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Homotopy classification of nanophrases
with at most four letters

by

Tomonori Fukunaga (Sapporo)

Abstract. We give a homotopy classification of nanophrases with at most four letters.
It is an extension of the classification of nanophrases of length 2 with at most four letters,
given by the author in a previous paper. As a corollary, we give a stable classification
of ordered, pointed, oriented multi-component curves on surfaces with minimal crossing
number less than or equal to 2 such that any equivalent curve has no simply closed curves
in its components.

1. Introduction. The study of curves via words was initiated by
C. F. Gauss [2]. He encoded closed planar curves by words of a certain
type, which are now called Gauss words. We can apply this method to
encode multi-component curves and links on surfaces. For instance, in [8]
and [9] V. Turaev studied stable equivalence classes of curves and links on
surfaces by using generalized Gauss words called nanowords (stable equiva-
lence classes of curves and links on surfaces are closely related to the theory
of virtual strings and virtual links).

A knot is the image of a smooth embedding of S1 into R3. Further, a k-
component link is the image of a smooth embedding of the disjoint union of
k circles into R3. In the theory of knots, we study isotopy classes of knots.
When we study knots and links, we often use link diagrams of links. A knot
diagram is a smooth immersion of S1 into R2 with transversal double points
such that at each double point one of the two paths is declared to be the over-
path and the other the underpath (we call a double point of such an immer-
sion a crossing). If a knot diagram D is obtained as the image of a knot by a
projection of R3 to R2, then we call D a diagram of the knot. A link diagram
is defined similarly as a smooth immersion of a disjoint union of circles to R2.
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In 1999, L. Kauffman introduced the theory of virtual knots and links
using combinatorially extended link diagrams called virtual link diagrams.
A virtual knot diagram is a planar graph of valency four endowed with the
following structure: each vertex either has an overcrossing and undercrossing
(in other words, real crossing) or is marked by a virtual crossing. A virtual
link diagram is defined similarly. Then we define virtual links by a set of
virtual link diagrams quotiented by an equivalence relation generated by
the virtual Reidemeister moves (see [5] for more details).

In [5], Kauffman studied Gauss codes of virtual knots and links, funda-
mental groups, crystals, racks and quandles of virtual knots and links, and
quantum invariants of virtual knots and links.

V. Turaev extended the theory of (pointed ordered) virtual knots and
links in the aspect of Gauss codes in [7] and [8]. More precisely a nanoword
over an alphabet α endowed with an involution τ : α → α is a word on
an alphabet A endowed with a projection A 3 A 7→ |A| ∈ α such that
every letter appears twice or not at all. In the case where the alphabet α
consists of two elements permuted by τ , the notion of a nanoword over α is
equivalent to the notion of an open virtual string introduced in [10].

Turaev introduced homotopy equivalence on the set of nanowords over α.
For a fixed subset S ⊂ α × α × α, the homotopy equivalence relation
is generated by three types of moves on nanowords. The first move con-
sists of deleting two consecutive appearances of the same letter. The sec-
ond move has the form xAByBAz 7→ xyz where x, y, z are words and
A,B are letters such that |A| = τ(|B|). The third move has the form
xAByACzBCt 7→ xBAyCAzCBt where x, y, z, t are words and A,B,C are
letters such that (|A|, |B|, |C|) ∈ S. These moves are suggested by the three
local deformations of curves on surfaces (see Fig. 1 and [8] for more details).

In [8] Turaev showed that a stable equivalence class of an oriented
pointed curve on a surface can be identified with the homotopy class of
a nanoword in a 2-letter alphabet. Moreover, Turaev showed that the stable
equivalence class of an oriented pointed knot diagram on a surface can be
identified with the homotopy class of a nanoword on a 4-letter alphabet for
some S. Moreover Turaev extended this result to multi-component curves.
In fact the stable equivalence class of an oriented, ordered, pointed multi-
component curve (respectively link diagram) on a surface is identified with
the homotopy class of a nanophrase on a 2-letter (respectively 4-letter) al-
phabet for some S. Roughly speaking, a nanophrase is a sequence of words
where concatenation of those words is a nanoword (see also Subsection 3.2
and Section 4 for more details). Thus, using Turaev’s theory of words and
phrases, we can treat curves on surfaces algebraically.

Any results in Turaev’s theory of words yield results on multi-curves and
links. For example, if we classify nanophrases up to S-homotopy, then we
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obtain a classification of ordered, pointed, oriented multi-component curves
on surfaces and knot diagrams as a corollary. Furthermore, if we could find
other correspondences between the theory of phrases and geometric objects,
then we could find common properties of multi-curves, links and other ge-
ometric (or knot-theoretic) objects via the theory of words and phrases.
Therefore, Turaev’s theory of words and phrases can be expected to have a
lot of applications.

A homotopy classification of nanowords was given by Turaev in [7]. He
classified nanowords of at most six letters. The present author [1] intro-
duced new invariants of nanophrases and gave a homotopy classification of
nanophrases of length 2 with at most four letters, using Turaev’s classifica-
tion of nanowords.

The purpose of this paper is to give a classification of nanophrases over
an arbitrary alphabet with at most four letters but with no condition on the
length. As a corollary, we classify the multi-component curves with minimum
crossing number at most 2 which have no “untidy” components up to stable
equivalence (Theorem 2.2).

The organization of this paper is as follows. In Sections 2–4 we review
the theory of multi-component curves and the homotopy theory of words
and phrases. In Section 5 we recall known results on the classification of
nanowords and nanophrases up to homotopy and we generalize them to
phrases of an arbitrary length. Finally in Section 6 we give the proof of the
main theorem of this paper.

2. Stable equivalence of multi-component curves

2.1. Multi-component curves. In this paper a curve means the image
of a generic immersion of an oriented circle into an oriented surface. The
word “generic” means that the curve has only a finite set of self-intersections
which are all double and transversal. A k-component curve is defined in the
same way, with the difference that it may be formed by k curves rather than
only one curve. These curves are the components of the k-component curve.
A k-component curve is pointed if each component is endowed with a base
point (the origin) distinct from the crossing points. A k-component curve is
ordered if its components are numbered. Two ordered, pointed curves are
stably homeomorphic if there is an orientation preserving homeomorphism of
their regular neighborhoods in the ambient surfaces mapping the first multi-
component curve onto the second and preserving the order, the origins, and
the orientations of the components.

Now we define stable equivalence of ordered, pointed multi-component
curves [4]: Two ordered, pointed multi-component curves are stably equiv-
alent if they can be related by a finite sequence of the following transfor-
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mations: (i) replacing an ordered, pointed multi-component curve with a
stably homeomorphic one; (ii) deformation of a pointed curve in its ambi-
ent surface away from the origin (such a deformation may push a branch of
the multi-component curve across another branch or a double point but not
across the origin of the curves) as in Fig. 1.

Fig. 1. Three local deformations of curves

We denote by Ck the set of stable equivalence classes of ordered, pointed
k-component curves.

Remark 2.1. The theory of stable equivalence of multi-component
curves on surfaces is closely related to the theory of virtual strings. See
[3] and [10] for more details.

We will show the following theorem by using Turaev’s theory of words.
An ordered, pointed multi-component surface-curve is called irreducible

if it is not stably equivalent to a surface-curve with a simply closed compo-
nent.

Theorem 2.2. Any irreducible ordered, pointed multi-component sur-
face-curve with minimal crossing number less than or equal to 2 is stably
equivalent to one of the ordered, pointed multi-component curves arising as
in also Remark 2.3 below. There are exactly 52 stable equivalence classes of
irreducible ordered, pointed, multi-component surface-curves.

Fig. 2. The list of curves

Remark 2.3. To list the stable equivalence classes of irreducible or-
dered, pointed multi-component surface-curves with minimal crossing num-
ber ≤ 2, in Fig. 2 we just list the multi-component curves without order and
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orientation of the components. Two different pictures from Fig. 2 never pro-
duce equivalent ordered, pointed multi-component surface-curves. On the
other hand, two different additional structures (orientation and order) on
the same picture may yield equivalent ordered, pointed multi-component
surface-curves. More precisely, 2, 2, 8 (respectively 4, 24, 12) different or-
dered, pointed multi-component surface-curves arise from the upper (respec-
tively lower) row. By Theorem 5.15, two ordered, pointed multi-component
surface-curves arising from pictures in Fig. 2 are stably equivalent if and
only if the associated nanophrases are homotopic, and we can obtain all the
stable equivalence classes of irreducible ordered, pointed multi-component
surface-curves with minimal crossing number ≤ 2 by specifying order and
orientation for multi-component curves in Fig. 2.

To prove Theorem 2.2, we use Turaev’s [7, 8] theory of words and phrases.

3. Turaev’s theory of words and phrases. In this section we review
the topology of words and phrases.

3.1. Nanowords and their homotopy. An alphabet is a set and let-
ters are its elements. A word of length n ≥ 1 on an alphabet A is a mapping
w : n̂ → A where n̂ = {1, . . . , n}. We denote a word of length n by the
sequence of letters w(1) · · ·w(n). A word w : n̂→ A is a Gauss word if each
element of A is the image of precisely two elements of n̂.

For a set α, an α-alphabet is a set A endowed with a mapping A → α
called projection. The image of A ∈ A under this mapping is denoted |A|.
An étale word over α is a pair (an α-alphabet A, a word on A). A nanoword
over α is a pair (an α-alphabet A, a Gauss word on A). We call an empty
étale word in an empty α-alphabet the empty nanoword. It is written ∅ and
has length 0.

A morphism of α-alphabets A1, A2 is a set-theoretic mapping f : A1 →
A2 such that |A| = |f(A)| for all A ∈ A1. If f is bijective, then this mor-
phism is an isomorphism. Two étale words (A1, w1) and (A2, w2) over α are
isomorphic if there is an isomorphism f : A1 → A2 such that w2 = f ◦ w1.

To define homotopy of nanowords we fix a finite set α with an involution
τ : α → α and a subset S ⊂ α × α × α. We call the pair (α, S) homotopy
data.

Definition 3.1. Let (α, S) be homotopy data. We define homotopy
moves (1)–(3) as follows:

(1) (A, xAAy)→ (A \ {A}, xy) for all A ∈ A and x, y words in A \ {A}
such that xy is a Gauss word.

(2) (A, xAByBAz)→ (A\{A,B}, xyz) if A,B ∈ A satisfy |B| = τ(|A|)
and x, y, z are words in A \ {A,B} such that xyz is a Gauss word.
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(3) (A, xAByACzBCt) → (A, xBAyCAzCBt) if A,B,C ∈ A satisfy
(|A|, |B|, |C|) ∈ S and x, y, z, t are words in A such that xyzt is a
Gauss word.

Definition 3.2. Let (α, S) be homotopy data. Then nanowords (A1, w1)
and (A2, w2) over α are S-homotopic (denoted (A1, w1) 'S (A2, w2)) if
(A2, w2) can be obtained from (A1, w1) by a finite sequence of isomorphisms,
S-homotopy moves (1)–(3) and their inverses.

The set of S-homotopy classes of nanowords over α is denoted N (α, S).
To define S-homotopy of étale words we define desingularization of étale

words (A, w) over α as follows: Set Ad := {Ai,j := (A, i, j) | A ∈ A, 1 ≤
i < j ≤ mw(A)} with projection |Ai,j | := |A| ∈ α for all Ai,j (where
mw(A) := Card(w−1(A)) ). The word wd is obtained from w by first deleting
all A ∈ A with mw(A) = 1; then for each A ∈ A with mw(A) ≥ 2 and each
i = 1, . . . ,mw(A), we replace the ith entry of A in w by

A1,iA2,i . . . Ai−1,iAi,i+1Ai,i+2 . . . Ai,mw(A).

The resulting (Ad, wd) is a nanoword of length
∑

A∈Amw(A)(mw(A) − 1)
and called the desingularization of (A, w). Then we define S-homotopy of
étale words as follows:

Definition 3.3. Let w1 and w2 be étale words over α. Then w1 and w2

are S-homotopic if wd1 and wd2 are S-homotopic.

3.2. Nanophrases and their homotopy. In [8], Turaev used similar
arguments for phrases (sequences of words).

Definition 3.4. A nanophrase (A, (w1| · · · |wk)) of length k ≥ 0 over
a set α is a pair consisting of an α-alphabet A and a sequence of k words
w1, . . . , wk on A such that w1 . . . wk is a Gauss word on A. We denote it
simply by (w1| · · · |wk).

By definition, there is a unique empty nanophrase of length 0 (the cor-
responding α-alphabet A is an empty set).

Remark 3.5. We can consider a nanoword w to be a nanophrase (w) of
length 1.

A mapping f : A1 → A2 is an isomorphism of two nanophrases if f is
an isomorphism of α-alphabets transforming one nanophrase into the other.

Given homotopy data (α, S), we define homotopy moves on nanophrases
as in Section 3.1 with the only difference that the 2-letter subwords AA, AB,
BA, AC and BC modified by these moves may occur in different words of the
phrase. Isomorphism and homotopy moves generate the equivalence relation
'S of S-homotopy on the classes of nanophrases over α. We denote the set
of S-homotopy classes of nanophrases of length k by Pk(α, S).
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4. Nanophrases versus multi-component curves. In [8], Turaev
showed that a special case of homotopy theory of nanophrases is equivalent
to the study of Ck. More precisely, he showed the following theorem.

Theorem 4.1 (Turaev [8]). Let α0 be the set {a, b} with involution τ :
α0 → α0 permuting a and b, and S0 the diagonal of α0×α0×α0. Then there
is a canonical bijection of Ck and Pk(α0, S0).

The method of making a nanophrase P (C) from an ordered, pointed
k-component curve C is as follows. Let us label the double points of C
by distinct letters A1, . . . , An. Starting at the origin of the first component
of C and following C in the positive direction, we write down the labels
of double points which we pass until the return to the origin. Thus we
obtain a word w1. Similarly we obtain words w2, . . . , wk on the alphabet
A = {A1, . . . , An} from the second component, . . . , k-th component. Let t1i
(respectively, t2i ) be the tangent vector to C at the double point labeled Ai
appearing at the first (respectively, second) passage through this point. Set
|Ai| = a if the pair (t1i , t

2
i ) is positively oriented, and |Ai| = b otherwise.

Thus we obtain the required nanophrase P (C) := (A, (w1| · · · |wk)).
By the above theorem, if we classify the homotopy classes of nanophrases,

then we obtain a classification of ordered, pointed multi-component curves
under stable equivalence as a corollary.

Remark 4.2. In [6], D. S. Silver and S. G. Williams studied open vir-
tual multi-strings. The theory of open virtual multi-strings is equivalent to
the theory of pointed multi-component surface-curves. Silver and Williams
constructed invariants of open virtual multi-strings.

5. Classification of nanophrases. In this section, we give a homotopy
classification of nanophrases with at most four letters under the assumption
that the homotopy data S is the diagonal. We keep this assumption in the
remaining part of the paper. Note that it does not restrict generality.

5.1. The case of nanophrases of length 1. In the case of nanophrases
of length 1 (in other words, of nanowords), Turaev gave the following clas-
sification theorem.

Theorem 5.1 (Turaev [7]). Let w be a nanoword of length 4 over α.
Then w is either homotopic to the empty nanoword or isomorphic to the
nanoword wa,b := (A = {A,B}, ABAB) where |A| = a, |B| = b ∈ α with
a 6= τ(b). Moreover for a 6= τ(b), the nanoword wa,b is non-contractible and
two nanowords wa,b and wa′,b′ are homotopic if and only if a = a′ and b = b′.

Remark 5.2. In [7], Turaev also gave a classification of nanowords of
length 6. But in this paper we do not use that result. The classification
problem for nanowords of length 8 or more is still open (see [9]).
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5.2. The case of nanophrases of length 2. First we introduce the
following notation: Pa := (A|A), P 4,0

a,b := (ABAB|∅), P 3,1
a,b := (ABA|B),

P 2,2I
a,b := (AB|AB), P 2,2II

a,b := (AB|BA), P 1,3
a,b := (A|BAB) and P 0,4

a,b :=

(∅|ABAB) with |A| = a, |B| = b ∈ α. If a = τ(b), then P 4,0
a,b , P 2,2I

a,b , P 2,2II
a,b

and P 0,4
a,b are homotopic to (∅|∅). So in this paper, if we write P 4,0

a,b , P 2,2I
a,b ,

P 2,2II
a,b , P 0,4

a,b then we always assume that a 6= τ(b).
In [1], the author gave a classification of nanophrases of length 2 with at

most four letters.

Theorem 5.3 ([1]). Let P be a nanophrase of length 2 with two letters.
Then P is not homotopic to (∅|∅) if and only if P is isomorphic to Pa.
Moreover Pa and Pa′ are homotopic if and only if a = a′.

Theorem 5.4 ([1]). Let P be a nanophrase of length 2 with four letters.
Then P is homotopic to (∅|∅), or homotopic to a nanophrase of length 2 with
two letters, or isomorphic to one of the following nanophrases: P 4,0

a,b , P 3,1
a,b ,

P 2,2I
a,b , P 2,2II

a,b , P 1,3
a,b , P 0,4

a,b . For (i, j) ∈ {(4, 0), (3, 1), (2, 2I), (2, 2II), (1, 3),

(0, 4)} and any a, b ∈ α, the nanophrase P i,ja,b is neither homotopic to (∅|∅)
nor to any nanophrase of length 2 with two letters. The nanophrases P i,ja,b
and P i,ja′,b′ are homotopic if and only if a = a′ and b = b′. For (i, j) 6= (i′, j′),

the nanophrases P i,ja,b and P i
′,j′

a′,b′ are not homotopic for any a, b, a′, b′ ∈ α.

Corollary 5.5 ([1]). There are exactly 19 stable equivalence classes of
two-component pointed, ordered, oriented, curves on surfaces with minimum
crossing number less than or equal to 2.

In this paper, we give a classification of nanophrases of length at least 3
with four letters.

5.3. Homotopy invariants of nanophrases. In this subsection we
introduce some invariants of nanophrases over α (some of them are defined
in [1]).

Let Π be the group defined as follows:

Π := ({za}a∈α | zazτ(a) = 1 for all a ∈ α).

Definition 5.6 (cf. [1]). Let P = (A, (w1| · · · |wk)) be a nanophrase of
length k over α, and let ni be the length of nanoword wi. Set n =

∑
1≤i≤k ni.

Then we define n elements γi1, γ
i
2, . . . , γ

i
ni

(i ∈ {1, . . . , k}) of Π by γji :=
z|wj(i)| if wj(i) 6= wl(m) for all l < j and all m < i when l = j. Otherwise
γji := zτ(|wj(i)|). Then we define γ(P ) ∈ Πk by

γ(P ) := (γ1
1γ

1
2 · · · γ1

n1
, γ2

1γ
2
2 · · · γ2

n2
, . . . , γk1γ

k
2 · · · γknk

).
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Then we obtain the following proposition.

Proposition 5.6.1. γ is a homotopy invariant of nanophrases.

We now define an invariant T of nanophrases.
First we prepare some notation. Since α is a finite set, we obtain the

following orbit decomposition of τ :

α/τ = {ãi1 , . . . , ãil , ãil+1
, . . . , ãil+m

},
where ãij := {aij , τ(aij )}, such that Card(ãij ) = 2 for all j ∈ {1, . . . , l} and
Card(ãij ) = 1 for all j ∈ {l+ 1, . . . , l+m} (we fix a complete representative
system {ai1 , . . . , ail , ail+1

, . . . , ail+m
} which satisfies the above condition).

Let A be an α-alphabet. For A ∈ A we define ε(A) ∈ {±1} by

ε(A) :=
{

1 if |A| = aij for some j ∈ {1, . . . , l +m},
−1 if |A| = τ(aij ) for some j ∈ {1, . . . l}.

Let P = (A, (w1| · · · |wk)) be a nanophrase over α, and A,B ∈ A. Let K(i,j)

be Z if i ≤ l and j ≤ l, otherwise K(i,j) = Z/2Z. We denote K(1,1)×K(1,2)×
· · ·×K(1,l+m)×K(2,1)×· · ·×K(l+m,l+m) by

∏
K(i,j). Then we define σP (A,B)

∈
∏
K(i,j) as follows: If A and B form · · ·A · · ·B · · ·A · · ·B · · · in P , |A| ∈

ãipand |B| = aiq for some m,n ∈ {1, . . . , l+m}, or · · ·B · · ·A · · ·B · · ·A · · ·
in P , |A| ∈ ãip and |B| = τ(aiq) for some p, q ∈ {1, . . . , l +m} , then

σP (A,B) := (0, . . . , 0,
(p,q)

1̌ , 0, . . . , 0).

If · · ·A · · ·B · · ·A · · ·B · · · in P , |A| ∈ ãip and |B| = τ(aiq), or · · ·B · · ·A · · ·
B · · ·A · · · in P , |A| ∈ ãip and |B| = aiq , then

σP (A,B) := (0, . . . , 0,
(p,q)

−̌1 , 0, . . . , 0).

Otherwise σP (A,B) := (0, . . . , 0). With the above preparation, we define
the invariant T as follows.

Definition 5.7. Let P = (A, (w1| · · · |wk)) be a nanophrase of length k
over α. For A ∈ A such that there exists i ∈ {1, . . . , k} with Card(w−1

i (A))
= 2, we define TP (A) ∈

∏
K(i,j) by

TP (A) := ε(A)
∑
B∈A

σP (A,B),

and TP (wi) ∈
∏
K(i,j) by

TP (wi) :=
∑

A∈A,Card(w−1
i (A))=2

TP (A).

Then we define T (P ) ∈ (
∏
K(i,j))k by

T (P ) := (TP (w1), . . . , TP (wk)).
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Proposition 5.7.1. T is an invariant of nanophrases over α.

Proof. It is clear that isomorphism does not change the value of T . Con-
sider the first homotopy move

P1 := (A, (xAAy))→ P2 := (A \ {A}, (xy))

where x and y are words on A, possibly including the “|” character. Since A
and X are unlacement in the phrase P1 for all X ∈ A, A does not contribute
to T (P1). So the first homotopy move does not change the value of T .

Consider the second homotopy move

P1 := (A, (xAByBAz))→ P2 := (A \ {A,B}, (xyz))

where |A| = τ(|B|), and x, y and z are words on A, possibly including “|”.
Suppose y does not include “|” and Card(|̃A|) = 2 (so Card(|̃B|) is also two).
Then TP1(A) + TP2(B) = 0 since

TP1(A) = ε(A)
(
σP1(A,B) +

∑
X∈A\{B}

σP1(A,X)
)

= ε(A)
∑

X∈A\{B}

σP1(A,X) = −ε(B)
∑

X∈A\{A}

σP1(B,X)

= −ε(B)
(
σP1(B,A) +

∑
X∈A\{A}

σP1(B,X)
)

= −TP1(B).

Moreover for X ∈ A \ {A,B}, · · ·A · · ·X · · ·A · · ·X · · · (respectively
· · ·X · · ·A · · ·X · · ·A · · · ) in P1 if and only if · · ·B · · ·X · · ·B · · ·X · · · (re-
spectively · · ·X · · ·B · · ·X · · ·B · · · ) in P1, and |A| = τ(|B|). So

σP1(X,A) + σP1(X,B) = 0

for all X ∈ A. Hence

TP1(X) = ε(X)
(
σP1(X,A) + σP1(X,B) +

∑
D∈A\{A,B}

σP1(X,D)
)

= ε(X)
∑

D∈A\{A,B}

σP1(X,D) = ε(X)
∑

D∈A\{A,B}

σP2(X,D)

= TP2(X).

This implies T (P1) = T (P2).

Suppose y does not include “|” and Card(|̃A|) = 1 (so Card(|̃B|) is also
one). In this case also TP1(A) + TP2(B) = 0 since
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TP1(A) = ε(A)
(
σP1(A,B) +

∑
X∈A\{B}

σP1(A,X)
)

= ε(A)
∑

X∈A\{B}

σP1(A,X) = ε(B)
∑

X∈A\{A}

σP1(B,X)

= ε(B)
(
σP1(B,A) +

∑
X∈A\{A}

σP1(B,X)
)

= TP1(B),

and all entries of TP1(A) and TP2(B) are elements of Z/2Z. Moreover for X ∈
A\{A,B}, · · ·A · · ·X · · ·A · · ·X · · · (respectively · · ·X · · ·A · · ·X · · ·A · · · )
in P1 if and only if · · ·B · · ·X · · ·B · · ·X · · · (respectively · · ·X · · ·B · · ·X
· · ·B · · · ) in P1. Since |̃A| = |̃B| and Card(|̃A|) = 1, we have σP1(X,A) =
σP1(X,B) in Z/2Z. So σP1(X,A) + σP1(X,B) = 0 for all X ∈ A. By the
above

TP1(X) = ε(X)
(
σP1(X,A) + σP1(X,B) +

∑
D∈A\{A,B}

σP1(X,D)
)

= ε(X)
∑

D∈A\{A,B}

σP1(X,D) = ε(X)
∑

D∈A\{A,B}

σP2(X,D) = TP2(X).

This implies T (P1) = T (P2).
The case when y includes “|” is proved similarly.
Consider the third homotopy move

P1 := (A, (xAByACzBCt))→ P2 := (A, (xBAyCAzCBt))
where |A| = |B| = |C|, and x, y, z and t are words on A, possibly with “|”.
Suppose y and z do not include “|”. Note that σP1(A,B) = σP2(A,C). So

TP1(A) = ε(A)
(
σP1(A,B) +

∑
X∈A\{B}

σP1(A,X)
)

= ε(A)
( ∑
X∈A\{C}

σP2(A,X) + σP2(A,C)
)

= TP2(A),

and since σP1(C,B) = σP2(C,A), we obtain

TP1(C) = ε(C)
(
σP1(C,B) +

∑
X∈A\{B}

σP1(C,X)
)

= ε(C)
( ∑
X∈A\{C}

σP2(C,X) + σP2(C,A)
)

= TP2(C).

Moreover σP1(B,A) + σP1(B,C) = 0 and σP2(B,A) = σP2(B,C) = 0. We
obtain TP1(B) = TP2(B). It is easily checked that TP1(E) = TP2(E) for all
E 6= A,B,C. So we obtain T (P1) = T (P2).

The case of y or z including “|” is proved similarly.
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Example 5.8. We calculate T for a nanophrase over α0 with an involu-
tion τ0 : a 7→ b, P = (C|ABCA|B) with |A| = a, |B| = a and |C| = b.

First, we choose the set {a} as a complete representative system of α0/τ0.
Since this is a one-element set and the orbit of this element is a free orbit,
each component of T (P ) is an element of Z for each i ∈ {1, 2, 3} by the
definition of T . Thus ε(A) = 1. Moreover, σP (A,B) = 1 and σP (A,C) = 1.
Therefore TP (w1) and TP (w3) are 0, and

TP (w2) = ε(A)(σP (A,B) + σP (A,C)) = 2.

By the above
T (P ) = (0, 2, 0) ∈ Z.

Remark 5.9. The invariant T is a generalization of the invariants T
of nanophrases over α0 and the one-element set defined in [1]. Using the
invariant T defined in this paper, we can classify nanophrases of length 2
with four letters without using Lemma 4.2 of [1].

Next we define another invariant. Let π be the group defined as follows:

π := (a ∈ α | aτ(a) = 1, ab = ba for all a, b ∈ α) ' Π/[Π,Π].

Let P = (A, (w1| · · · |wk)) be a nanophrase of length k over α. We define
(wi, wj)P ∈ π for i < j by

(wi, wj)P :=
∏

A∈Im(wi)∩Im(wj)

|A|.

Proposition 5.9.1. If nanophrases P1 and P2 over α are homotopic,
then (wi, wj)P1 = (wi, wj)P2.

Proof. It is clear that isomorphism does not change the value of (wi, wj)P .
Consider the first homotopy move

P1 := (A, (xAAy))→ P2 := (A \ {A}, (xy)).

In this move, the letter A appears twice in the same component. So A does
not contribute to (wi, wj)P1 . This implies (wi, wj)P1 = (wi, wj)P2 .

Consider the second homotopy move

P1 := (A, (xAByBAz))→ P2 := (A \ {A,B}, (xyz))
where |A| = τ(|B|), and x, y and z are words on A, possibly with “|”.
Suppose y does not include “|”. In this case, A and B are in the same
component of the nanophrase P1. SoA andB do not contribute to (wi, wj)P1 .
This implies (wi, wj)P1 = (wi, wj)P2 for all i, j. Suppose y includes “|”.
Suppose A and B are in the mth component and the nth component of P1

respectively. Then

(wm, wn)P1 = (wm, wn)P2 · |A| · |B| = (wm, wn)P2 · |A| · τ(|A|) = (wm, wn)P2 ,
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and it is clear that (wi, wj)P1 = (wi, wj)P2 for (i, j) 6= (m,n). So (wi, wj)P1 =
(wi, wj)P2 for all i and j.

Consider the third homotopy move

P1 := (A, (xAByACzBCt))→ P2 := (A, (xBAyCAzCBt))
where |A| = |B| = |C|, and x, y, z and t are words on A, possibly with “|”.
Note that the third homotopy move sends a letter in the lth component of
P1 to the lth component of P2. So (wi, wj)P1 is not changed by the third
homotopy move.

By the above, (wi, wj)P1 is a homotopy invariant of nanophrases.

By the above proposition, we obtain a homotopy invariant of nanophrases

((w1, w2)P , (w1, w3)P , . . . , (w1, wk)P , (w2, w3)P , . . . , (wk−1, wk)P )∈π
1
2
k(k−1).

Example 5.10. We calculate (wi, wj)P for a nanophrase over α0 with
an involution τ0 : a 7→ b, P = (AB|AC|BC) with |A| = a, |B| = a and
|C| = b. By definition, (w1, w2)P = |A|, (w1, w3)P = |B| and (w2, w3)P
= |C|. Therefore

((wi, wj)P )i<j = (|A|, |B|, |C|) = (a, a, b) ∈ π3.

5.4. The case of nanophrases of length 3 or more. Now using
the invariants prepared in the last section and some lemmas, we classify
the nanophrases of length 3 or with at most four letters. First recall the
following lemmas from [1].

Lemma 5.11. Let P1 = (w1| · · · |wk) and P2 = (v1| · · · |vk) be nano-
phrases of length k over α. If P1 and P2 are homotopic as nanophrases,
then wi and vi are homotopic as étale words for all i ∈ {1, . . . , k}.

Lemma 5.12. Let P1 = (w1| · · · |wk) and P2 = (v1| · · · |vk) be nano-
phrases of length k over α. If P1 and P2 are homotopic, then the length
of wi is equal to the length of vi modulo 2 for all i ∈ {1, . . . , k}.

The following lemma is checked easily by the definition of homotopy of
nanophrases.

Lemma 5.13. Let P1 = (w1| · · · |wk) and P2 = (v1| · · · |vk) be nano-
phrases over α. If P1 and P2 are homotopic, then (w1| · · · |wlwl+1| · · · |wk)
and (v1| · · · |vlvl+1| · · · |vk) are homotopic as nanophrases of length k−1 over
α for all l ∈ {1, . . . , k − 1}.

Now we give a classification of nanophrases with two letters. Set

P 1,1;p,q
a := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

Ǎ |∅| · · · |∅)
with |A| = a for 1 ≤ p < q ≤ k.
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Theorem 5.14. Let P be a nanophrase of length k with two letters.
Then P is either homotopic to (∅| · · · |∅) or isomorphic to P 1,1;p,q

a for some
p, q ∈ {1, . . . , k}, a ∈ α. Moreover P 1,1;p,q

a and P 1,1;p′,q′

a′ are homotopic if and
only if p = p′, q = q′ and a = a′.

Proof. The first assertion is clear. We show the second assertion. By the
definition of (wi, wj)P , (wi, wj)P 1,1;p,q

a
= a if i = p and j = q. Otherwise

(wi, wj)P 1,1;p,q
a

= 1. For a ∈ α, a 6= 1 in π. So if P 1,1;p,q
a and P 1,1;p′,q′

a′ are
homotopic, then p = p′, q = q′ and a = a′.

To state the classification theorem for nanophrases with four letters, we
introduce the following notation:

P 4;p
a,b := (∅| · · · |∅|

p
ˇABAB |∅| · · · |∅),

P 3,1;p,q
a,b := (∅| · · · |∅|

p
ˇABA |∅| · · · |∅|

q

B̌ |∅| · · · |∅),

P 2,2I;p,q
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

ǍB |∅| · · · |∅),

P 2,2II;p,q
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

B̌A |∅| · · · |∅),

P 1,3;p,q
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q
ˇBAB |∅| · · · |∅),

P 2,1,1I;p,q,r
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 2,1,1II;p,q,r
a,b := (∅| · · · |∅|

p

B̌A |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,2,1I;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

ǍB |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,2,1II;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌A |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,1,2I;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

ǍB |∅| · · · |∅),

P 1,1,2II;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

B̌A |∅| · · · |∅),

P 1,1,1,1I;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅|
s

B̌ |∅| · · · |∅),

P 1,1,1,1II;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

Ǎ |∅| · · · |∅|
s

B̌ |∅| · · · |∅),

P 1,1,1,1III;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

B̌ |∅| · · · |∅|
s

Ǎ |∅| · · · |∅),

with |A| = a, |B| = b. If a = τ(b), then the nanophrases P 4;p
a,b , P 2,2I;p,q

a,b

and P 2,2II;p,q
a,b are homotopic to (∅| · · · |∅). So when we write P 4;p

a,b , P 2,2I;p,q
a,b ,

P 2,2II;p,q
a,b we always assume that a 6= τ(b).
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Under the above notation the classification of nanophrases with four
letters is as follows.

Theorem 5.15. Let P be a nanophrase of length k with four letters.
Then P is either homotopic to a nanophrase with at most two letters or iso-
morphic to PX;Y

a,b for some X ∈ {4, (3, 1), . . . , (1, 1, 1, 1III)}, Y ∈ {1, . . . , k,
(1, 2), . . . , (k−3, k−2, k−1, k)}. Moreover PX;Y

a,b and PX
′;Y ′

a′,b′ are homotopic
if and only if X = X ′, Y = Y ′, a = a′ and b = b′.

Proof. The first assertion is clear. To prove the rest, it must be shown
that (i) if X 6= X ′, then PX;Y

a,b and PX
′;Y ′

a,b are not homotopic; and (ii) a

4-letter nanophrase PX;Y
a,b is homotopic to PX;Y ′

a,b if and only if Y = Y ′,
a = a′ and b = b′. First we split the basic shapes of nanophrases into eight
sets:

P0 = {(∅| · · · |∅), P 1,1;p
a },

P1 = {P 4;p
a,b | 1 ≤ p ≤ k, a, b ∈ α},

P2 = {P 3,1;p,q
a,b , P 1,3;p,q

a,b | 1 ≤ p < q ≤ k, a, b ∈ α},

P3 = {P 2,2I;p,q
a,b , P 2,2II;p,q

a,b | 1 ≤ p < q ≤ k, a, b ∈ α},

P4 = {P 2,1,1I;p,q,r
a,b , P 2,1,1II;p,q,r

a,b | 1 ≤ p < q < r ≤ k, a, b ∈ α},

P5 = {P 1,2,1I;p,q,r
a,b , P 1,2,1II;p,q,r

a,b | 1 ≤ p < q < r ≤ k, a, b ∈ α},

P6 = {P 1,1,2I;p,q,r
a,b , P 1,1,2II;p,q,r

a,b | 1 ≤ p < q < r ≤ k, a, b ∈ α},

P7 = {P 1,1,1,1I;p,q,r,s
a,b , P 1,1,1,1II;p,q,r,s

a,b , P 1,1,1,1III;p,q,r,s
a,b |

1 ≤ p < q < r < s ≤ k, a, b ∈ α}.
By using the invariants γ, T and ((wi, wj)P )i<j , we can easily check that
two nanophrases P ∈ Pi and P ′ ∈ Pj can be homotopic only if i = j. This
cuts down the number of pairs of nanophrases that need to be considered
in (i).

Consider the nanophrases in P1.
The claim that P 4;p

a,b is homotopic to P 4;p′

a′,b′ if and only if p = p′, a = a′

and b = b′ follows from Theorem 5.1 and Lemma 5.13.
Consider the nanophrases in P2.
First, P 3,1;p,q

a,b is not homotopic to P 1,3;p′,q′

a′,b′ : Indeed, suppose otherwise.
Then p = p′ and q = q′, since

((wi, wj)P 3,1;p,q
a,b

)i<j = ((wi, wj)P 1,3;p′,q′
a′,b′

)i<j .

By Lemma 5.13, (ABA|B) with |A| = a, |B| = b must be homotopic to
(A′|B′A′B′) with |A′| = a′, |B′| = b′. However, this contradicts Theorem 5.4.
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The claim that P 3,1;p,q
a,b is homotopic to P 3,1;p′,q′

a′,b′ if and only if p = p′,
q = q′, a = a′ and b = b′ follows by comparing ((wi, wj)P 3,1;p,q

a,b
)i<j and

((wi, wj)P 3,1;p′,q′
a′,b′

)i<j .

The claim that P 1,3;p,q
a,b is homotopic to P 1,3;p′,q′

a′,b′ if and only if p = p′,
q = q′, a = a′ and b = b′ is proved similarly.

Consider the nanophrases in P3.
First, P 2,2I;p,q

a,b and P 2,2II;p′,q′

a′,b′ are not homotopic: Indeed, suppose they
are. Then p=p′ and q=q′, since

((wi, wj)P 2,2I;p,q
a,b

)i<j = ((wi, wj)P 2,2II;p′,q′
a′,b′

)i<j .

By Lemma 5.13, (AB|AB) with |A| = a, |B| = b must be homotopic to
(A′B′|B′A′) with |A′| = a′, |B′| = b′. However, this contradicts Theorem 5.4.

The claim that P 2,2I;p,q
a,b and P 2,2I;p′,q′

a′,b′ are homotopic if and only if p = p′,
q = q′, a = a′ and b = b′ follows by comparing the values of the invariant
((wi, wj)P )i<j .

The claim that P 2,2II;p,q
a,b and P 2,2II;p′,q′

a′,b′ are homotopic if and only if
p = p′, q = q′, a = a′ and b = b′ is proved similarly.

Consider the nanophrases in P4.
First, P 2,1,1I;p,q,r

a,b and P 2,1,1II;p′,q′,r′

a′,b′ are not homotopic: Indeed, suppose
they are. Then p = p′, q = q′ and r = r′, since,

((wi, wj)P 2,1,1I;p,q
a,b

)i<j = ((wi, wj)P 2,1,1II;p′,q′,r′
a′,b′

)i<j .

By Lemma 5.13 the nanophrases (ABA|B) and (B′A′A′|B′) are homotopic.
However, this contradicts Theorem 5.4.

The claim that P 2,1,1I;p,q,r
a,b and P 2,1,1I;p′,q′,r′

a′,b′ are homotopic if and only if
p = p′, q = q′ and r = r′, a = a′ and b = b′ follows by comparing the values
of the invariant ((wi, wj)P )i<j .

For the nanophrases in P5 and P6, we can prove (i) and (ii) similarly.
Consider the nanophrases in P7.
First, P 1,1,1,1I;p,q,r,s

a,b and P 1,1,1,1II;p′,q′,r′,s′

a′,b′ are not homotopic: Indeed, if
we assume they are homotopic, then p = p′, q = q′, r = r′ and z = z′ since

((wi, wj)P 1,1,1,1I;p,q,r,s
a,b

)i<j = ((wi, wj)P 1,1,1,1II;p′,q′,r′,s′
a′,b′

)i<j .

So (A|BAB) must be homotopic to (A′|A′B′B′) by Lemma 5.13. But this
contradicts Theorem 5.4.

Next, P 1,1,1,1I;p,q,r,s
a,b and P 1,1,1,1III;p′,q′,r′,s′

a′,b′ are not homotopic: If we as-
sume they are, then p = p′, q = q′, r = r′ and z = z′, so (A|AB|B) must
be homotopic to (A′|∅|A′) by Lemma 5.13. However, this contradicts the
homotopy invariance of ((wi, wj)P )i<j .
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That P 1,1,1,1II;p,q,r,s
a,b and P 1,1,1,1III;p′,q′,r′,s′

a′,b′ are not homotopic follows
similarly to the above.

The claim that P 1,1,1,1I;p,q,r,s
a,b and P 1,1,1,1I;p′,q′,r′,s′

a′,b′ are homotopic if and
only if p = p′, q = q′, r = r′ and z = z′, a = a′ and b = b′ follows by
homotopy invariance of ((wi, wj)P )i<j . The claims that P 1,1,1,1II;p,q,r,s

a,b and

P 1,1,1,1II;p′,q′,r′,s′

a′,b′ are homotopic if and only if p = p′, q = q′, r = r′ and

z = z′, a = a′ and b = b′, and that P 1,1,1,1III;p,q,r,s
a,b and P 1,1,1,1III;p′,q′,r′,s′

a′,b′

are homotopic if and only if p = p′, q = q′, r = r′ and z = z′, a = a′ and
b = b′, follow similarly.

Now we have completed the homotopy classification of nanophrases with
no more than four letters without any condition on length.

6. Proof of Theorem 2.2. To complete the proof of Theorem 2.2, we
need the following lemma.

Lemma 6.1. Let α be an alphabet endowed with an involution τ . The
following nanophrases over α: (A|A), (AB|AB) with |A| 6= τ(|B|), (AB|BA)
with |A| 6= τ(|B|), (ABA|B), (A|BAB), (AB|A|B), (BA|A|B), (A|AB|B),
(A|BA|B), (A|B|AB), (A|B|BA), (A|A|B|B), (A|B|A|B) and (A|B|B|A),
are not homotopic to nanophrases over α which have empty words in their
components.

Proof. This follows easily from Proposition 5.9.1, Lemma 5.12 and The-
orem 5.4.

Now Theorem 2.2 follows immediately from Theorem 5.15 and Lem-
ma 6.1. It is sufficient to apply the above theorems to α = α0 with the
involution τ : α0 → α0 permuting a and b.
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