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Dynami
s of a Lotka�Volterra mapbyFran
is
o Balibrea (Mur
ia), Juan Luis Gar
ía Guirao (Cartagena),Marek Lampart (Opava) and Jaume Llibre (Bar
elona)
Abstra
t. Given the plane triangle with verti
es (0, 0), (0, 4) and (4, 0) and thetransformation F : (x, y) 7→ (x(4 − x − y), xy) introdu
ed by A. N. Sharkovski��, we provethe existen
e of the following obje
ts: a unique invariant 
urve of spiral type, a periodi
traje
tory of period 4 (given expli
itly) and a periodi
 traje
tory of period 5 (des
ribedapproximately). Also, we give a de
omposition of the triangle whi
h helps to understandthe global dynami
s of this dis
rete system whi
h is linked with the behavior of theS
hrödinger equation.1. Introdu
tion and statement of the main results. Two-dimen-sional 
ontinuous transformations of the plane, G : (x, y) 7→(f(x, y), g(x, y)),have been 
onsidered for a long time to des
ribe many phenomena 
omingfrom population dynami
s, e
onomy theory, so
ial s
ien
es and engineer-ing.In most 
ases there exist 
ompa
t subsets X ⊂ R

2, invariant under thea
tion of the transformation (i.e., G(X) ⊆ X), where the most interestingpart of the dynami
s of the system is developed. If we see them as two-dimensional dis
rete dynami
al systems, i.e. 
ouples of the form (X, G|X),the interest is fo
used on the behavior of points of X, i.e., how the traje
toriesof all points evolve under the a
tion of G.In appli
ations, the maps f and g are usually pie
ewise polynomial on X,i.e., there exists a �nite partition of X, {Xi}n
i=1, su
h that f, g restri
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Xi are polynomials. See, for instan
e, the models of stability of syn
hronizedstates of Glendinning [4℄ or the Du�ng transformation [12℄.More frequently, maps f and g are quadrati
 polynomials (or pie
ewisequadrati
) and within the quadrati
 
ase, the Lotka�Volterra transforma-tions (or pie
ewise Lotka�Volterra) of the form(1) G : (x, y) 7→ (x(a1 + b1x + c1y), y(a2 + b2x + c2y))where ai, bi, ci ∈ R for i ∈ {1, 2}. In parti
ular, the 
ase b1 = c1 = b2 = c2 =
−1 appears in several appli
ations (see [3℄).When we try to understand the dynami
s of su
h systems we 
on
entrateon two fa
ts. Firstly, we look for invariant sets and 
onsider the dynami
sonly on them if we �nd that outside them the behavior is easy to des
ribe.Se
ondly, we study the dynami
s on the boundaries of su
h invariant sets.When the boundaries are 
omposed of segments, the dynami
s on them 
anbe as 
ompli
ated as that of some interval maps. Additionally, it 
ould beinteresting to explore 
onne
tions between the dynami
s on the boundariesand interiors of the invariant sets.This is what happens in the example suggested by A. N. Sharkovski�� in1993 (see [9℄) for the 
ase a1 = 4, b1 = c1 = −1, a2 = b2 = 0 and c2 = 1,that is,(2) F : (x, y) 7→ (x(4 − x − y), xy).It is easy to see that the triangle ∆ ⊂ R

2 with verti
es (0, 0), (4, 0) and (0, 4)is strongly invariant under F (F (∆) = ∆) while if we set y = 0 the dynami
son [0, 4] is that of the full parabola x(4− x) and on the other sides of ∆ thedynami
s is trivial.Outside ∆ the dynami
s is easy to follow. All points ex
ept some periodi
ones (if they exist) go to in�nity and there is no 
onne
tion between thedynami
s outside and inside ∆. In fa
t all preimages of all points in Int(∆)are also in Int(∆).The system (2) is the result of some redu
tions made by Sharkovski�� ofa system given by Y. Avishai and D. Berend [1℄ linked with the dynami
s ofthe S
hrödinger equation.G. �wirsz
z [10℄ answers some of the questions posed by Sharkovski��for (2). In parti
ular, he 
onstru
ts an absolutely 
ontinuous σ-�nite invari-ant measure for F and proves that the preimages of the side I = ∆∩{y = 0}form a dense subset of ∆ and there is another dense set Λ 
onsisting ofpoints whose traje
tories approa
h the interval I but are not attra
tedby I.The aim of this paper is to 
ontinue Sharkovski��'s syllabus for (2) byproving the existen
e of a unique invariant 
urve joining the points (1, 2)and (0, 0) whi
h is simultaneously the unstable manifold of (1, 2) and the
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s of a Lotka�Volterra map 267stable one of (0, 0). This 
urve is of spiral type and strongly invariant. Thekey point in the proof is to de
ompose ∆ into what we 
all ω-regions. Thede
omposition additionally allows us to prove that if a periodi
 traje
toryexists then it must have a part on ∆l and another part on ∆i where ∆i = ω0and ∆l is the rest of Int(∆) (for de�nitions see the next se
tion).Using algebrai
 systems of non-linear equations, it is immediate thatthere are no periodi
 points of period 2 or 3. Using algebrai
 properties ofthe resultant asso
iated to su
h systems it 
an be proved that
{(

2 −
√

2,
1

2

)

,

(

1 +
1√
2
, 1 − 1√

2

)

,

(

2 +
√

2,
1

2

)

,

(

1 − 1√
2
, 1 +

1√
2

)}

is the unique 
y
le of period 4 in Int(∆). This is the �rst time in the literatureon quadrati
 systems where a periodi
 traje
tory of period 4 is expli
itlyobtained. For example in [11℄ some numeri
al work is needed to understandthe genealogies of periodi
 points of periods less than or equal to 5 in thetwo-parameter family
F(a,b)(x, y) = (y, ay + b − x2).In other 
ases periodi
 points have only been 
laimed to exist (see forinstan
e [8℄ for the two-dimensional logisti
 family of maps Fa(x, y) =

(y, ay(1 − x))).Additionally it is proved (using the same pro
edure for the 
onjugate sys-tem, i.e., (x, y) 7→ (y|x|, x2−2)) that there also exists a unique periodi
 pointof period 5 in Int(D) where D is the image of ∆ under the 
onjuga
y map(i.e. C : ∆ → D given by (x, y) 7→ ((x− 2)
√

x(4 − x − y), x(4−x− y)− 2)):
(x, y) = (−0.7873282213706032,−1.5245690977552053).In this 
ase, to give expli
itly all the points of the traje
tory is not possiblebe
ause their 
oordinates are roots of polynomials of degree 10. We do it inan impli
it way.We have also heard from P. Mali£ký [6℄ that it 
ould be possible to provethat there are periodi
 points of periods greater than 5 (
on
retely, of periods6, 7 and 8) for the system (2) de�ned on the whole spa
e R

2.2. Notation and preliminary results. Given (x, y) ∈ ∆, we de�ne
Fn(x, y) = F (Fn−1(x, y)) and F 0 as the identity map on ∆. The sequen
e
{Fn(x, y)}∞n=0 is 
alled the traje
tory of (x, y) under the a
tion of the system
(∆, F ). To know the dynami
s of the system (∆, F ) is to have informationon the asymptoti
 behavior of the traje
tories of all points of ∆ under F .Obviously, to rea
h this 
ompletely is very di�
ult and in most 
ases almostimpossible, but there exist some 
lasses of points su
h that from their studysome information about the global behavior of the system is obtained. Themost important of them is the 
lass of periodi
 points.



268 F. Balibrea et al.Definition 1. A point (x, y) ∈ ∆ is 
alled periodi
 for F if there exists apositive integer m su
h that Fm(x, y) = (x, y). The smallest su
h m = m(x,y)is 
alled the period of x. When m = 1 we have �xed points. The traje
toryof a periodi
 point is 
alled a periodi
 traje
tory.Definition 2. A point (x, y) ∈ ∆ is 
alled homo
lini
 to a periodi
point (p1, p2) of F if the following 
onditions are satis�ed:(1) (x, y) 6= (p1, p2),(2) for every neighborhood U of (p1, p2) there exists a positive integer ksu
h that (x, y) ∈ Fm·k(U) where m is the period of (p1, p2),(3) Fm·l(x, y) = (p1, p2) for some positive integer l.The traje
tory of a homo
lini
 point is 
alled a homo
lini
 traje
tory.Definition 3. Let (Y, G) be a dis
rete dynami
al system. The systems
(∆, F ) and (Y, G) are 
alled topologi
ally 
onjugate (respe
tively topologi-
ally semi-
onjugate) if there exists a homeomorphism (respe
tively an onto
ontinuous map) C : ∆ → Y su
h that C ◦ F (x, y) = G ◦ C(x, y) for every
(x, y) ∈ ∆.Now, after the introdu
tion of the main notions that we need, let usstate some properties of the system (∆, F ). First of all, as mentioned inthe previous se
tion, the system F restri
ted to I is the full parabola (i.e.,
F (x, 0) = (x(4 − x), 0)). The dynami
s of this unimodal map is well known(see for instan
e [2℄).The system (∆, F ) has three �xed points: (0, 0), (3, 0) and (1, 2). These
ond and third are repellors (see [10℄).It is interesting to split the triangle ∆ into two sets,

∆ = ∆l ∪ ∆rwhere ∆l = {(x, y) ∈ ∆ : 0 ≤ x ≤ 2} and ∆r = {(x, y) ∈ ∆ : 2 < x ≤ 4}.Sin
e ea
h point from Int(∆) has two preimages, one in Int(∆r) and theother in Int(∆l), the map F is not invertible but F restri
ted to Int(∆l) orto Int(∆r) is. The inverse maps of these restri
tions are given by:
F−1

l : Int(∆l) → Int(∆l), (x, y) 7→
(

2 −
√

4 − x − y,
y

2 −√
4 − x − y

)

,

F−1
r : Int(∆r) → Int(∆r), (x, y) 7→

(

2 +
√

4 − x − y,
y

2 +
√

4 − x − y

)

.From another point of view, it is easy to see that ∆ 
an be de
omposedinto �ve pairwise disjoint sets:
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∪ R.From this de
omposition it follows that if there are periodi
 points then theymust be 
ontained in the set R ⊂ Int(∆).3. Constru
tion of an invariant 
urve. In this se
tion we 
onstru
tan invariant 
urve joining the points (0, 0) and (1, 2). This 
urve is pie
ewise
C1 and it is a homo
lini
 traje
tory to (0, 0). It 
an be seen as an unstablemanifold for (0, 0) and a stable one for (1, 2). This 
urve 
ontains importantinformation on the dynami
s of the system.Let us 
onstru
t a set S with the following pro
edure:

K0 = {(0, 0)},
K1 = {(0, 0)} × [0, 4],

K2 = {(x, y) ∈ ∆ : 0 ≤ x ≤ 2 and x + y = 4},
Kn+3 = {(x, y) ∈ ∆l : F (x, y) ∈ Kn+2} for any n ≥ 0.It is easy to see that

F (Kn+1) = Kn for n ≥ 0,(3)
Fn(Kn) = (0, 0) for n ≥ 0.(4)Now set(5) S =

∞
⋃

n=0

Kn.By the inje
tivity of F on ∆l, S is a pie
ewise C1 
urve with verti
es Vi(i ∈ {0, 1, . . . }), where
V0 = (0, 0),

K1 ∩ K2 = {V1} = {(0, 4)},
K2 ∩ K3 = {V2} = {(2, 2)},
K3 ∩ K4 = {V3} = {(2, 1)},
K4 ∩ K5 = {V4} = {(1, 1)},...

Kn+5 ∩ Kn+6 = {Vn+5} = {F−(n+1)
l (1, 1)} for n ≥ 0.After proving the properties of S given in Lemmas 4�6 we will see that Sis a pie
ewise C1 
urve of spiral type. This 
an be done using the 
onjuga
ygiven by the homeomorphism C and a map f 
onjugate to F (originallystated in [10℄).
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D = {(x, y) ∈ R

2 : x2 + y2 ≤ 4},
Dl = {(x, y) ∈ R

2 : −2 < x < 0 and x2 + y2 < 4},
Dr = {(x, y) ∈ R

2 : 0 < x < 2 and x2 + y2 < 4}.De�ne the maps:
C : ∆ → D, (x, y) 7→ ((x − 2)

√

x(4 − x − y), x(4 − x − y) − 2),

f : D → D, (x, y) 7→ (y|x|, x2 − 2).Again, the map f is not invertible but f restri
ted to Int(Dl) or to Int(Dr)is and the inverse maps are
f−1

l : Int(Dl) → Int(Dl), (x, y) 7→ (−
√

2 + y, x/
√

2 + y),

f−1
r : Int(Dr) → Int(Dr), (x, y) 7→ (

√

2 + y, x/
√

2 + y).In fa
t the map C is a semi
onjuga
y, but on the interiors of the pie
es itis one-to-one, hen
e a 
onjuga
y. The 
onjugate images of Vn in D are (i.e.,
C(Vn) = Wn):

W0 = (0,−2),

W1 = (0,−2),

W2 = (0,−2),

W3 = (−
√

2, 0),

W4 = f−1
l (W3) = (−

√
2,−1),

W5 = f−2
l (W3) = (−1,−

√
2),
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l (W3) = (−

√
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√

2 −
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l (W3) = (−

√
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√

2 − A−1
0 ),...

Wn+7 = f−n−4
l (W3) = (−An+1,−An/An+1) for n ≥ 0,where

A0 =
√

2 −
√

2,
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2 − A−1
0 ,
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2 − A0A
−1
1 ,
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−1
2 ,...

An+2 =
√

2 − AnA−1
n+1 for n ≥ 0.
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s of a Lotka�Volterra map 271Lemma 4. limn→∞ An = 1.Proof. We 
an prove by indu
tion that ea
h An (n ≥ 0) satis�es
b−(n) < An < b+(n) where

b−(n) =

√

1 − 1

n + 1
and b+(n) =

√

1 +
1

n + 1
.The assertion follows from the fa
t that limn→∞ b−(n) = limn→∞ b+(n) = 1.We prove by indu
tion the right inequality (the left one 
an be shown simi-larly).Step 1. We 
an see that b+(0) > A0, b+(1) > A1 et
. We 
an assumethat b+(n) > An for ea
h 0 ≤ n ≤ k.Step 2. It is easy to see that

b+(k)2 <
(k + 2)2

k(k + 1)
=

k + 1

k

(k + 2)2

(k + 1)2and hen
e
A2

k <
k + 1

k

(k + 2)2

(k + 1)2
.So

Ak

k + 1

k + 2
< Ak−1 < b+(k − 1).We have

1 +
1

k + 2
> 2 − Ak−1A

−1
kso b+(k + 1)

2
> A2

k+1.Lemma 5. limn→∞ Vn = (1, 2).Proof. This follows from Lemma 1 (i.e., limn→∞ Wn = (−1,−1)) andthe fa
t that C(1, 2) = (−1,−1).Lemma 6. Let i = j + n, where n > 0. Then Ki ∩ Kj = ∅.Proof. Let x ∈ Ki ∩ Kj . If Fn(x) = x then x is periodi
, whi
h is a
ontradi
tion (ea
h point of S is eventually �xed, whi
h follows from (4)).So there is y ∈ Ki su
h that x 6= y and Fn(y) = x. Then F i(y) 6= (0, 0),in 
ontradi
tion with F i(Ki) = (0, 0) for ea
h i ≥ 0, whi
h follows from the
onstru
tion of S.Theorem 7. There is a 
urve S in ∆ with the following properties:(i) It is of spiral type with fo
us at the point (1, 2).(ii) It is strongly invariant. Moreover , ea
h point of S is eventually �xed(i.e., for ea
h (x, y) ∈ S there is n ≥ 0 su
h that Fn(x, y) = (0, 0)).(iii) There is a unique 
urve satisfying (i) and (ii).
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t that the 
urve S is of spiral type follows from Lemmas 5and 6. Strong invarian
e follows from (5) and from the fa
t that ea
h point iseventually �xed by (4). The proof of (iii) will be given in the next se
tion.
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Remark 8. It is interesting to observe that if in the previous 
onstru
-tion of the 
urve S we repla
e the map F−1
l by F−1

r (now the preimages arein ∆r) we obtain a strongly invariant 
urve whi
h is not of spiral type but isalso strongly invariant and 
onverges to the repulsive �xed point (3, 0) (theproof of the 
onvergen
e is similar to the proof of Lemmas 4 and 5).

(4,0)(1,0) (3,0)   (0,0) (2,0)

   (0,4)

(0,3)

(0,1)

(0,2)

4. De
omposition of the triangle. To understand the periodi
 stru
-ture of the map F we de
ompose the triangle ∆ into in�nitely many pairwise
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s of a Lotka�Volterra map 273disjoint regions. These regions will be de�ned in su
h a way that it will beobvious where the 
y
les should be.We use the same notation as in the previous se
tion. Let us start withthe following modi�
ation. Let
L0 = {2} × [0, 2], Li+1 = {(x, y) ∈ ∆l : F (x, y) ∈ Li} for i ≥ 0.(Note that Kn+3 ⊂ Ln for n ≥ 0.) Put

X0 = (2, 0), Xn+1 = F−n
l (X0) for n ≥ 0.Thus, the points Xn and Vn+2 are on the boundary of Ln for n ≥ 0. Thesequen
e {Xi}∞i=0 
onverges to (0, 0) and the point X0 is homo
lini
 to (0, 0)(see, e.g., [2℄ and De�nition 2).Let ω0 = Int(∆r) and ωn+1 be the interior of the region in ∆l boundedby Ln, Ln+1 and [Xn+1, Xn], for n ≥ 0.Theorem 9. Let ωn be the regions in ∆ de�ned above for all n ≥ 0.Then(i) F (ωn+1) = ωn for n ≥ 0,(ii) F (ω0) = Int(∆),(iii) ⋃

∞

n=0 ωn = ∆ and ωn ∩ ωn+i = ∅ for n ≥ 0, i > 0.Proof. Statements (i) and (ii) are obtained dire
tly from the 
onstru
-tion.To prove (iii) it su�
es to use the property of the map F that ea
h pointfrom Int(∆) has two preimages, one in Int(∆r) and the other in Int(∆l).Assuming the existen
e of an invariant region having empty interse
tionwith ea
h ωn leads to a 
ontradi
tion with this property.Proof of Theorem 7(iii). We have 
onstru
ted an invariant 
urve S byadding pie
es of the boundaries of the regions ωn in ∆r. The traje
tory of apoint (x, y) ∈ S turns left around the point (1, 2) under the map F−1
l and sothe distan
e between the points F−n(x, y) and (1, 2) tends to zero as n → ∞by Lemma 5.The edges of the 
urve S 
ompose a homo
lini
 traje
tory of the point

(1, 2), i.e., limn→∞ F−n(Vn) = (1, 2). In fa
t S is the unstable manifold of
(1, 2) and the stable manifold of (0, 0) sin
e for any point (x, y) ∈ S we have
limn→∞ Fn(x, y) = (0, 0) and limn→∞ F−n(x, y) = (1, 2). In this situation S
onne
ts dynami
ally the points (0, 0) and (1, 2).Also S is the unique 
urve with properties (i) and (ii) of Theorem 7.To see this, let S′ be another 
urve di�erent from S 
onne
ting the verti
es
Vi and let (x, y) ∈ S′ be not a vertex point. Then (x, y) would belong tosome region ωk and as a 
onsequen
e Fn(x, y) would not 
onverge to (0, 0),



274 F. Balibrea et al.nor F−n(x, y) to (1, 2), as n → ∞. Therefore S is the unique 
urve havingproperties (i) and (ii) from Theorem 7.Corollary 10. F−1
l |∆l

has the point (1, 2) as its global attra
tor.From Theorem 9 it is straightforward that there are no 
y
les in Int(∆l)and analogously it 
an also be proved that there are no 
y
les in Int(∆r).We 
on
lude that if there is a 
y
le in Int(∆) then it must have non-emptyinterse
tion with both Int(∆l) and Int(∆r).
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=

5. Periodi
 traje
tories of (∆, F ). We are interested in the periodi
points in Int(∆).The �xed points satisfy F (x, y) = (x, y). It is easy to 
he
k that theunique �xed point in Int(∆) is (1, 2).The 2-periodi
 points satisfy F 2(x, y) = (x, y), or equivalently
(−(−2 + x)2x(−4 + x + y),−x2y(−4 + x + y)) = (x, y).It is not di�
ult to see that this system has no solution in Int(∆).The 3-periodi
 points satisfy F 3(x, y) = (x, y), or equivalently

−(−2 + x)2x(−4 + x + y)(2 − 4x + x2 + xy)
2

= x,

(−2 + x)2x3y(−4 + x + y)2 = y.A straightforward 
omputation shows that this system has no solution in
Int(∆).In short, F has no periodi
 traje
tory of periods 2 and 3 in Int(∆). But,as proved in Theorem 11, it has a unique periodi
 traje
tory of period 4 in
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h is obtained expli
itly using some properties of the resultant.This pro
edure allows us to prove the existen
e of a periodi
 point of period 5;its traje
tory is given in an impli
it way. Before proving this result we needto re
all some properties of the resultant.Let ai, i ∈ {1, . . . , n}, and bj , j ∈ {1, . . . , m}, be the roots of the poly-nomials P (x) and Q(x), respe
tively, both with leading 
oe�
ient 1. Theresultant of P and Q, Res[P, Q], is the produ
t of all the di�eren
es ai − bj ,
i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. In order to see how to 
ompute Res[P, Q], seefor instan
e [5℄ and [7℄. The main property of the resultant is that if P and
Q have a 
ommon root then ne
essarily Res[P, Q] = 0.Consider now polynomials in two variables, say P (U, V ) and Q(U, V ).These polynomials 
an be seen as polynomials in X = U with polynomial
oe�
ients in Y = V . Then the resultant with respe
t to U , Res[P, Q, U ], isa polynomial in Y with the following property. If P (U, V ) and Q(U, V ) havea 
ommon root (U0, V0), then

Res[P, Q, U ](V0) = 0,and similarly for the variable V . In parti
ular, if we 
ompute all the roots ofthe following two polynomials in one variable p(U) = Res[P, Q, V ], q(V ) =
Res[P, Q, U ], and denote them by U0 and V0, respe
tively, then we 
an 
he
kwhen (U0, V0) is a solution of the system P (U, V ) = Q(U, V ) = 0.In short, using the resultant we redu
e the problem of �nding solutionsof a polynomial system in two variables to �nding roots of two polynomialsin one variable.Theorem 11. The map F has a unique periodi
 traje
tory of period 4in Int(∆). This traje
tory is

{(

2 −
√

2,
1

2

)

,

(

1 +
1√
2
, 1 − 1√

2

)

,

(

2 +
√

2,
1

2

)

,

(

1 − 1√
2
, 1 +

1√
2

)}

.Proof. We must �nd the points (x, y) in Int(∆) su
h that F 4(x, y) =
(x, y), or equivalently(6) (f(x, y), g(x, y)) = (0, 0),where

f(x, y) = (−2 + x)2x(−4 + x + y)(2 − 4x + x2 + xy)
2

× (2 − 16x + 20x2 − 8x3 + x4 + 4xy − 4x2y + x3y)
2
+ x,

g(x, y) = (−2 + x)4x4y(−4 + x + y)3(2 − 4x + x2 + xy)
2
+ y.Therefore to �nd the 4-periodi
 traje
tories of the map F in Int(∆) is equiv-alent to �nding the solutions of the polynomial system (6) in Int(∆).



276 F. Balibrea et al.Now the resultant Res[f, g, x] is the polynomial in y given by
q(y) = −8589934592(−2 + y)y20(−1 + 2y)2(1 − 4y + 2y2).Its roots without taking into a

ount their multipli
ity are 0, 2, 1/2, 1+1/

√
2and 1 − 1/

√
2. Hen
e, a �xed point (x, y) of F 4 (i.e. a periodi
 point of Fwith period 1, 2 or 4) must have its y 
oordinate equal to one of these �vepossible values.We are not interested in the �xed points (x, y) of F 4 with v = 0 be
auseall these points are on the boundary of the triangle ∆.Now we study the �xed points (x, y) of F 4 with v = 2. From easy 
om-putations we get
f(x, 2) = (1 − x)xF (x), g(x, 2) = 2(x − 1)G(x),where

F (x) = (127 − 1345x + 6559x2 − 19505x3 + 39311x4

− 56801x5 + 60807x6 − 49101x7 + 30099x8 − 13949x9

+ 4811x10 − 1197x11 + 203x12 − 21x13 + x14,

G(x) = −1 − x − x2 − x3 + 511x4 − 2305x5 + 4991x6

− 6721x7 + 6175x8 − 4017x9 + 1863x10 − 605x11

+ 131x12 − 17x13 + x14.The 
ommon fa
tor x − 1 of f(x, 2) and g(x, 2) provides the �xed point
(1, 2) of F , whi
h is also �xed for F 4. Sin
e the fa
tor x of f(x, 2) does notappear in g(x, 2), the point (0, 2) is not a solution of system (6). Finally, sin
e
Res[F (x), G(x), x] = 154618822656 6= 0, there are no additional periodi
points (x, y) with y = 2.We study the �xed points (x, y) of F 4 with y = 1/2. From easy 
ompu-tations we get

f(x, 1/2) = − 1

32
x(2 − 4x + x2)F (x),

g(x, 1/2) = − 1

64
(2 − 4x + x2)G(x),where

F (x) = −3568 + 60192x − 390696x2 + 1304640x3 − 2617156x4

+ 3435080x5 − 3096854x6 + 1968868x7 − 891687x8

+ 286314x9 − 63736x10 + 9360x11 − 816x12 + 32x13,

G(x) = 16 + 32x + 56x2 + 96x3 − 43740x4 + 191576x5

− 364250x6 + 394624x7 − 269087x8 + 120010x9

− 35064x10 + 6480x11 − 688x12 + 32x13.
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s of a Lotka�Volterra map 277Sin
e the fa
tor x of f(x, 1/2) does not appear in g(x, 1/2), the point (0, 1/2)is not a solution of system (6). Moreover, sin
e Res[F (x), G(x), x] is
−137015778499772148581595453067151533092743675904 6= 0,there are no additional �xed points (x, y) of F 4 with y = 1/2 
oming fromthe fa
tors F (x) and G(x). Finally, the 
ommon fa
tor 2 − 4x + x2 to F (x)and G(x) provides two solutions to system (6), namely

(

2 −
√

2,
1

2

) and (

2 +
√

2,
1

2

)

.So these two points are �xed points of F 4. It is easy to 
he
k that they belongto the periodi
 traje
tory des
ribed in the statement of the proposition.Lastly, if we study in a similar way the �xed points (x, y) of F 4 with
y = 1 ± 1/

√
2, we only get the same 4-periodi
 traje
tory.

(4,0)(1,0) (3,0)(0,0) (2,0)

(0,4)

(0,3)

(0,1)

(0,2)

Con
erning the traje
tories of (∆, F ) of period 5, arguments similar tothose for Theorem 11 
an be used for the 
onjugate system on the dis

f : D → D given by (x, y) 7→ (y|x|, x2 − 2) to simplify 
al
ulations. Theresult is the following.Theorem 12. The map f in Int(D) has a unique periodi
 traje
tory ofperiod 5 asso
iated to the point

(x, y) = (−0.7873282213706032,−1.5245690977552053).The �ve se
ond 
oordinates of the points of the traje
tory are roots of the



278 F. Balibrea et al.following polynomial :
1−98y−461y2−560y3 +353y4 +1255y5 +903y6 +144y7−76y8−21y9 +y10.Analogously , the �rst 
oordinates of these points are roots of the followingtwo polynomials:

1 + 20x − 7x2 − 74x3 + 5x4 + 89x5 + 9x6 − 40x7 − 8x8 + 5x9 + x10,

1 − 20x − 7x2 + 74x3 + 5x4 − 89x5 + 9x6 + 40x7 − 8x8 − 5x9 + x10.Obviously, for 
omputational reasons it is not possible to analyze theexisten
e of periodi
 traje
tories of periods n > 5 using this pro
edure.There are no reasons for the non-existen
e of su
h traje
tories. On theother hand, if we 
onsider the system (R2, F ) other new periodi
 traje
-tories 
ould appear and the uniqueness of the 4,5-periodi
 traje
tories 
oulddisappear.A
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