sets.The proof of Lemma 24 of [14℄ (whih states the same for o-minimaltheories) works without any hanges. For ompleteness we mention that theproof is based on the following statement: for any two small submodels Mand N of the same type over ∅ every onsistent formula φ(z̄) has a realization
c̄ suh that M and N have the same type over c̄. This an be proved byindution on |z̄|.



Strongly determined types and G-ompatness 239We an now repeat the proof of Theorem 2.6 of [6℄ by replaing every-where Lemma 2.2 by Theorem 2.1 just proved.Another appliation of Theorem 2.1 is the following statement.Corollary 2.4. Every C-minimal struture having EKP = EL over �-nite sets admits strongly determined types.This an be shown by following the proof of Theorem 2.10 and Remark2.11 of [6℄. In these arguments we should replae Lemma 2.2 by Theorem 2.1.The statement of the orollary is not as strong as the orresponding onein [6℄. The di�erene is that we now assume EKP = EL over �nite sets. Onthe other hand, many C-minimal strutures satisfy this. In partiular it istrue for non-trivially valued algebraially losed �elds where the C-relationis naturally de�ned from the valuation. In fat in [5℄ it is expliitly shownthat then Ek
L = Ek

Sh for all �nite k as well as that every type extends to astrongly determined one (in [4℄ and [5℄ they are alled invariant types).3. Examples of simple theories. Theorem 2.2 has some appliationsonneted with the problem whether EL = ESh holds for simple theories. Itis well known that simple teories are G-ompat (for example, see [7℄). Nowthe statement below is a onsequene of Theorem 2.2 and Proposition 1.6.Let T be a simple theory suh that every 1-type of T over any �niteset A extends to a strongly determined type over A. Then Eā,n
L = Eā,n

Shfor all n and tuples ā.It is unlear when a simple theory admits strongly determined (KP-determined) types. In [6℄ there are examples of simple theories where astrongly determined type does not exist. On the other hand, it makes senseto verify this property for simple theories whih are obtained from stableones by adding a relation in some �generi� way.First, we disuss one of the onstrutions presented in [3℄. We start witha omplete theory T whih admits elimination of quanti�ers and eliminationof the quanti�er ∃∞ (for example, a omplete theory of algebraially losed�elds). Fix a sort S of the theory and extend the language by a unaryprediate P of this sort. Then Theorem 2.4 from [3℄ states that the theory ofall P -expansions has a model ompanion TP,S . Corollary 2.8 there states that
TS,P is simple if T is simple. The following proposition onerns a number ofexamples of simple theories (inluding random graphs and generi diretedgraphs; see 2.12 in [3℄).Proposition 3.1. If T is simple and admits strongly determined typesthen so does TS,P .Proof. Let M |= TS,P be su�iently saturated and D ⊂ M . By Lemma1.3 (Lemma 2.1 from [6℄) given a type p over D and a �nite family Γ of �nite
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acleq(D)-elementary maps in M it su�es to �nd a realization ā |= p suhthat all maps from Γ are elementary over āD. Let C =

⋃
{Dom(γ)∪Rng(γ) :

γ ∈ Γ}. We may assume that D = ∅. Sine T admits strongly determinedtypes, �nd d̄ realizing a strongly determined extension ̺M of p overM (withrespet to T ). Then d̄ is forking-independent of C. In partiular, for any
c̄ ∈ C (we admit the ase c̄ = ∅), aclT (c̄d̄) ∩ aclT (C) = aclT (c̄). Using thiswe an extend the P -struture of aclT (C) to a P -expansion on aclT (d̄C)so that any map b̄ → b̄′ from Γ indues a P -preserving map aclT (d̄b̄) →
aclT (d̄b̄′) and the orresponding P -expansion of aclT (d̄) agrees with p. Notethat to satisfy the �rst ondition it is enough to assume that all elementsof aclT (d̄C) \ (aclT (C) ∪ aclT (d̄)) are not in P . Sine any map from Γ atstrivially on aclT (∅), we an now take any P -expansion of aclT (d̄) extendingthe P -struture of aclT (∅) and agreeing with p.By the axioms of TS,P (Theorem 2.4 from [3℄) given a realization d̄′ of anextension of the T -part of p over C, the isomorphism type of any P -expansionof aclT (d̄′C) extending the P -expansion of acl(C) in M is realized in M onsome aclT (d̄′′C), where d̄′′ is of the same type as d̄′ over C with respetto T . Using this �nd ā realizing on aclT (āC) the P -expansion of aclT (d̄C)built in the previous paragraph. By Corollary 2.6 from [3℄ the type p isdetermined by the isomorphism type of the expanded struture on aclT (ā)(with distinguished ā |= p). Applying this we see that ā |= p and any mapfrom Γ is elementary over ā.Proposition 3.1 together with the disussion from the �rst paragraph ofthis setion gives another proof of the following statement from [3℄ (end ofSetion 1).Corollary 3.2. Let T be a simple theory of the form TS,P as in Propo-sition 3.1. Then EL = ESh.The seond onstrution from [3℄ assigns a model ompanion TA (if itexists) to the theory of all strutures (M,σ) (σ ∈ Aut(M)) for models Mof a omplete theory T whih admits elimination of quanti�ers and has thePAPA. Corollary 3.8 from [3℄ states that TA is simple if T is stable. Thetheory ACFA of algebraially losed �elds with a generi automorphism [2℄is an example of suh TA. It looks likely that the approah of Theorem 3.1an be developed to obtain admitting strongly determined types in the aseof TA (or ACFA). This ase is open. It is more ompliated than that ofProposition 3.1.We now give an example whih in some sense has onstrutions very sim-ilar to those desribed above: we add some generi relations to the struture.On the other hand, the e�et of this will be opposite. In this onstrutionwe use reduts of the random graph [13℄.



Strongly determined types and G-ompatness 241Proposition 3.3. There exists a simple ω-ategorial theory suh thatfor any �nite set of parameters A, no non-algebrai type over A extends toa strongly determined type.Proof. The onstrution uses ideas from [6℄; in fat, Dugald Maphersonpointed out to the author that these ideas an be applied to suh an example.Let L0 = {R1, R2, . . . , Rn, . . . } be a relational language, where eah Rihas arity 2i. The struture M0 is built by a Fraissé onstrution, so we �rstspeify a lass K of �nite L0-strutures. In eah C ∈ K eah relation Rn de-termines a graph on the set (denoted by (C
n )) of unordered n-element subsetsof C. It is easy to see that K is an amalgamation lass: given A,B1, B2 ∈ Kwith B1∩B2 = A, de�ne C ∈ K as B1∪B2, so that no tuple c̄1c̄2 ∈ C whihsatis�es Rn meets both B2 \ B1 and B1 \ B2. Let M0 be the orrespondinguniversal homogeneous struture. Note that Th(M0) admits elimination ofquanti�ers.

Claim A. The theory of M0 is supersimple of SU-rank 1.Let φ(x̄, b̄), |x̄| = l, be a quanti�er-free formula and (b̄i : i < ω) be anindisernible sequene of tp(b̄). We may assume that φ(x̄, b̄) implies x̄∩b̄ = ∅.Then any set Bn =
⋃
{b̄i : i ≤ n} an be extended by a tuple c1, . . . , clsatisfying all φ(x̄, b̄i), i ≤ n. Sine M0 is universal homogeneous, the tuple c̄an be found inM0. We now see that any non-algebrai type does not divideover ∅; thus M0 is simple of SU-rank 1.Let M be the redut of M0 to the language L = {T1, . . . , Tn, . . . } of

3n-relations (of two-graphs) where a triple of n-element sets C1, C2 and C3satis�es Tn if and only if it ontains one or three edges with respet to Rn. Inthis ase any quadrangle of n-element sets has even Tn-triples. By Claim Athe struture M is supersimple. It is easy to see (by generiity) that for all āand A, tp(ā/A) ⊢ tp(ā/acleq(A)) with respet to both Th(M0) and Th(M).
Claim B. Let C = {c1, . . . , cn} ⊆ M0. Let R′

n be the relation whihoinides with Rn on all pairs D,B with C 6∈ {D,B} but for any D ∈ (M
n )we have: (C,D) ∈ Rn ↔ (C,D) 6∈ R′

n. Then the struture M0 is isomorphito M ′
0 = (M,R1, . . . , Rn−1, R

′
n, Rn+1, . . .) and the struture M is the redutof M ′

0 obtained by the same de�nition as M is obtained from M0.To prove the laim it su�es to note that any struture from K is em-beddable into M ′
0 and for every pair A < A′ from K with A′ ∩ M ′

0 = Athere exists an A-embedding of A′ into M ′
0 (verifying the latter ondition wemay assume that C ⊆ A). Both onditions follow from the fat that M0 isuniversal homogeneous. The seond statement of the laim is obvious.Let ā = (a1, . . . , an) ⊂ M . Let p(x) be a type over ā whih extendsto a strongly determined type, and let a0 be a realization over M of theorresponding strongly determined type. SineM0 is universal homogeneous,



242 A. A. Ivanovthere exists b ∈M realizing p suh that tp(a0b/ā) = tp(ba0/ā) with respetto both M0 and M (for example one an assume that there is no Rl-relationbetween any l-sets C 6= D with {a0, b} ⊆ C ∪D ⊆ ā ∪ {a0, b}, l > 0). Sine
M0 is universal homogeneous, there are elements c, d, d′ ∈M0 \ ā so that thefollowing onditions hold in M0:

tp(a0b/ā) = tp(bc/ā) = tp(bd/ā) = tp(cd/ā) = tp(cd′/ā)and for every proper subtuple ā′ ⊂ ā, tp(a0b/ā
′) = tp(bd′/ā′). We alsoassume that (bā, d′ā) ∈ Rn+1 if and only if (bā, dā) 6∈ Rn+1, and for any pair

C1, C2 with C1 ∪ C2 = dbā, distint from bā, dā, the orresponding pair C ′
1and C ′

2 (obtained by replaing d by d′) satis�es Rn+1 if and only if C1, C2does.Let R′
n+1 be obtained from Rn+1 as in Claim B (by swithing) with re-spet to the (unordered) tuple dā. Sine the struture M ′

0 = (M,R1, . . . , Rn,
R′

n+1, Rn+2, . . . ) is isomorphi toM0, the type of bd′ over ā inM0 is the sameas the type of bd over ā in M ′
0 (by our onstrution mutually orrespondingsubtuples from bdā and bd′ā satisfy the same relations). Applying the laststatement of Claim B we see that the type of bd over ā in M is the same asthe type of bd′ over ā in M .Let q = tpM (bd/ā). Sine a0 realizes over M the orresponding stronglydetermined type, one of the following ases holds: (a) for every pair c′c′′ ∈Mrealizing q the triple (a0ā, c
′ā, c′′ā) belongs to Tn+1, or (b) for every pair

c′c′′ ∈M realizing q the triple (a0ā, c
′ā, c′′ā) does not belong to Tn+1.In both ases one of the sets {a0ā, bā, cā, dā} or {a0ā, bā, cā, d

′ā} has theproperty that an odd number of triples satisfy Tn+1. This ontradits thede�nition of a two-graph.4. KP(L)-determined types and G-ompat types. The resultsabove motivate the following question. Is there a theory admitting (having)strongly determined 1-types and having a strongly determined type whih isnot G-trivial? By Proposition 1.6(2) suh a theory would be a prinipallynew example of a non-G-ompat theory, beause all known examples have
EL = EKP on �nite tuples or do not have strongly determined types. Inthis setion we formulate further questions of this kind. They are motivatedby some remarks onerning possible generalizations of strongly determinedtypes and G-triviality.4.1. KP-determined and L-determined types. Let A ⊆ C and A ⊆ A ⊂
bdd(A) (5). If q(ȳ) ∈ S(bdd(A)), we say that a type p(x̄, ȳ) ∈ S(A) is a
q-onsistent x̄-type if for any sequene ā1, . . . , ān of realizations of q the set⋃
{p(x̄, āi) : 1 ≤ i ≤ n} is onsistent. A KP-determined type over a set A is a(5) In fat we may assume that A is an arbitrary set of hyperimaginaries.



Strongly determined types and G-ompatness 243monotoni funtion ̺ whih assigns a q-onsistent x̄-type ̺(q)(x̄, ȳ) to every
q(ȳ) ∈ S(bdd(A)).Suppose that ̺ is a KP-determined type over A. For every B ⊂ C de�ne

̺B(x̄) =
⋃

{̺(q)(x̄, b̄) : q ∈ S(bdd(A)), b̄ |= q, b̄ ∈ B}.The de�nition is a generalization of strongly determined types. The notionsare the same if EA
KP = EA

Sh. We now see that Theorem 2.2 implies that under
EKP = EL and admitting strongly determined 1-types, KP-determined typesare strongly determined.To obtain the de�nition of L-determined types we modify the de�nitionof KP-determined types by the requirement that the types q(ȳ) in that def-inition are Lasar strong types over A. As above, for an L-determined type
̺ and a set B we de�ne ̺B.We now say that a theory T admits KP-determined (resp. L-determined)types over A ⊂ C if every type of S(A) extends to a KP-determined (resp.L-determined) one. A theory T admits KP-determined (resp. L-determined)types if it admits KP-determined (resp. L-determined) types over every set
A ⊂ C of parameters. Sine a strongly determined type naturally de�nesa KP-determined type and a KP-determined type naturally de�nes an L-determined type, the lass of theories admitting strongly determined types isontained in the lass of those admitting KP-determined (or L-determined)types. This suggests that the material from [6℄ and above an be slightlyextended. For example note that the KP- and L-versions of Theorem 2.1 aremuh easier than the orresponding version for strongly determined types.Proposition 4.1. Let T be a omplete theory suh that for any �nite Aof the basi sort every 1-type over A extends to an L-determined type over A.Then for all tuples ā ∈ C and all n > 0, every n-type of T over ā has anL-determined extension over ā. If EA

L = EA
KP on �nite tuples (for example Tis ω-ategorial), then the same statement holds for KP-determined types.Proof. Let ̺ be an L-determined type over ā.

Claim. For any b̄, b̄′ and c̄ |= ̺b̄b̄′ , if (b̄, b̄′) ∈ EL over ā, then (b̄, b̄′) ∈ ELover āc̄.Proof of Claim. Find b̄0 (= b̄), b̄1, . . . , b̄n (= b̄′) suh that every pair b̄i,
b̄i+1 belongs to some in�nite ā-indisernible sequene Ii, i = 0, . . . , n − 1.Then for any realization c̄i |= ̺āIi

the tuples b̄i and b̄i+1 have the sameLasar strong type over āc̄i. This implies that if c̄ |= ̺b̄0,...,b̄n
, then all b̄i havethe same Lasar strong type over āc̄.Now to �nish the proof of the proposition it su�es to repeat the proof ofProposition 2.3 replaing everywhere strong and strongly determined typesby Lasar strong and L-determined types respetively.



244 A. A. IvanovUnder the assumption EA
L = EA

KP on �nite tuples the laim above be-omes the orresponding laim for KP-determined types. Therefore it is learthat the proposition holds for KP-determined types.As in Setion 1 we an show that in fat the de�nitions of KP-determinedand L-determined types over A do not hange if we strengthen them by therequirement that ̺(q)(x̄, ȳ) is a type over bdd(A) (resp. is a Lasar strongtype over A).Lemma 4.2. Let A ⊂ C and A ⊆ A ⊂ bdd(A). Let ̺(x̄) be a KP-determined (resp. L-determined) type over A. Then there exists a uniqueKP-determined type ̺′(x̄) over bdd(A) (resp. L-determined type over the setof lasses of all bounded Aut(C/A)-invariant equivalene relations) suh thatfor any KP-strong (resp. Lasar strong type) q, ̺′(q) ⊢ ̺(q).Proof. We start with the ase when ̺ is KP-determined. Let M be veryKP-rih over A: for all n ∈ ω and all m̄ ∈ M , M realizes all n-types from
S(bdd(Am̄)). Let c̄ |= ̺M . For q ∈ S(bdd(A)) and b̄ |= q, b̄ ∈ M , de�ne
̺′(q) := tp(c̄b̄/bdd(A)).To see that the de�nition is orret, repeat the orresponding proof ofLemma 1.1 replaing everywhere �nite equivalene relations by boundedtype-de�nable equivalene relations, and strong types by KP-strong types.In the ase when ̺ is L-determined let M be very L-rih over A: for all
n ∈ ω and all m̄ ∈ M , M realizes all Lasar strong n-types over Am̄. Let
c̄ |= ̺M . For a Lasar strong type q over A and b̄ |= q, b̄ ∈ M , de�ne ̺′(q)to be the Lasar strong type of c̄b̄ over A.To see that the de�nition is orret take any b̄, b̄′ ∈M of the same Lasarstrong type over A. There are b̄0 (= b̄), b̄1, . . . , b̄n (= b̄′) suh that every pair
b̄i, b̄i+1 belongs to some in�nite A-indisernible sequene Ii, i = 0, . . . , n−1.We may assume that these sequenes onsist of tuples from M . Sine c̄ |=
̺IiA, the tuples b̄i and b̄i+1 have the same Lasar strong type over Ac̄. Thisimplies that all b̄i have the same Lasar strong type over Ac̄. In partiular
c̄b̄ and c̄b̄′ have the same Lasar strong type over A.Repeating the proof of Lemma 1.2 we obtainLemma 4.3. Let T admit KP-determined (resp. L-determined) n-typesover a set A. Then every KP-strong (resp. L-strong) n-type over A extendsto a KP-determined (resp. L-determined) type.The ompatness argument from the proof of Lemma 2.1 from [6℄ an beeasily applied to the following lemma.Lemma 4.4. Suppose that M is very KP-rih (resp. L-rih) over A. Let
p(x̄) ∈ S(A). Then the following are equivalent :(i) p extends to a KP-determined (resp. an L-determined) type over A;



Strongly determined types and G-ompatness 245(ii) for every �nite set Γ of �nite partial KP-strong (L-strong) elemen-tary maps M → M there exists c̄ ∈ p(M) suh that all the maps in
Γ are elementary over c̄A.We now see by inspetion that Proposition 3.1 also holds for KP-deter-mined (resp. L-determined) types.The proof of Proposition 1.4 also works for the following statement: If atheory T admits KP-determined types, then T is G-ompat.4.2. G-ompat strongly determined types. Let ̺ be a KP-determinedtype over A. Let M be su�iently saturated, A ⊆ M eq, b̄ |= ̺M and e bea bounded b̄A-type-de�nable equivalene relation. Let ẽ be the equivalenerelation de�ned on the appropriate C

l by the ondition that (ā, ā′) ∈ ẽ ifand only if the orresponding e-lasses of ā and ā′ are in the same orbit withrespet to Aut(C/b̄M).The group Aut(C/{M}bdd(A)b̄) has a natural ation on ẽ-lasses. Bythe hoie of b̄ any automorphism from AutKP(M/A) extends to an elementof Aut(C/b̄{M}bdd(A)) (�xing M setwise). We have obtained the exatsequene
0 → Aut(C/b̄M) → Aut(C/b̄{M}bdd(A)) → AutKP(M/A) → 0where the kernel Aut(C/b̄M) preserves all ẽ-lasses. Hene we dedue that

Aut(C/b̄{M}bdd(A)) indues an ation of AutKP(M/A) on the set of ẽ-lasses.Sine e is a bounded equivalene relation the pointwise stabilizer of theset of ẽ-lasses is a normal subgroup He ⊳AutKP(M/A) of bounded index.Definition 4.5. We say that ̺ is G-ompat if for any su�iently homo-geneous struture M realizing all KP-strong types over A and any boundedequivalene relation e as above, there is no AutKP(M/A)-invariant equiva-lene relation E re�ning EA,l
KP on the appropriate M l, suh that the orre-sponding group He preserves all E-lasses.For simpliity let A = A ⊂ C. It is worth noting that if an equivalenerelation E witnesses non-G-ompatness then eah EA,l

KP-lass onM l onsistsof ≤ |AutKP(M/A) : He| lasses of E. Sine the intersetion of a boundednumber of subgroups of Aut(M/A) of bounded index also has bounded index,we see that in this ase Th(M,a)a∈A is not G-ompat (the intersetion ofall onjugates of E ontradits G-ompatness). Sine we do not know toomany examples of non-G-ompat theories, the ase of non-G-ompat KP-determined types looks slightly arti�ial. Nevertheless we onjeture thatsuh KP-determined types exist.
Remark. It is worth noting that replaing AutKP and e above by AutLand a bounded equivalene relation invariant over b̄A respetively we ob-



246 A. A. Ivanovtain another version of G-ompatness. This version is satis�ed by any L-determined type beause EA,l
L is the �nest bounded equivalene relation.Now let ̺ be a strongly determined type over A ⊂ C. Let M be su�-iently saturated and homogeneous, b̄ |= ̺M and e be a �nite equivalenerelation de�nable over Ab̄. Let ẽ be the equivalene relation de�ned on theappropriate C

l by the ondition that (ā, ā′) ∈ ẽ if and only if the orrespond-ing e-lasses of ā and ā′ are in the same orbit with respet to Aut(C/b̄M).We know that the pointwise stabilizer of the set of ẽ-lasses is a normalsubgroup He ⊳Aut(M/acleq(A)) of �nite index.We say that ̺ is G-�nite if the intersetion of all subgroups of
AutSh(M/A) of the form He for �nite equivalene relations e as above isof �nite index in AutSh(M/A). The following question looks interesting. Is aG-�nite strongly determined type G-trivial? We know from Setion 1.2 thatthe theory of the orresponding ounterexample must be non-G-ompat.Moreover, it looks likely that a G-�nite strongly determined type naturallyde�nes a G-ompat KP-determined type (this may be onneted with thequestion �nishing Setion 1).
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