FUNDAMENTA
MATHEMATICAE
191 (2006)

Dynamics of a Lotka—Volterra map
by

Francisco Balibrea (Murcia), Juan Luis Garcia Guirao (Cartagena),
Marek Lampart (Opava) and Jaume Llibre (Barcelona)

Abstract. Given the plane triangle with vertices (0,0), (0,4) and (4,0) and the
transformation F : (z,y) — (z(4 — x — y), zy) introduced by A. N. Sharkovskil, we prove
the existence of the following objects: a unique invariant curve of spiral type, a periodic
trajectory of period 4 (given explicitly) and a periodic trajectory of period 5 (described
approximately). Also, we give a decomposition of the triangle which helps to understand
the global dynamics of this discrete system which is linked with the behavior of the
Schrédinger equation.

1. Introduction and statement of the main results. Two-dimen-
sional continuous transformations of the plane, G : (z,y)— (f(z,y), 9(z,v)),
have been considered for a long time to describe many phenomena coming
from population dynamics, economy theory, social sciences and engineer-
ing.

In most cases there exist compact subsets X C R?, invariant under the
action of the transformation (i.e., G(X) C X), where the most interesting
part of the dynamics of the system is developed. If we see them as two-
dimensional discrete dynamical systems, i.e. couples of the form (X, G|x),
the interest is focused on the behavior of points of X, i.e., how the trajectories
of all points evolve under the action of G.

In applications, the maps f and ¢ are usually piecewise polynomial on X,
i.e., there exists a finite partition of X, {X;}!' ;, such that f, g restricted to
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X; are polynomials. See, for instance, the models of stability of synchronized
states of Glendinning [4] or the Duffing transformation [12].

More frequently, maps f and g are quadratic polynomials (or piecewise
quadratic) and within the quadratic case, the Lotka—Volterra transforma-
tions (or piecewise Lotka—Volterra) of the form

(1) G: (z,y) — (x(a1 + biz + c1y), y(az + bex + c2y))

where a;, b;, ¢; € R for i € {1,2}. In particular, the case by = ¢; = by = ¢ =
—1 appears in several applications (see [3]).

When we try to understand the dynamics of such systems we concentrate
on two facts. Firstly, we look for invariant sets and consider the dynamics
only on them if we find that outside them the behavior is easy to describe.
Secondly, we study the dynamics on the boundaries of such invariant sets.
When the boundaries are composed of segments, the dynamics on them can
be as complicated as that of some interval maps. Additionally, it could be
interesting to explore connections between the dynamics on the boundaries
and interiors of the invariant sets.

This is what happens in the example suggested by A. N. Sharkovskil in
1993 (see [9]) for the case a; =4, by = c¢; = —1, ag = by = 0 and ¢y = 1,
that is,

(2) Fi(zy) = (24 -z —y),ay).

It is easy to see that the triangle A C R? with vertices (0,0), (4,0) and (0,4)
is strongly invariant under F' (F(A) = A) while if we set y = 0 the dynamics
on [0, 4] is that of the full parabola (4 — ) and on the other sides of A the
dynamics is trivial.

Outside A the dynamics is easy to follow. All points except some periodic
ones (if they exist) go to infinity and there is no connection between the
dynamics outside and inside A. In fact all preimages of all points in Int(A)
are also in Int(A).

The system (2) is the result of some reductions made by Sharkovskil of
a system given by Y. Avishai and D. Berend [1] linked with the dynamics of
the Schrédinger equation.

G. Swirszcz [10] answers some of the questions posed by Sharkovskii
for (2). In particular, he constructs an absolutely continuous o-finite invari-
ant measure for F' and proves that the preimages of the side I = AN{y = 0}
form a dense subset of A and there is another dense set A consisting of
points whose trajectories approach the interval I but are not attracted
by I.

The aim of this paper is to continue Sharkovskil’s syllabus for (2) by
proving the existence of a unique invariant curve joining the points (1,2)
and (0,0) which is simultaneously the unstable manifold of (1,2) and the
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stable one of (0,0). This curve is of spiral type and strongly invariant. The
key point in the proof is to decompose A into what we call w-regions. The
decomposition additionally allows us to prove that if a periodic trajectory
exists then it must have a part on 4; and another part on 4A; where 4A; = wy
and 4, is the rest of Int(A) (for definitions see the next section).

Using algebraic systems of non-linear equations, it is immediate that
there are no periodic points of period 2 or 3. Using algebraic properties of
the resultant associated to such systems it can be proved that

N )

is the unique cycle of period 4 in Int(A). This is the first time in the literature
on quadratic systems where a periodic trajectory of period 4 is explicitly
obtained. For example in [11] some numerical work is needed to understand
the genealogies of periodic points of periods less than or equal to 5 in the
two-parameter family

F(a,b)(xv y) = (y’ ay + b— 562)'

In other cases periodic points have only been claimed to exist (see for
instance [8] for the two-dimensional logistic family of maps Fy(z,y) =
(y, ay(1 - ©))).

Additionally it is proved (using the same procedure for the conjugate sys-
tem, i.e., (z,y) — (y|z|, 22 —2)) that there also exists a unique periodic point

of period 5 in Int(D) where D is the image of A under the conjugacy map
(i.e. C: A — D given by (z,y) — (z—2)y/z(d -2z —y),z(4—x—y) —2)):

(x,y) = (—0.7873282213706032, —1.5245690977552053).

In this case, to give explicitly all the points of the trajectory is not possible
because their coordinates are roots of polynomials of degree 10. We do it in
an implicit way.

We have also heard from P. Mali¢ky [6] that it could be possible to prove
that there are periodic points of periods greater than 5 (concretely, of periods
6, 7 and 8) for the system (2) defined on the whole space R2.

2. Notation and preliminary results. Given (z,y) € A, we define
F™(z,y) = F(F" (z,y)) and F as the identity map on A. The sequence
{F"(z,y)}>2 is called the trajectory of (x,y) under the action of the system
(A, F). To know the dynamics of the system (A, F') is to have information
on the asymptotic behavior of the trajectories of all points of A under F.
Obviously, to reach this completely is very difficult and in most cases almost
impossible, but there exist some classes of points such that from their study
some information about the global behavior of the system is obtained. The
most important of them is the class of periodic points.
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DEFINITION 1. A point (z,y) € A is called periodic for F if there exists a
positive integer m such that F(z,y) = (,y). The smallest such m = m,
is called the period of . When m = 1 we have fized points. The trajectory
of a periodic point is called a periodic trajectory.

DEFINITION 2. A point (x,y) € A is called homoclinic to a periodic
point (p1,p2) of F' if the following conditions are satisfied:

(1) (.fl:,y) 7é (p17p2)7

(2) for every neighborhood U of (p1,p2) there exists a positive integer k
such that (z,y) € F™¥(U) where m is the period of (p1, p2),

(3) F™!(x,y) = (p1,p2) for some positive integer I.

The trajectory of a homoclinic point is called a homoclinic trajectory.

DEFINITION 3. Let (Y, G) be a discrete dynamical system. The systems
(A, F) and (Y, Q) are called topologically conjugate (respectively topologi-
cally semi-conjugate) if there exists a homeomorphism (respectively an onto
continuous map) C' : A — Y such that C o F(z,y) = G o C(z,y) for every
(z,y) € A.

Now, after the introduction of the main notions that we need, let us
state some properties of the system (A, F'). First of all, as mentioned in
the previous section, the system F' restricted to I is the full parabola (i.e.,
F(z,0) = (z(4 — 2),0)). The dynamics of this unimodal map is well known
(see for instance [2]).

The system (A, F') has three fixed points: (0,0), (3,0) and (1,2). The
second and third are repellors (see [10]).

It is interesting to split the triangle A into two sets,

A=A UA,

where Ay = {(z,y) € A: 0 <2z <2} and A, = {(z,y) € A:2 < x < 4}.
Since each point from Int(A) has two preimages, one in Int(A,) and the
other in Int(4;), the map F is not invertible but F' restricted to Int(4;) or
to Int(A,) is. The inverse maps of these restrictions are given by:

B () — A), () = (2 VIS ),
- Yy

—r —

E7l Int(A,) — Int(4,),  (z,y) — <2+ Vid—z— v2+\/4y_T_y>'

From another point of view, it is easy to see that A can be decomposed
into five pairwise disjoint sets:
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A= (O F—”(o,o)) U ([j F—"(1,2)> U (G F—”(s,o))
=0

U(I\(n@OF— UF ))UR

From this decomposition it follows that 1f there are periodic points then they
must be contained in the set R C Int(A).

3. Construction of an invariant curve. In this section we construct
an invariant curve joining the points (0,0) and (1,2). This curve is piecewise
C! and it is a homoclinic trajectory to (0,0). It can be seen as an unstable
manifold for (0,0) and a stable one for (1,2). This curve contains important
information on the dynamics of the system.

Let us construct a set S with the following procedure:

Ko = {(0,0)},
Ky = {(0,0)} x [0,4],
Ky ={(r,y) € A:0<z<2and z+y=4},
K3 ={(z,y) € A;: F(z,y) € Ky42} for any n > 0.
It is easy to see that
(3) F(Kpt1) = K, for n > 0,
(4) F"(K,)=(0,0) forn>0.

Now set -
(5) S=J K.
By the injectivity of F on A;, S is a piecewise C! curve with vertices V;
(i €{0,1,...}), where
Vo= (0,0),
KiNKy={V}=1{(0,4)},
KonKs= {VQ} = {(2,2)
Ksn Ky ={V3} ={(2,1)
KiNKs= {V4} = {(1 1)

) )

}
2
}
}

) I

K50 Ko = {Vays} = {F, "1, forn > 0.

After proving the properties of S given in Lemmas 4-6 we will see that S
is a piecewise C! curve of spiral type. This can be done using the conjugacy
given by the homeomorphism C' and a map f conjugate to F' (originally
stated in [10]).
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Let
D ={(z.y) € B :a? 1 y? < 4},

Dl:{(%?/)€R2:—2<3:<Oandav2+y2<4}7
D, ={(z,y) e R*: 0 <z < 2and 2° +y* < 4}.
Define the maps:
C:A—-D, (z,y)— ((x—=2)Vz(d—z—y),z(4—z—y)—2),
f:D—D, (z,y)~ (ylz],2* - 2).

Again, the map f is not invertible but f restricted to Int(D;) or to Int(D,)
is and the inverse maps are

fl_IZInt(Dl)—)Int(Dl)v (xvy)'_)(_\/2+yax/\/2+y)v
S5 (D) > t(Dy), (w,y) — (V2 5 a/v/2 ).
In fact the map C' is a semiconjugacy, but on the interiors of the pieces it

is one-to-one, hence a conjugacy. The conjugate images of V;, in D are (i.e.,

C(V,) =W,):

Wo = (0,-2),

Wi = (0,-2),

Wy = (0, -2),

Ws = (—v/2,0),

Wy = f(Ws) = (-V2,-1),

Ws = [ 2(Ws) = (=1, —V2),

Ws —fl S(Wa) = (=vV2-V2,-1/V2-V2

Wiy = f74(W3) = (—/2 — Ayt —Ao/4/2 — Ayt

Whar = fl*"*4(W3) = (—Api1,—An/Ans1) forn >0,

where

Apto =1/2— AnA;lrl for n > 0.
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LEMMA 4. lim,, o A, = 1.

Proof. We can prove by induction that each A, (n > 0) satisfies
b= (n) < A, <bT(n) where
1 1
b (n)=4/1— d bt(n)=4/1 :
(n) i1 on (n) +
The assertion follows from the fact that lim,, .o, b~ (n) = lim, . b"(n) = 1.
We prove by induction the right inequality (the left one can be shown simi-
larly).
Step 1. We can see that bT(0) > Ap, bT(1) > A; etc. We can assume
that b*(n) > A, for each 0 < n < k.
Step 2. It is easy to see that
(k+2)?* k+1(k+2)?

b (k)" < k(k+1) k (k+1)2

and hence )
E+1(k+2)
A2 <« X .
N A
So .
+
A —— < A b (k —1).
kk+2< k-1 < b7 ( )
We have

1
1+ ——>2— A, A"
+k+2 k—14,

so bt(k+1)* > Al . m

LEMMA 5. lim, .V, = (1,2).

Proof. This follows from Lemma 1 (i.e., lim, o W, = (—1,—1)) and
the fact that C'(1,2) = (—=1,—1). =

LEMMA 6. Leti=j+n, where n > 0. Then K; N K; = 0.

Proof. Let x € K; N Kj. If F"(x) = « then z is periodic, which is a
contradiction (each point of S is eventually fixed, which follows from (4)).
So there is y € K; such that x # y and F"(y) = z. Then F*(y) # (0,0),

in contradiction with F'(K;) = (0,0) for each i > 0, which follows from the
construction of S. =

THEOREM 7. There is a curve S in A with the following properties:

(i) It is of spiral type with focus at the point (1,2).
(ii) It is strongly invariant. Moreover, each point of S is eventually fized
(i.e., for each (z,y) € S there is n > 0 such that F"(x,y) = (0,0)).
(iii) There is a unique curve satisfying (i) and (ii).
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Proof. The fact that the curve S is of spiral type follows from Lemmas 5
and 6. Strong invariance follows from (5) and from the fact that each point is
eventually fixed by (4). The proof of (iii) will be given in the next section. m

v, = (04N
03
/I/ €31
K
! (021
©02)
(0,1)1 1
I
I
I
|
v, = (0.0) (10) (2.0) (30) @0 (1) (1.1) @1)

REMARK 8. It is interesting to observe that if in the previous construc-
tion of the curve S we replace the map Fl_1 by F.! (now the preimages are
in A,) we obtain a strongly invariant curve which is not of spiral type but is
also strongly invariant and converges to the repulsive fixed point (3,0) (the
proof of the convergence is similar to the proof of Lemmas 4 and 5).

(0.4)
(0.3) 4

(0,2) 7

T T T T

(0,0) (1,0) (2,0) (3,0) (4,0)

4. Decomposition of the triangle. To understand the periodic struc-
ture of the map F’ we decompose the triangle A into infinitely many pairwise
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disjoint regions. These regions will be defined in such a way that it will be
obvious where the cycles should be.

We use the same notation as in the previous section. Let us start with
the following modification. Let

Lo={2} x[0,2], Liy1={(z,y) € A;: F(x,y) € L;} fori>0.
(Note that K43 C Ly, for n > 0.) Put
X() = (2, 0), Xn+1 = F‘l_n<X0) for n 2 0.

Thus, the points X, and V), 4o are on the boundary of L, for n > 0. The
sequence {X;}2°, converges to (0,0) and the point X is homoclinic to (0,0)
(see, e.g., [2] and Definition 2).

Let wy = Int(A,) and w,+1 be the interior of the region in A; bounded
by Ly, Lyp41 and [X,,41, X,], for n > 0.

THEOREM 9. Let w, be the regions in A defined above for all n > 0.
Then

(1) F(wnt1) = wy forn >0,
(i) F(wo) = Int(A4Q),
(iii) UpZg@n = A and wp Nwpyi =0 forn >0, > 0.

Proof. Statements (i) and (ii) are obtained directly from the construc-
tion.

To prove (iii) it suffices to use the property of the map F' that each point
from Int(A) has two preimages, one in Int(A,) and the other in Int(4;).
Assuming the existence of an invariant region having empty intersection
with each w, leads to a contradiction with this property. =

Proof of Theorem 7(iii). We have constructed an invariant curve S by
adding pieces of the boundaries of the regions w,, in A,. The trajectory of a
point (z,y) € S turns left around the point (1,2) under the map Fl_1 and so
the distance between the points F'~"(x,y) and (1, 2) tends to zero as n — oo
by Lemma 5.

The edges of the curve .S compose a homoclinic trajectory of the point
(1,2), i.e., lim, oo F'7"(V,,) = (1,2). In fact S is the unstable manifold of
(1,2) and the stable manifold of (0, 0) since for any point (x,y) € S we have
limy, oo F™(z,y) = (0,0) and lim,,—.oc F~"(z,y) = (1,2). In this situation S
connects dynamically the points (0,0) and (1, 2).

Also S is the unique curve with properties (i) and (ii) of Theorem 7.
To see this, let S’ be another curve different from S connecting the vertices
V; and let (z,y) € S’ be not a vertex point. Then (z,y) would belong to
some region wy and as a consequence F"(x,y) would not converge to (0,0),
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nor F~"(x,y) to (1,2), as n — oo. Therefore S is the unique curve having
properties (i) and (ii) from Theorem 7. m

COROLLARY 10. F'|4, has the point (1,2) as its global attractor.

From Theorem 9 it is straightforward that there are no cycles in Int(4;)
and analogously it can also be proved that there are no cycles in Int(A4,).
We conclude that if there is a cycle in Int(A) then it must have non-empty
intersection with both Int(4;) and Int(4,).

(0.4) 4

(0,3) ~

(0,2) 4

(0,1)

(o,o)\\ \\ (10 20) (3.0) (4,0)
X2 X1 XO

5. Periodic trajectories of (A, F'). We are interested in the periodic
points in Int(A).
The fixed points satisfy F(z,y) = (x,y). It is easy to check that the
unique fixed point in Int(A) is (1, 2).
The 2-periodic points satisfy F?(x,y) = (z,vy), or equivalently
(—(=2+a)z(—4+z+y), —2’y(—4 + 2 +y)) = (z,y).
It is not difficult to see that this system has no solution in Int(A).
The 3-periodic points satisfy F3(x,y) = (z,vy), or equivalently
— (=242 x(—4+z+y)(2— 4z + 2>+ :Ey)2 =z,
(=2 +2)%2y(~4+a+y)’ =y.
A straightforward computation shows that this system has no solution in
Int(A).
In short, F' has no periodic trajectory of periods 2 and 3 in Int(A). But,
as proved in Theorem 11, it has a unique periodic trajectory of period 4 in
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Int(A) which is obtained explicitly using some properties of the resultant.
This procedure allows us to prove the existence of a periodic point of period 5;
its trajectory is given in an implicit way. Before proving this result we need
to recall some properties of the resultant.

Let a;, i € {1,...,n}, and bj, j € {1,...,m}, be the roots of the poly-
nomials P(z) and Q(x), respectively, both with leading coefficient 1. The
resultant of P and @, Res[P, @], is the product of all the differences a; — b;,
ie{l,...,n},j€{l,...,m}. In order to see how to compute Res[P, ()], see
for instance [5] and [7]. The main property of the resultant is that if P and
@ have a common root then necessarily Res[P, Q] = 0.

Consider now polynomials in two variables, say P(U,V) and Q(U,V).
These polynomials can be seen as polynomials in X = U with polynomial
coefficients in Y = V. Then the resultant with respect to U, Res|[P, Q, U], is
a polynomial in Y with the following property. If P(U, V) and Q(U, V') have
a common root (Up, V), then

Res[P, Q,U](Vo) = 0,

and similarly for the variable V. In particular, if we compute all the roots of
the following two polynomials in one variable p(U) = Res[P,Q, V], ¢(V) =
Res[P, Q, U], and denote them by Uy and Vjp, respectively, then we can check
when (Up, Vp) is a solution of the system P(U,V) =Q(U,V) =

In short, using the resultant we reduce the problem of finding solutions
of a polynomial system in two variables to finding roots of two polynomials
in one variable.

THEOREM 11. The map F has a unique periodic trajectory of period 4
in Int(A). This trajectory is

Wv22) (1550 ) (0 v2) (- 350 )

Proof. We must find the points (z,y) in Int(A) such that F*(z,y) =
(z,y), or equivalently

(6) (f(@,9), 9(z,y)) = (0,0),
where
J@,y) = (~2+ @) a(~4+ 2 +y)2 4o+ 2 +ay)”
x (2 — 162 4 202 — 823 + z* + day — 42y + ac3y)2 + z,
glz,y) = (=2 + ) aty(—4+z+9)* (2 — 4z + 2% + my)2 + .

Therefore to find the 4-periodic trajectories of the map F' in Int(A) is equiv-
alent to finding the solutions of the polynomial system (6) in Int(A).
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Now the resultant Res[f, g, z] is the polynomial in y given by
q(y) = —8589934592(—2 4 4)y** (—1 + 2y)* (1 — 4y + 2¢°).

Its roots without taking into account their multiplicity are 0, 2, 1/2, 1+1/\/§
and 1 — 1/v/2. Hence, a fixed point (z,y) of F* (i.e. a periodic point of F
with period 1, 2 or 4) must have its y coordinate equal to one of these five
possible values.

We are not interested in the fixed points (%) of F* with v = 0 because
all these points are on the boundary of the triangle A.

Now we study the fixed points (z,y) of F* with v = 2. From easy com-
putations we get

f(,2) =1 —2)zF(z), g(z,2)=2@-1)G(),
where

F(z) = (127 — 13452 + 655922 — 195052° + 393112%
— 568012° 4 6080725 — 4910127 + 300992° — 1394927
+ 4811210 — 119721 4 203212 — 21213 + 214,
G(z) = -1 —x — 2% — 2% + 511z — 23052° + 49912°
— 67212" + 61752% — 40172° + 18632 — 605z
+ 131212 — 17213 4 214,

The common factor z — 1 of f(z,2) and g(x,2) provides the fixed point
(1,2) of F, which is also fixed for F*. Since the factor = of f(z,2) does not
appear in g(z, 2), the point (0, 2) is not a solution of system (6). Finally, since
Res[F(z),G(z),z] = 154618822656 # 0, there are no additional periodic
points (z,y) with y = 2.

We study the fixed points (z,y) of F* with y = 1/2. From easy compu-

tations we get

F,1/2) = _3i2 22— 4z + 22 F(z),
g(@,1/2) = —6—14(2 —dz + 2))G(2),

where

F(x) = —3568 4 601922 — 3906962> + 13046402° — 26171562
+ 34350802° — 309685425 + 1968868z — 8916872°
+ 2863142 — 637362 + 9360z — 816212 + 32213,
G(x) = 16 4 32z 4 562 + 962 — 437402 4 1915762°
— 3642502 + 39462427 — 269087x° + 1200102
— 350642'° + 6480z — 688212 + 32213
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Since the factor z of f(z,1/2) does not appear in g(x, 1/2), the point (0,1/2)
is not a solution of system (6). Moreover, since Res[F(x), G(x), z] is

—137015778499772148581595453067151533092743675904 # 0,

there are no additional fixed points (x,%) of F* with y = 1/2 coming from
the factors F(z) and G(x). Finally, the common factor 2 — 4z + 22 to F(z)
and G(z) provides two solutions to system (6), namely

[oval) mi (20val)

So these two points are fixed points of F'4. It is easy to check that they belong
to the periodic trajectory described in the statement of the proposition.

Lastly, if we study in a similar way the fixed points (x,%) of F* with
y =141/y/2, we only get the same 4-periodic trajectory. m

(0,4) 4
03
©2) -
e \
/+
.
0.0) (1,0) 2.0) 3.0) 40)

Concerning the trajectories of (A, F) of period 5, arguments similar to
those for Theorem 11 can be used for the conjugate system on the disc
f: D — D given by (z,y) — (y|z|,2* — 2) to simplify calculations. The
result is the following.

THEOREM 12. The map f in Int(D) has a unique periodic trajectory of
period 5 associated to the point

(x,y) = (—0.7873282213706032, —1.5245690977552053).

The five second coordinates of the points of the trajectory are roots of the



278 F. Balibrea et al.

following polynomial:
1—98y —461y> — 560y> + 353y + 12551 +903y° + 144y ™ — 7645 — 2137 +41°.

Analogously, the first coordinates of these points are roots of the following
two polynomials:

1+ 20z — 72% — 7423 + 52* + 8925 4 925 — 402" — 828 + 52 + xlo,
1— 20z — 722 + 7423 + 52* — 892° + 928 + 4027 — 828 — 527 + 21V,

Obviously, for computational reasons it is not possible to analyze the
existence of periodic trajectories of periods n > 5 using this procedure.
There are no reasons for the non-existence of such trajectories. On the
other hand, if we consider the system (R?, F') other new periodic trajec-
tories could appear and the uniqueness of the 4,5-periodic trajectories could
disappear.
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