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On second order Thom–Boardman singularities

by

László M. Fehér and Balázs Kőműves (Budapest)

Abstract. We derive closed formulas for the Thom polynomials of two families of
second order Thom–Boardman singularities Σi,j . The formulas are given as linear combi-
nations of Schur polynomials, and all coefficients are nonnegative.

1. Introduction. In the fifties, R. Thom [Tho56] defined, for generic
smooth (resp. analytic) maps f : Nn → P p between real (resp. complex)
manifolds, singularity subsets ΣI(f) ⊂ N for each partition I = (i1, . . . , ik),
by setting inductively

Σi(f) = {x ∈ N : corank(dxf) = i},
ΣI,j(f) = Σj(f |ΣI(f)).

Later J. M. Boardman [Boa67] gave a more precise and also more general
definition in terms of jet bundles. Thom also observed that for generic maps,
the cohomology classes [ΣI(f)] ∈ H∗(N) represented by (the closures of)
these subsets depend only on the Stiefel–Whitney (resp. Chern) classes of
the bundles TN and f∗TP , and that they are given by a universal poly-
nomial [ΣI(n, p)](c(TN), c(f∗TP )) in these classes, now called the Thom
polynomial of the singularity. In fact, the same holds for many other singu-
larity classes, that is, for (the closure of) a submanifold of some jet space
invariant under the left-right action of jets of (germs of) biholomorphisms;
and for stable classes of singularities, these polynomials depend only the
Chern classes of the virtual normal bundle f∗TP −TN ∈ K(N) and on the
codimension r = p − n (see Proposition 3.5). Since the Thom–Boardman
singularities are stable, their Thom polynomials can be expressed as poly-
nomials [ΣI(r)] in the formal variables c1, c2, c3, . . . .

So far, very few of these polynomials are known explicitly. The Thom
polynomials for Σi were calculated by Porteous [Por71]; Ronga [Ron72] gave
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an algorithm to calculate the classes for Σi,j , but this algorithm is inefficient
even using today’s top personal computers, and the only known formula
derived from it gives the Thom polynomials of Σ1,1 (for all r). M. Kazarian
in [Kaz] simplified the argument of Ronga and also gave slightly different
versions of the original algorithm. Recently the Thom polynomials for Σ1,1,1

were calculated in [BFR02] using the methods of restriction equations; and
some other sporadic results are known (for example Σ1,1,1,1 in the case r = 0,

see [Gaf83]; Σ1k
for k ≤ 8, r = 0, see [Rim01]). The present work can be

considered as the first step of the more ambitious quest for a formula for the
Thom polynomials of all second order Thom–Boardman singularities Σi,j .
We would like to emphasize that it was not a priori clear that such formulas
exist: in fact, the method of restriction equations [Rim01] suggested just
the contrary, since the complexity of singularities with codimension smaller
than that of Σi,j(r) is rapidly increasing with i.

The success of the method of restriction equations (for a more detailed
account than in [Rim01] see [FR04]) encouraged us to try it in this situation
as well. To our surprise we realized that the restriction equation we started to
study is a consequence of the fact mentioned above, that these singularities
are stable. It turned out that in essence, everything needed to produce our
formulas has been known for at least 20 years.

From the results of Porteous [Por71] and Ronga [Ron72] one can deduce
that in some sense it is natural to write the polynomials [Σi,j(r)] in terms of
Schur polynomials. After finishing this work we were informed by Piotr Pra-
gacz that he also used Schur polynomial methods to calculate other Thom
polynomials [Pra]. Theorems 4.8 and 4.10 give the formulas as (nonnegative)
linear combinations of Schur polynomials. To state them, we introduce the
notations

Eλ/µ(n) := det

[(
λk + n − k

µl + n − l

)]

k,l≤n

, Fλ/µ(n) := det

[{
λk + n − k

µl + n − l

}]

k,l≤n

where λ and µ are partitions, and
{

n
k

}
=

∑k
j=0

(
n
j

)
.

Theorem 4.8. The Thom polynomial of the second order Thom–Board-

man singularity Σi,j(−i + 1) is

[Σi,j(−i + 1)] =
∑

µ⊂δ

2|µ|−j(j−1)/2 · Eδ/µ(i) · s(d−|µ|,µ̃)

where δ is the “staircase” partition δ = (j, j − 1, . . . , 2, 1), and d is the

codimension of Σi,j(−i + 1), that is, d = i + j(j + 1)/2.

Note that these are the simplest singularities which can occur for negative
codimension maps. In the setting of f : Nn → Pn−i+1 described above,
sλ becomes sλ(f∗TP − TN).
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Fig. 1. The partition (ir+i + ∁ν̃, µ̃)

Theorem 4.10. The Thom polynomial of Σi,1(r) is

[Σi,1(r)] =
∑

(ν,µ)∈I

Fν/µ(i) · s(ir+i+∁ν̃,µ̃)

where I = {(ν, µ) : ν ⊂ (r + i)i, l(µ) ≤ i, |ν| − |µ| = i − 1} (see Figure 1).

The second order Thom–Boardman singularities are indexed by the three
parameters i, j and r (although to us, it seems to be more natural to use
h = r+ i instead of r). Theorems 4.8 and 4.10 each provide a closed formula
for a two-parameter family. This furnishes two “transversal” planes in the
3-dimensional space of parameters. In the latter case we get a family where
r can run independently, giving infinitely many examples of Thom series

(see [FR]). Namely, if we fix i and j, the Thom polynomials for different r’s
should fit together into one series

Ts(Σi,j) =
∑

γ

cγ · dγ

where γ runs over nonincreasing Z-valued sequences of length i + k =
i + ij −

(j
2

)
with fixed sum |γ| = j(j − i) ≤ 0. Here, cγ are (integer)

coefficients—independent of r—and dγ are “renormalized” Schur polyno-
mials dγ = s(hi+k+γ)˜. Furthermore, Theorem 4.2 says that cγ = 0 unless
γl ≥ 0 for l ≤ i and γl ≤ 0 for l > i. In this notation, Theorem 4.10 becomes

Ts(Σi,1) =
∑

(ν,µ)∈I′

Fν/µ(i) · d(µ,−νi,−νi−1,...,−ν1)

with I ′ = {(ν, µ) : l(ν) ≤ i, l(µ) ≤ i, |ν|−|µ| = i−1}. Theorem 4.8 provides
the “lowest terms” for the Thom series Ts(Σi,j).
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We thank Anders Buch, Maxim Kazarian and Richárd Rimányi for con-
versations on the topic. We used John Stembridge’s SF package for Maple
[Ste] extensively during the preparation of this paper.

Notations. A partition is a nonincreasing sequence of positive integers
µ = (µ1 ≥ · · · ≥ µn > 0); the length of a partition is denoted by l(µ) = n, its
weight by |µ| =

∑
µi. We adopt the convention that µi = 0 if i > l(µ). The

dual (or conjugate) partition is denoted by µ̃, i.e. µ̃j = max{k : µk ≥ j};
note that l(µ̃) = µ1. λ±µ denotes the sequence given by pointwise addition
(resp. subtraction); while λ + µ is again a partition, λ − µ is often not.
(λ, µ) denotes the concatenation, i.e. (λ1, . . . , λl(λ), µ1, . . . , µl(µ)). Finally, nk

is the “block” partition (n, n, . . . , n) (k times); and for λ ⊂ nk we denote its
“complement” by ∁λ, i.e. (∁λ)j = n− λk+1−j (we omit the block itself from
the notation, as it will always be clear from the context).

Let c1, c2, . . . and s1, s2, . . . be two sequences of (formal) variables related
by the equation

(1 + c1t + c2t
2 + c3t

3 + · · · ) · (1 − s1t + s2t
2 − s3t

3 + − · · · ) = 1.

The Schur polynomial sλ is then the determinant sλ = det[sλi−i+j ] =
det[c

λ̃i−i+j
] (we adopt the convention that c0 = 1 and ck = 0 for k < 0;

similarly for s0 and s<0). If we set the degree of ck (resp. sk) to k, then sλ

will be a homogeneous polynomial of degree |λ|.
If E → X is a complex vector bundle, or more generally, E ∈ K(X), we

can interpret these sequences as its Chern and Segre classes; the resulting
expression is denoted by sλ(E), and is an element of H∗(X), the singular
cohomology group with integer coefficients. Note that sλ(−E) = s

λ̃
(E∗)

where E∗ = Hom(E, C) is the dual bundle of E.

The Littlewood–Richardson coefficients will be denoted by cλ
µ,ν , i.e. we

have the expansion sµ · sν =
∑

λ cλ
µ,νsλ.

2. Thom polynomials. We use the general framework of “Thom poly-
nomials for group actions” introduced by M. Kazarian [Kaz01]; see also
[FR04].

Let ̺ : G → GL(V ) be a representation of the Lie group G on the vector
space V . Then any closed invariant subvariety Σ of V represents an equivari-
ant cohomology class [Σ] ∈ H∗

G(V ) ∼= H∗(BG). We sometimes call this class
the Thom polynomial because H∗(BG) is (at least rationally) a polynomial
ring, and the Thom polynomials of singularities are special cases where V
is the (infinite-dimensional) vector space of holomorphic germs (Cn, 0) →
(Cp, 0), and G is the “left-right” group A(n, p) = j∞ Diff(n) × j∞ Diff(p)
where j∞ Diff(n) denotes the group of germs of biholomorphisms of (Cn, 0).
Some caution is required in this case since there is no natural topology
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defined on the group A(n, p), so the classifying space BA(n, p) is not de-
fined. As explained in [Rim02], one can work with the classifying space
of the subgroup of linear germs GLn ×GLp ⊂ A(n, p) instead. We have
H∗(B(GLn × GLp)) ∼= Z[a1, . . . , an, b1, . . . , bp] and one can interpret the
variables as Chern classes: ai = ci(A) and bi = ci(B) for the tautological
vector bundles An → BGLn and Bp → BGLp.

The Thom polynomial has a geometric meaning. Suppose that E → X
is a ̺-bundle, i.e. E is of the form P ×̺ V for some principal G-bundle
P → X. Then we can define a subset Σ(E) of the total space of E, the
union of Σ-points in each fiber.

Proposition 2.1. If σ : X → E is a generic section (transversal to

Σ(E)) then for the cohomology class [Σ(σ)] ∈ H∗(X) defined by

Σ(σ) := {x ∈ X : σ(x) ∈ Σ(E)}
we have

[Σ(σ)] = k∗[Σ]

where k : X → BG is the classifying map of the principal G-bundle P → X.

3. Thom polynomials of Σi,j. This approach to Σi,j singularities is
fairly standard (see e.g. [Ron72, AVGL91, Kaz]).

Our goal is to reduce the situation to the study of a finite-dimensional
representation. This is possible since the Σi,j class of a map germ depends
only on its first and second partial derivatives. The difficulty is that the
second partial derivatives depend on the choice of the local coordinate sys-
tem in a complicated (nonlinear) way. Let f : Nn → P p be a holomorphic
map of complex manifolds. Let J2(f) → N denote the bundle of second jets
along f , i.e. the fiber J2

x(f) over x ∈ N is the set of 2-jets of map germs
from (N, x) to (P, f(x)). In other words, we identify two map germs if their
first and second partial derivatives at x ∈ N agree for some local coordinate
system. The map f defines a section j2(f) of J2(f) by taking the 2-jet of f
at every point x ∈ N . It is easy to see that

J2
x(f) ∼= Hom(TxN, Tf(x)P ) ⊕ Hom(Sym2(TxN), Tf(x)P ).

This diffeomorphism depends on the local coordinate system chosen, how-
ever it can be shown that

J2(f) ∼= Hom(TN, f∗(TP )) ⊕ Hom(Sym2(TN), f∗(TP ))

as a fiber bundle. Let us fix such an isomorphism ϕ for now. Then with
every point x ∈ N we associate two linear maps: dxf : TxN → Tf(x)P and

d2
xf : Sym2(TxN) → Tf(x)P . The map d2

xf depends on the choice of ϕ but
(as can be easily checked) the induced map

d̂2
xf : Sym2(Ker(dxf)) → Coker(dxf)
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does not. The map d̂2
xf was introduced by I. R. Porteous in [Por71, Propo-

sition 2.1], and called the second intrinsic derivative, to give a simpler defi-
nition for the Σi,j classes. To formulate the result we need a definition. Let
α ∈ Hom(Sym2 A, B) be a linear map where A, B are vector spaces. Since
Sym2 A ∼= (A ⊗ A)/Λ2A, there is a canonical inclusion Hom(Sym2 A, B) ⊂
Hom(A ⊗ A, B), so α defines an element α̃ ∈ Hom(A, A∗ ⊗ B).

Definition 3.1. corank2(α) := corank(α̃).

Proposition 3.2 (J. M. Boardman [Boa67, Theorem 7.15]).

Σi,j(f) = {x ∈ N : corank(dxf) = i, corank2(d̂2
xf) = j}.

We would like to use this form to show that the Thom polynomial of Σi,j

agrees with the Thom polynomial corresponding to the following finite-
dimensional representation. Let A and B be complex vector spaces and
let V = Hom(A, B) ⊕ Hom(Sym2 A, B). The group G = GL(A) × GL(B)
acts on V .

Definition 3.3. Let A, B be vector spaces and define the subvarieties

Σ•,j(A, B) := {α ∈ Hom(Sym2 A, B) : corank2(α) = j},
Σi,j(A, B) := {(α1, α2) ∈ Hom(A, B) ⊕ Hom(Sym2 A, B) : corank(α1) = i,

α̂2 ∈ Σ•,j(Ker(α1), Coker(α1))},
where α̂2 : Sym2(Ker(α1)) → Coker(α1) is the obvious map induced by α2.

Notice that Σi,j(A, B) is a G = GL(A) × GL(B)-invariant subvariety of
the vector space Hom(A, B)⊕Hom(Sym2 A, B) so we can define the Thom
polynomial [Σi,j(A, B)] ∈ H∗(BG) (we use the convention that the Thom
polynomial of an invariant subset is the equivariant cohomology class defined
by its closure).

As explained above, the jet bundle J2(f) is isomorphic to a vector
bundle associated to this representation and the principal GLn×GLp-bundle
corresponding to the vector bundles TN and f∗TP . Proposition 3.2 shows
that x ∈ Σi,j(f) ⇔ x ∈ Σi,j(j2(f)). By the Thom transversality theo-
rem for generic f the section j2(f) is also generic, so Proposition 2.1 gives
[Σi,j(f)] = [Σi,j(An, Bp)](c(TN), c(f∗TP )). (Notice that pulling back by
the classifying map means substitution of the corresponding Chern classes.)
Or, using the notation Σi,j(n, p) of the introduction:

Proposition 3.4.

[Σi,j(n, p)] = [Σi,j(An, Bp)] ∈ H∗(B(GL(A) × GL(B)))
∼= Z[a1, . . . , an, b1, . . . , bp].

We will continue with the formalism that An resp. Bp will denote com-
plex vector spaces equipped with the standard representation of GL(A) ∼=
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GLn (resp. GLp). We will think of them either as vector spaces, representa-
tions or equivariant vector bundles over the one-point space; from this last
viewpoint they have (equivariant) Chern classes a1, . . . , an (resp. b1, . . . , bp),
which we will often treat as formal variables.

As mentioned before, the polynomials [Σi,j(n, p)] are stable in the fol-
lowing sense:

Proposition 3.5. There exist polynomials [Σi,j(r)] ∈ Z[c1, c2, . . . ] such

that for all pairs (n, p) of natural numbers with p − n = r we have

[Σi,j(n, p)] = [Σi,j(r)](Bp − An),

where the right hand side means that we substitute ck(B
p−An) for ck in the

polynomial [Σi,j(r)].

A more general theorem is due to J. Damon. A proof can be found
e.g. in [FR04]. Here B−A denotes the difference in the Grothendieck group;
ci(B−A) can be interpreted as the ith Taylor coefficient of the formal power
series (

∑
k≥0 bkt

k)/(
∑

l≥0 alt
l). For example,

c1(B − A) = b1 − a1,

c2(B − A) = b2 − a2 + a2
1 − a1b1,

and so on.

4. Calculation of the Thom polynomials. It follows from Definition
3.3 that Σi,j(An, Bp) is empty if n < i and for n = i it has a particularly
simple structure:

Σi,j(Ai, Br+i) = {(0, α2) : α2 ∈ Σ•,j(Ai, Br+i)},
so its Thom polynomial is a product:

[Σi,j(Ai, Br+i)] = e(Hom(Ai, Br+i)
)
· [Σ•,j(Ai, Br+i)],

where e(Hom(Ai, Br+i)) is the Thom polynomial of {0} ⊂ Hom(Ci, Cr+i)—
the (equivariant)Euler class of this representation—and [Σ•,j(Ai, Br+i)] is the
Thom polynomial of the subvariety Σ•,j(Ai, Br+i) ⊂ Hom(Sym2 Ai, Br+i).
Since the Euler class of a representation is the product of its weights we
see that e =

∏
(βj − αi) where αi and βj are the Chern roots of A and B,

i.e. ak is the kth elementary symmetric polynomial of the variables αi, and
similarly bk is the kth elementary symmetric polynomial of the variables βj .
Comparing this with Proposition 3.5 we get the equations

[Σi,j(r)](Br+i−1 − Ai−1) = 0,(1)

[Σi,j(r)](Br+i − Ai) = e(Hom(A, B)) · [Σ•,j(A, B)].(2)

Equations (1) and (2) can also be interpreted as restriction equations in
the sense of [FR04], the right hand side of equation (2) being an “incidence
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class” in the sense of [Rim01]. From this point of view equation (1) follows
from the obvious fact that Σi,j(f) ⊂ Σi(f) for any holomorphic map f , and
equation (2) is a consequence of the local behavior of the set Σi,j(f) at a
point of Σi(f). This was indeed our first approach and we only later realized
that (1) and (2) also follow from stability.

The idea of our calculation is to solve the system of equations (1) and (2).
To do that, we have to study the homomorphism

̺n,p : Z[c1, c2, . . . ] → Z[a1, . . . , an, b1, . . . , bp]

sending ci to ci(B
p − An). Elements in the image of ̺n,p are called super-

symmetric polynomials (or Schur functions in difference of alphabets). The
following proposition states some of the fundamental properties of super-
symmetric polynomials (in other words, of the map ̺n,p).

Proposition 4.1.

(i) Ker(̺n−1,p−1) = 〈sλ : np ⊂ λ〉, where 〈 〉 means the generated Z-

module.

(ii) Suppose that λ is a partition containing the “block” partition np.

Also assume that (n + 1)p+1 6⊂ λ, i.e. λ is of the form (np + β, α),
where l(β) ≤ p and α1 ≤ n; i.e. λi = n + βi for i ≤ p and λi = αi−p

for i > p. Then

sλ(Bp−An) =

{
(−1)|α|e(Hom(A, B))sα̃(A)sβ(B), (n + 1)p+1 6⊂λ,

0, (n + 1)p+1⊂λ.

The proof can be found e.g. in [FP98, §3.2]. Part (i) is a corollary of a
result of Pragacz [Pra88] on universally supported classes (avoiding ideal in
the terminology of [FR04]) for Σi; part (ii) is sometimes called the factor-

ization formula.
From this formula it is clear that the system of equations above does

not have a unique solution: If we write the solution as a linear combination
of Schur polynomials, we will have an ambiguity in the terms sλ where
(i + 1)r+i+1 ⊂ λ. But it is also clear that all the other terms are uniquely
determined by our equations. To our surprise, these ambiguous terms turn
out to be zero:

Theorem 4.2. Write the universal polynomial [Σi,j(r)] as a linear com-

bination of Schur polynomials: [Σi,j(r)] =
∑

eλsλ, where eλ are (integer)
coefficients. Then eλ = 0 if (i + 1)r+i+1 ⊂ λ.

The proof, which is based on Ronga’s [Ron72] pushforward formula for
[Σi,j(r)], is given in Section 5 (Theorem 5.1). The same proof yields some
more vanishing results, but we do not need them.

Theorem 4.2, Proposition 4.1 and the two equations above together imply
the following:
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Corollary 4.3. Write the polynomial
[
Σ•,j(Ai, Br+i)

]
as a linear com-

bination of products of Schur polynomials in the variables ai and bi:

[Σ•,j(Ai, Br+i)] =
∑

eα,βsα(A)sβ(B).

Then

[Σi,j(r)] =
∑

(−1)|α|eα,βs(ir+i+β,α̃).

Calculating [Σ•,j(Ai, Br+i)] in this form seems to be a very difficult prob-
lem in general, although the difficulties are purely combinatorial, as we have
the following pushforward formula (see also Lemma 5.2 about calculation of
pushforward).

Proposition 4.4. Let π : Grj(A
i) → pt denote the projection map

from the Grassmannian of j-planes in A to the one-point space, and 0 →
Rj → π∗A → Qi−j → 0 the tautological exact sequence (of equivariant vector

bundles) over Grj(A). Then

[Σ•,j(A, B)] = π∗ctop(π
∗B ⊗ (R ⊗ Q + Sym2 R)∗),

where the equation lives in H∗
GLi×GLh

(pt) (in particular , ctop is the equiv-

ariant top Chern class).

Let us emphasize that in the light of Corollary 4.3 above, this formula,
while much simpler than Ronga’s or Kazarian’s pushforward formulas for
[Σi,j(r)], contains the same amount of information. The proof of the propo-
sition is analogous to [LP00, §3]; we do not repeat it here, as we will not use
this formula in the rest of the paper.

There are two particular cases when we know the solution in the required
form, namely, the cases r + i = 1 and j = 1. It is not hard to see why these
are simpler from the pushforward formula above.

Theorem 4.5.

[Σ•,j(Ai, L1)] = 2j · sδ(A
∗ ⊗

√
L) where δ = (j, j − 1, . . . , 2, 1).

Note that the line bundle L has no square root, so the formula above
should be understood formally: the only Chern root of

√
L is β/2 where

β = β1 is the Chern root of L, and then the Chern roots of A∗ ⊗
√

L are
−α1 + β/2, . . . ,−αn + β/2.

Proof. Notice that the elements of Hom(Sym2
C

i, C) can be identified
with symmetric i × i matrices and then corank2 = corank, so the Thom
polynomial in question is given by the twisted symmetric degeneracy locus

formula ([HT84], [JLP82], [Pra90], [Ful96]). A general explanation of twist-
ing can be found in [FNR05].

Theorem 4.6. [Σ•,1(Ai, Br+i)] = ci(r+i−1)+1(A
∗ ⊗ B − A).
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Proof. The codimension of Σ•,1(V n, W p) ⊂ Hom(Sym2 V, W ) is pn −
n+1, which equals the codimension of Σ1(V, V ∗ ⊗ W )⊂Hom(V, V ∗ ⊗ W )
= Hom(V ⊗ V, W ); so exactly as noted in [LP00, §1.11.1], where a simi-
lar degeneracy locus problem is considered, we are in the situation of the
Giambelli–Thom–Porteous formula:

[Σ•,1(V n, W p)] = [Σ1(V, V ∗ ⊗ W )] = cpn−n+1(V
∗ ⊗ W − V ).

According to Corollary 4.3, the only thing we need is the separation of
variables in the formulas of Theorems 4.5 and 4.6. We will use the following
lemma, due to Lascoux.

Lemma 4.7 ([Las78]). Set

Eλ/µ(n) = det

[(
λi + n − i

µj + n − j

)]

i,j≤n

.

(1) Let An and Bp be an n-dimensional and a p-dimensional vector

bundle, respectively. Then
∑

k

ck(A ⊗ B) =
∑

µ⊂λ⊂pn

Eλ/µ(n)sµ(A)s
∁λ̃

(B).

(2) Furthermore, if L is a line bundle and λ is partition with l(λ) ≤ n,
then

sλ(A ⊗ L) =
∑

µ⊂λ

Eλ/µ(n) · c1(L)|λ|−|µ| · sµ(A).

Remark. The coefficients Eλ/µ(n) are known to be nonnegative. This
is for example a very special case of [Pra96, Corollary 7.2] which says that
if we set

sλ(Sµ1E1 ⊗ · · · ⊗ SµkEk) =
∑

eν

λ,µsν1(E1) · · · sνk
(Ek),

where Sµ is the Schur functor associated to the partition µ, then all the
coefficients eν

λ,µ will be nonnegative.
A more concrete way to see this nonnegativity is via the following formula

(which also motivates our notation): Suppose that n ≥ l(λ), l(µ) (if this is
not the case, one should take (λ1, . . . , λn) and (µ1, . . . , µn) instead of λ and
µ on the r.h.s.); then

Eλ/µ(n) = sλ/µ

(
1,

1

2!
,

1

3!
,

1

4!
, . . .

)
·

∏

(i,j)∈λ/µ

(n − i + j),

where we substitute 1/k! for the kth elementary symmetric polynomial in the
skew Schur polynomial sλ/µ. The proof of the formula is a straightforward
computation (one observes that in the expansion of the determinant Eλ/µ(n)
each term is the polynomial

∏
(n − i + j) up to a scalar factor). Another

corollary is that Eλ/µ(n) = 0 if µ 6⊂ λ.
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The lemma, together with Theorem 4.5 and the framework built above,
immediately implies one of our main theorems:

Theorem 4.8. The Thom polynomial of the second order Thom–Board-

man singularity Σi,j(−i + 1) is

[Σi,j(−i + 1)] =
∑

µ⊂δ

2|µ|−j(j−1)/2 · Eδ/µ(i) · s(d−|µ|,µ̃)

where δ is the “staircase” partition δ = (j, j − 1, . . . , 2, 1) and

d = codimΣi,j(−i + 1) = i + |δ| = i +

(
j + 1

2

)
.

Similarly, Theorem 4.6 leads to

Theorem 4.9. Using the shorthand notation h = r + i, we have

[Σi,1(r)] =
∑

(λ,µ)∈J

s(ih+λ,µ) ·
∑

x∈{0,1}l(µ)

E
∁λ̃/(µ−x)˜(i)

where J = {(λ, µ) : λ ⊂ ih, µ1 ≤ i, |λ|+ |µ| = ih− i+1, and µ−x is a valid

partition}.
Proof. According to Corollary 4.3, to solve the equation for [Σi,1] all

we have to do is to expand cih−i+1(A
∗ ⊗ B − A) into a linear combination

of products of Schur polynomials. For convenience, we calculate the total
Chern class∑

m≥0

cm(A∗ ⊗ B − A) =
( ∑

k≥0

ck(A
∗ ⊗ B)

)
·
( ∑

l≥0

cl(−A)
)
.

Using Lemma 4.7, the Pieri formula, and

c(−A) =
∑

l≥0

cl(−A) =
∑

k≥0

(−1)ksk(A),

we get

c(A∗ ⊗ B − A) =
∑

µ⊂λ⊂ih

∑

x∈{0,1}l(µ)

(−1)|µ+x|E
λ̃/µ̃

(i) · s(µ+x)˜(A)s∁λ(B),

where the second sum runs over 0-1 sequences such that µ + x is a valid
partition. From this the theorem follows directly, by using the fact that
Eλ/µ(k) = 0 if µ 6⊂ λ and k ≥ l(λ), l(µ).

Note that in both cases, the Thom polynomial is a nonnegative linear
combination of Schur polynomials. Based on computational evidence, we
can formulate the following

Conjecture. The Thom polynomials of all Thom–Boardman classes

can be written as nonnegative linear combinations of Schur polynomials.
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The nonnegativity of coefficients of Thom polynomials has also been
observed by Pragacz in [Pra].

With some work, we can get a more compact formula. Recall the short-
hand notations

{
n

k

}
:=

k∑

j=0

(
n

j

)
and Fλ/µ(n) := det

[{
λk + n − k

µl + n − l

}]

k,l≤n

.

Note that the numbers
{

n
k

}
also form a Pascal-like triangle:

1

1 2

1 3 4

1 4 7 8

1 5 11 15 16

1 6 16 26 31 32

Theorem 4.10.

[Σi,1(r)] =
∑

(ν,µ)∈I

Fν/µ(i) · s(ih+∁ν̃,µ̃)

where I = {(ν, µ) : ν ⊂ hi, l(µ) ≤ i, and |ν| − |µ| = i − 1}.
Remark. Note that the coefficients do not depend on the relative codi-

mension r = h − i. This is not a coincidence, and a similar phenomenon
occurs for a large class of singularities; see [FR] and the discussion in the
introduction.

Proof. According to Theorem 4.9, the coefficient aν,µ of s(ih+∁ν̃,µ̃) is a
sum which we can rewrite as follows:

aν,µ =
∑

x∈{0,1}µ1

Eν/(µ̃−x)˜(i) =

µ1∑

α1=µ2

µ2∑

α2=µ3

· · ·
µi∑

αi=0

Eν/α(i).

Expanding the determinant Eν/α(i) and rearranging the sums yields

aν,µ = det

[{
νk + i − k

µl + i − l

}
−

{
νk + i − k

µ(l+1) + i − (l + 1)

}]

k,l≤i

.

Observe that aν,µ is of the form det(A − B) where

Bk,l =

{
Ak,l+1 if l < n,

0 if l = n.

It is then an easy exercise to prove that det(A + βB) = det(A) for any
β ∈ C.
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5. Review of Ronga’s formula. Ronga’s result [Ron72], expressed in
our language, is the following. Let Dn → M be a rank n complex vector
bundle, p : Gri(D) → M the bundle of Grassmannians of i-planes in D,
and let E → Gri(D) be the tautological subbundle over Gri(D); finally,
π : Grj(E) → Gri(D) is the bundle of Grassmannians of j-planes in E and
0 → Rj → π∗E → Qi−j → 0 the tautological exact sequence of vector
bundles over Grj(E). Furthermore, introduce the shorthand notations h =

r + i and k = ij −
(
j
2

)
. Now

[Σi,j(r)](−D)

= (−1)hkp∗π∗[s(n+r)i(π∗E∗) · shk(R ⊗ Q + Sym2 R + π∗p∗D − π∗E)]

where the left hand side means that we insert the Chern classes of −D
(which are the same as the Segre classes of D∗) into the universal polyno-
mial [Σi,j(r)]. This formula is not very well suited for direct computations;
nevertheless, we can use it to get some qualitative information about these
Thom polynomials.

Theorem 5.1. Write the universal polynomial [Σi,j(r)] as a linear com-

bination of Schur polynomials: [Σi,j(r)] =
∑

eλsλ, where eλ are (integer)
coefficients. Then eλ = 0 if λ satisfies any of the following three conditions:

(a) ih 6⊂ λ,
(b) (i + 1)h+1 ⊂ λ,
(c) λ1 > i + k.

We will use the following well known lemma (see [JLP82]) about push-
forwards (or Gysin maps):

Lemma 5.2. Let En → M be a complex vector bundle, π : Grr(E) → M
the bundle of Grassmannians of r-planes in E, and 0 →Rr → π∗E → Qq → 0
the tautological exact sequence of bundles over Grr(E). Then

π∗[sµ(R)sν(Q)] = s(ν−rq,µ)(E).

Remark. This formula should be understood as follows: (ν − rq, µ) is
very often not a valid partition; but we can extend the definition of the
Schur polynomials to arbitrary sequences. Every such “generalized Schur
polynomial” is either zero or a “usual Schur polynomial” up to sign. For
example for the particular case ν = 0 the formula gives

π∗sµ(R) = s(−rq ,µ)(E) = (−1)qrsµ−qr(E),

which is zero if qr 6⊂ µ (this special case was also proved in [Ron72]). Note
also that π∗ is an H∗(M)-module homomorphism.

Proof of Theorem 5.1. With some abuse of notation, we will omit pull-
backs from the formulas; that is, we will simply write E instead of π∗E and
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so on. All three claims will be consequences of the following computation.
First, using the expansion

sλ(A + B) =
∑

µ,ν

cλ
µ,ν · sµ(A)sν(B),

which, for the special case λ = hk gives shk(A + B) =
∑

µ⊂hk sµ(A)s∁µ(B),
we get

[Σi,j(r)](−D) = (−1)hk
∑

λ⊂hk

p∗[s(n+r)i(E∗)sλ(D−E)·π∗s∁λ(R⊗Q+Sym2 R)].

We are not interested in the exact result of the inner pushforward; instead
we just set

(−1)hk ·π∗s∁λ(R ⊗ Q + Sym2 R) =
∑

l(µ)≤i

fµ
λ · sµ(E),

where fµ
λ are some coefficients. Using the above expansion again, now for

sλ(D − E), we get

[Σi,j(r)](−D) =
∑

λ⊂hk

∑

α,β⊂λ

∑

l(µ)≤i

cλ
α,βfµ

λ ·sα(D) ·p∗[s(n+r)i(E∗)s
β̃
(E∗)sµ(E)].

Using the Littlewood–Richardson rule, Lemma 5.2 and the fact that the
rank of E is i, we find immediately that

p∗[s(n+r)i(E∗)s
β̃
(E∗)sµ(E)] =

∑

l(γ)≤i

gγ · shi+γ(D),

where the gγ ’s are integer coefficients. Now, we see that [Σi,j ](−D) is a
linear combination of terms of the form sα(D)s(hi+γ)(D), where α ⊂ hk and
l(γ) ≤ i. From the Littlewood–Richardson rule it follows directly that the
expansion of such a term satisfies the duals of all three claims of the theorem,
that is, the duals of the partitions appearing in the expansions satisfy the
three conditions; thus, by the identity sλ(−D) = s

λ̃
(D∗) = (−1)|λ|s

λ̃
(D) the

theorem follows.

6. Examples. The Thom polynomials of the singularities Σi,j(−i + 1)
for j ≤ 2 are

[Σi,0] = si,

[Σi,1] = isi+1 + 2si,1,

[Σi,2] =

(
i+1

3

)
si+3 +(i2−1)si+2,1 +2(i+1)si+1,2 +2(i − 1)si+1,1,1 +4si,2,1.

Morin singularities. Recall that the Morin singularity A2(r), where r is
the relative codimension r = p−n, is A2(r) = Σ1,1(r) for r nonnegative and
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A2(r) = Σ1−r,1(r) for r negative. We have

[A2(r)] =





r+1∑

k=0

2ks2r+1−k,12k if r ≥ 0,

2s1−r,1 + (1 − r)s2−r if r ≤ 0.

The r ≥ 0 case is already known (see [Ron72]).

Thom polynomials of Σ2,1. Let h = r + 2. Then

[Σ2,1(r)] =
∑

K

({
a + 1

d + 1

}{
b

c

}
−

{
a + 1

c

}{
b

d + 1

})
· s(h+d,h+c,h−b,h−a)˜

where K = {(a, b, c, d) ∈ N
4 : b ≤ a ≤ h, c ≤ d, c + d = a + b − 1}.

Remark. We can state the analogous theorems for real singularities
using cohomology with Z2-coefficients, by replacing Chern classes with the
corresponding Stiefel–Whitney classes. The Thom polynomials for the real

Σi,1(−i + 1) were already calculated by Thom in [Tho56].
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