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More reflections on compactness

by

Lúcia R. Junqueira (São Paulo) and Franklin D. Tall (Toronto)

Abstract. We consider the question of when XM = X, where XM is the elementary
submodel topology on X ∩M , especially in the case when XM is compact.

1. Introduction. We are interested in the extent to which the part of
a topological space reflected in an elementary submodel captures the whole
space. Given a topological space 〈X, T 〉 ∈ M , an elementary submodel of
some H(θ), we define XM to be X ∩ M with the topology generated by
{U ∩M : U ∈ T ∩M}. For a careful treatment of elementary submodels,
see [8]. For an investigation of how X and M constrain XM , see [7]. Here
we are interested in what conditions on XM ensure that X = XM . This line
of investigation was started in [13] and continued in [12] and [14]. Sample
results include:

Theorem 1.1. X = XM provided any of the following conditions hold :

(a) [13] XM is locally compact T2, hereditarily Lindelöf and uncountable.
(b) [12] XM is locally compact T2, locally hereditarily Lindelöf and con-

nected.
(c) [14] XM is homeomorphic to Dκ, where D is the 2-point discrete

space, and κ is less than the first inaccessible cardinal.

Large cardinals in fact appear frequently in these three papers and will
appear here as well. The basic reference is [9].

We will add several more sufficient conditions to this list, e.g.
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(d) XM is uncountable, compact , T2, and first countable.
(e) XM is compact , T2, with countable tightness, countable cellularity ,

and no isolated points.
(f) XM is compact , T2, separable, uncountable, and with no isolated

points.
(g) XM is compact , T2, extremally disconnected , and w(X) is less than

the first inaccessible.

When thinking about XM characterizing X, it is perhaps more natural
to think of homeomorphism rather than equality, yet all the previous results
have concluded that in fact X = XM . This is no accident:

Theorem 1.2. Suppose 0# does not exist. If XM is homeomorphic to X,
then in fact X = XM .

0# is a set of natural numbers, the existence of which has large cardinal
strength. V = L implies 0# does not exist. The only consequence of its
non-existence that we will use is given by the following lemma:

Lemma 1.3 ([11]). If 0# does not exist and |M | ≥ λ, then λ ⊆M .

Let us state an easy, useful lemma:

Lemma 1.4 ([13]). If A,B ∈M , |A| ≤ |B|, and B ⊆M , then A ⊆M .

To prove Theorem 1.2, note that since XM is homeomorphic to X,
|XM | = |X|, so |M | ≥ |X ∩M | = |X|. Therefore |X| ⊆ M . Since X ∈ M ,
we have |X| ∈ M , but then it follows by Lemma 1.4 that X ⊆ M , so
X ∩M = X. We also have w(X) ≤ |M |, where w is the least cardinal of a
base of X, since w(XM ) ≤ |M |. Again it follows that there is a base B for X
included in M . This implies that XM is a subspace of X and so equals X.

A “no large cardinal” hypothesis is in fact needed for Theorem 1.2. Recall

Definition 1.5. A cardinal κ is Jónsson if any model of size κ has a
proper elementary submodel of size κ.

Example 1.6. Suppose κ is a Jónsson cardinal (see [9, Section 8]). Then
it is standard that there is an elementary submodel N of H(κ+) such that
κ ∈ N , |κ ∩ N | = κ but κ 6⊆ N . Take X = κ with the discrete topology.
Then XN is homeomorphic to X but XN 6= X.

Also we can take Y to be the one-point compactification of X. Then we
will have YN compact, YN homeomorphic to Y but YN 6= Y .

2. Exponential results. For the rest of the paper, we are mainly in-
terested in the case of XM being compact T2. In a number of situations,
that plus some other simple conditions will ensure that XM = X.

When XM is compact T2 we have a useful relationship between X and
XM :
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Lemma 2.1 ([6], [7]). If XM is compact T2, so is X. Also, there is a per-
fect map π from X onto XM defined by π−1({x}) =

⋂{U ∈ T ∩M : x ∈ U}.
For our first result we need the following lemma which improves a result

in [14]:

Lemma 2.2. Suppose XM = X. If (Xκ)M is compact T2, then (Xκ)M
is homeomorphic to Xκ∩M . If in addition κ ⊆M , then (Xκ)M = Xκ.

Proof. First note that (Xκ)M compact T2 implies the same for Xκ and
thus X is compact T2. The proof of the lemma is the same as the one in [14]
for the case of X being the two-point discrete space D.

Define h : (Xκ)M → Xκ∩M by h(f) = f�(κ ∩ M). Since (Xκ)M is
compact T2, to show that h is a homeomorphism it is enough to show h is
continuous, one-one and has a dense image.

If f, g ∈ Xκ∩M are such that f 6= g, by elementarity, there is α ∈ κ∩M
such that f(α) 6= g(α), so h is one-one.

Now let Vp be a usual (non-empty) basic open set of Xκ∩M . Note that
since XM = X, Vp is such that projα(Vp) ∈ M . Let dp be the set of all α’s
such that projα(Vp) 6= X. We then have h−1(Vp) = {f ∈ Xκ ∩M : f(α) ∈
projα(Vp) for each α ∈ dp}, which is open in (Xκ)M . Also, dp ⊆ κ ∩M , so
the function f defined by f(α) = x for some x ∈ projα(Vp) ∩M if α ∈ dp,
and f(α) = y if α 6∈ dp (y any fixed element of X ∩M), is in M . Note that
projα(Vp) ∩M 6= ∅ because projα(Vp) ∈ M by our assumption. But then
h(f) ∈ Vp and we are done.

We can now show:

Theorem 2.3. Suppose 0# does not exist , κ ∈ M , and XM = X. If
(Xκ)M is compact , then (Xκ)M = Xκ = (XM)κ.

This was proved in [14] for X = D with the additional assumption
that |M | ≥ κ. The new formulation shows that the existence of a compact
(Dκ)M 6= Dκ necessarily has large cardinal strength. It was shown in [14]
that such a Dκ exists if there is a 2-huge cardinal.

Proof of Theorem 2.3. From the previous lemma it follows that if (Xκ)M
is compact, then |M | ≥ |Xκ∩M | ≥ 2κ∩M . We claim κ ⊆M .

If not, there is a minimal ordinal α < κ such that α ⊆ M but α 6∈ M .
Then |M | ≥ 2κ∩M ≥ 2|α| ≥ |α|+. By the non-existence of 0#, |α|+ ⊆ M .
But α ∈ |α|+ ⊆M , so α ∈M , a contradiction.

We can drop the assumption “0# does not exist” if we assume κ to be
less than the first inaccessible cardinal, improving another result in [14]:

Theorem 2.4. Suppose that κ is less than the first inaccessible cardinal ,
κ ∈M , and XM = X. If (Xκ)M is compact , then (Xκ)M = Xκ = (XM )κ.
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Proof. Suppose not; then without loss of generality we can suppose κ to
be the minimum cardinal such that κ ∈M , (Xκ)M compact, but (Xκ)M 6=
Xκ. By Lemma 2.2 it is enough to show that κ ⊆M to get a contradiction.

Since κ is less than the first inaccessible cardinal, either there is λ < κ
such that 2λ ≥ κ, or κ is a singular cardinal.

Suppose first that there is such a λ. Then by elementarity, we can pick
λ ∈ M . Now, λ < κ implies that Xκ can be mapped onto Xλ; thus, by
elementarity, (Xκ)M can be mapped onto (Xλ)M . We then see that (Xλ)M
is compact. By the minimality hypothesis on κ we have (Xλ)M = Xλ. It
follows that Xλ ⊆M . Since 2λ ≥ κ, we must have κ ⊆M and we are done.

As in [14], if κ is singular, note that since κ ∈ M , we have cf(κ) ∈ M ,
which implies Xcf(κ) ∈ M . As before, we see that (Xcf(κ))M is compact
and thus, by the minimality of κ, we have (Xcf(κ))M = Xcf(κ). Therefore
Xcf(κ) ⊆ M , so cf(κ) ⊆ M . But then there is a set S of cardinals cofinal
in κ included in M . Note that, as before, for each λ ∈ S, we have (Xλ)M
compact and (Xλ)M = Xλ, which implies λ ⊆M . Hence κ ⊆M .

Lemma 2.5. If κ is infinite and (Xκ)M is compact , then 2λ ⊆M , where
X is a topological space with at least two points, λ < κ, and λ is less than
the first inaccessible cardinal.

Proof. Since X has at least two points, Dκ can be embedded in Xκ.
Therefore, there is a closed subset F of Xκ that can be mapped onto Dκ.
By elementarity we can pick F ∈ M . Then, again by elementarity, FM is a
closed subset of (Xκ)M so it is compact. Now, since F can be mapped onto
Dκ, by elementarity, FM can be mapped onto (Dλ)M . We conclude then
that (Dλ)M is compact. Since λ is less than the first inaccessible cardinal,
by 2.4 we have (Dλ)M = Dλ, which implies 2λ ⊆M .

Corollary 2.6. Suppose X is separable with at least two points and 0#

does not exist. If (Xκ)M is compact , κ ∈M , then (Xκ)M = Xκ = (XM )κ.

Proof. First recall that X will also be compact. Since X is separable and
regular, w(X) ≤ 2ℵ0 . By the previous lemma we have 2ℵ0 ⊆ M , so XM is
a subspace of X. It will be a dense subspace because X is separable and
therefore by compactness X = XM .

The same proof shows:

Corollary 2.7. Suppose X is separable with at least two points and κ
is less than the first inaccessible cardinal , κ ∈ M . If (Xκ)M is compact ,
then (Xκ)M = Xκ = (XM)κ.

3. Some examples. A distributed preprint of [14] claimed that if XM is
compact, then it is a retract of X, and that if XM is compact and separable,
then XM = X. Both assertions are refuted by the following example:
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Example 3.1. LetA be a maximal almost disjoint family of subsets of ω.
Form Ψ(A) = ω ∪A, where points in ω are isolated, and a neighborhood of
A ∈ A is {A} together with a cofinite piece of A. Let X be the one-point
compactification of Ψ(A). Let M be an elementary submodel of some H(θ),
with X, A ∈M and |M | < |A|.

It is easy to see that XM is compact and separable and not equal to X.
In [7] we gave an incorrect proof that XM is not a subspace of X, so we will
put a correct proof here. It follows that XM is certainly not a retract of X.

To see that XM is not a subspace of X, pick A ∈ A \M and consider
V = {∞}∪Ψ(A) \ ({A}∪A) = {∞}∪ (A\{A})∪ω \A. We will show that
V ∩M is not open in XM . Let W ∈ T ∩M be such that ∞ ∈ W . Then
W = {∞}∪Ψ(A)\K, where K is a compact set in Ψ(A)∩M . We will show
that W ∩M 6⊆ V ∩M by looking at W ∩ ω and V ∩ ω.

Note that, since K is compact and is in M , K ∩ω is finite or covered by
a set of the form (B1 \ F1) ∪ . . . ∪ (Bn \ Fn), with Bi ∈M and Fi finite for
each i ≤ n. Since A is infinite, K ∩ ω finite implies that W ∩M 6⊆ V ∩M .
If the second case happens we also have W ∩M 6⊆ V ∩M , but now it is
because A is an almost disjoint family (so there is i ∈ A such that i 6∈ Bj
for each j ≤ n).

Example 3.2. It is possible to have XM be a compact subspace of X,
without having XM = X. Let X be the one-point compactification of the
disjoint sum of (2ℵ0)+ copies of [0, 1]. Let M be a countably closed elemen-
tary submodel of size 2ℵ0 containing X. Then XM is as desired.

Example 3.3. XM can be compact and connected yet not equal to X.
Let X be the long closed interval of length (2ℵ0)+ + 1. Take a countably
closed M of size 2ℵ0 and such that M ∩ (2ℵ0)+ is an ordinal α. Then XM is
homeomorphic to the long closed interval of length α + 1, so it is compact
and not equal to X.

4. Separability and maps onto Iκ. The following two results will be
used several times:

Theorem 4.1. Let X ∈M , with XM compact and T2. If χ(X) ≤ κ and
κ ⊆M , then XM = X.

Proof. Fix for each x ∈ X a neighborhood base Bx of x of size ≤ κ. Then
for each x ∈M , we can take Bx ∈M and, since κ ⊆M , Bx ⊆M . Therefore
{x} =

⋂Bx ⊇
⋂{V ∈ T ∩M : x ∈ V }. But this says that π−1({x}) = {x},

with π defined as in 2.1. Thus π is the identity homeomorphism.

Corollary 4.2. Assume 0# does not exist. If |M | ≥ κ, χ(X) ≤ κ, and
XM is compact and T2, then XM = X.

Proof. |M | ≥ κ, so κ ⊆M .
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Corollary 4.3. If XM is compact T2 and X is first countable, then
XM = X.

Corollary 4.4. Suppose X is first countable and 0# does not exist. If
(Xκ)M is compact , κ ∈M , then (Xκ)M = Xκ.

Proof. Since (Xκ)M is compact, Xκ and therefore X will also be com-
pact. By 4.3 we then have X = XM . The result follows from 2.3.

Using 2.4 we can similarly show:

Corollary 4.5. Suppose X is first countable and κ is less than the first
inaccessible cardinal. If κ is infinite and (Xκ)M is compact , then (Xκ)M
= Xκ.

The second result that we will often use is:

Lemma 4.6. If XM is compact T2 and with no isolated points, then
2ℵ0 ⊆M .

Proof. If XM is compact T2 and has no isolated points, then XM can
be mapped onto Dℵ0 (see [14]). But then X can be mapped onto Dℵ0 (by
Lemma 2.1). By elementarity XM can be mapped onto (Dℵ0)M and the
result follows as in the proof of Lemma 2.5.

Corollary 4.7. If XM is uncountable, first countable, compact and T2,
then 2ℵ0 ⊆M .

Proof. This is because XM includes a compact perfect set.

Theorem 4.8. Suppose 0# does not exist or κ is less than the first
inaccessible. Also suppose there is an f : X → Iκ onto and either χ(X) ≤ 2κ

or |f−1(x)| ≤ 2κ for every x ∈ Iκ. If XM is compact T2, then X = XM .

Proof. Since X maps onto Iκ, taking f ∈M , by elementarity, XM maps
onto (Iκ)M , which is therefore compact T2. By Corollary 2.6 we then have
(Iκ)M = Iκ and so Iκ ⊆M ; in particular 2κ ⊆M .

If χ(X) ≤ 2κ, by Theorem 4.1, we conclude that X = XM . Suppose
|f−1(x)| ≤ 2κ for every x ∈ Iκ. Now, x ∈ Iκ implies x ∈ M and therefore
f−1(x) ∈M . Next, |f−1(x)| ≤ 2κ and 2κ ⊆M give us f−1(x) ⊆M for each
x ∈ Iκ, so X ⊆M . As above, we then have X = XM .

Example 6.4 in Section 6 shows that the hypothesis on the cardinality
of f−1(x) cannot be removed in the previous result.

Theorem 4.9. Suppose 2ω ⊆ M . If XM is compact , T2, and separable,
then X = XM .

Proof. First assume X maps onto I2ω , whence by elementarityXM maps
onto (I2ω)M , which will then be compact. By Corollary 2.7, we will have
(I2ω)M = I2ω so 22ω ⊆M .
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Now, XM is compact separable, so w(XM) ≤ 2ω, and so XM has no left-
or right-separated subspace of size (2ω)+. By [13] it follows that X has no
left- or right-separated subspace of size (2ω)+, thus |X| ≤ 22ω . But, since
22ω ⊆M , and X is compact, we have X = XM .

Now consider the other case. Note that, since 2ω ⊆ M and c(XM) = ω,
we must have c(X) = ω. For if c(X) > ω then X has a cellular family of
size ω1, and by elementarity we can take this family in M . Next, ω1 ⊆ M
implies that this family is included in M , so it will be a family of ω1 pairwise
disjoint open subsets of XM , contradicting c(XM) = ω.

If X does not map onto I2ω , then in particular X does not map onto
I(2ω)+

, so by a result in [5] (corollary after 3.20, page 71), we have |RO(X)| ≤
(2ω)c(X) = (2ω)ω = 2ω. But then w(X) ≤ 2ω, and by 4.1, X = XM .

Corollary 4.10. If XM is compact , T2, separable, uncountable, and
with no isolated points, then X = XM .

Corollary 4.11. If XM is compact , T2, separable, uncountable, and
XM maps onto Dℵ0 , then X = XM .

Because of Example 3.1, to get XM compact separable implies X = XM ,
we must assume 2ℵ0 ⊆ M (or something that implies this). Thus assuming
not CH, for instance, it is possible to get XM compact separable but X 6=
XM .

As mentioned above, it is not true that XM separable implies X separa-
ble. But in view of 4.9 and 4.10 it is natural to ask if XM compact separable
implies X separable, without the two necessarily being equal. We have:

Theorem 4.12. Let M be uncountable. Then ω1 ⊆ M if and only if
whenever XM is compact , T2, separable, and uncountable, then X is sepa-
rable.

We first prove the forward direction. We need the following result:

Lemma 4.13. Suppose X 6= XM , XM compact , separable, and uncount-
able. Then X is a scattered space.

Proof. If X is not scattered, it has a closed subspace F with no isolated
points. We may take F ∈ M . Then F maps onto Iℵ0 so, as before, we get
2ℵ0 ⊆M and hence, by 4.9, X = XM .

We can now prove the forward implication of Theorem 4.12:

Proof. If X = XM , then we are done, so assume X 6= XM . By the
previous result, X must then be a scattered space.

Note that X must have at most countably many isolated points. Since
ω1 ⊆ M , if X had uncountably many isolated points, by elementarity XM

would also have uncountably many isolated points, but we are assuming XM

is separable.
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Now X is a scattered space, so the first level of X is this countable set of
isolated points. On the other hand, for scattered spaces, the set of isolated
points has to be dense in the space (otherwise there would be an open set V
disjoint from it; but X scattered implies this open set has an isolated point;
contradiction). We conclude then that X is separable.

To prove the other implication, we use a variation of 3.1:

Example 4.14. Suppose there is an uncountable model M such that
ω1 6⊆ M . Then M ∩ ω1 is countable. Take a family A of countable almost
disjoint subsets of ω1 such that A ∩ M is uncountable. Define Ψ(A) as
in Example 3.1, but with ω1 instead of ω, and take for X the one-point
compactification of this space. As before, we see that XM is compact. But
here XM is separable and X is not.

The following isolated result may be of interest:

Theorem 4.15. Suppose XM is homeomorphic to βN \ N . Then X =
XM .

Proof. Let Y be a countable dense subspace of I2ℵ0 , where I = [0, 1]. Let
f map the countable discrete space N onto Y . Then f extends to f mapping
βN onto βY = I2ℵ0 . The restriction f�(βN \N) must also map onto I2ℵ0 ,
since I2ℵ0 has no countable open sets. Thus XM and hence X must map onto
I2ℵ0 . The result now follows from 4.8. (Note that since |X| ≥ |XM | = 22ℵ0 ,
and θ ≥ (22ℵ0 )+, it follows that 22ℵ0 , I and I2ℵ0 are all in H(θ) and hence,
by definability, in M .)

5. First countability and countable tightness. It is not true in
general that XM first countable implies X first countable [6]. However, in
the case of XM compact it does, i.e., the next result shows that it is enough
to assume XM first countable in 4.3.

Theorem 5.1. Suppose XM is uncountable, compact , T2, and first
countable. Then X = XM .

Corollary 5.2. If XM is uncountable, compact , and T2, then X is
first countable if and only if XM is.

In order to prove this we first have to establish several useful results. In
[15], S. Todorčević defined:

Definition 5.3. Suppose X is a topological space and F,G ⊆ X. We
say that 〈F,G〉 is regular if F is closed, G is open and F ⊆ G.

Definition 5.4. A sequence 〈Fα, Gα〉, α < θ, of regular pairs of X is
called free if for any finite subsets K,L of θ with K < L, we have

⋂
α∈K Fα∩⋂

β∈L(X \Gβ) 6= ∅.
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Note that for a compact T2 space X, there is a free θ-sequence of regular
pairs if and only if there is a free sequence {xα : α < θ} (in the usual sense).
Thus for X compact T2 we deduce that X has countable tightness if and
only if there are no free ω1-sequences of regular pairs of X ([15]).

Theorem 5.5. If XM is compact with countable tightness and ω1 ⊆M ,
then X also has countable tightness.

Proof. Suppose X has uncountable tightness. Since XM is compact, X is
compact, so there is a free sequence 〈Fα, Gα〉, α < ω1, of regular pairs of X.
By elementarity we can take this sequence in M , and because ω1 ⊆ M , we
get 〈Fα, Gα〉 ∈M for every α < ω1.

By elementarity (and because 〈Fα, Gα〉 ∈M for every α < ω1), 〈Fα, Gα〉,
α < ω1, is a sequence of regular pairs of XM and M thinks that it is free.
Since the definition of a free sequence of regular pairs just talks about finite
subsets of ω1, it follows that the sequence is really free (i.e., it is free in V ).
But this contradicts the assumption that XM has countable tightness.

We note that the assumption ω1 ⊆M is essential:

Example 5.6. Assume that there is an uncountable model M such that
ω1 ∈ M but M ∩ ω1 = α < ω1. Take X = ω1 + 1 with the usual order
topology. Then X has uncountable tightness, but XM (which, by [7], is
homeomorphic to α+ 1) is compact and has countable tightness.

We can now prove Theorem 5.1:

Proof of Theorem 5.1. By 4.1 it suffices to show X is first countable.
Also, by 4.7 we have 2ℵ0 ⊆M .

Suppose that X is not first countable. Then by for example [1], X has
a subspace Y of size ℵ1 which is not first countable. Taking Y ∈M , we see
that it is enough to show Y = YM . Indeed, YM is first countable (because
it is a subspace of XM which is first countable) and Y is not, so if we show
Y = YM , we have a contradiction. Without loss of generality, we can take
X = Y , i.e., we can assume d(X) ≤ ℵ1.

Let D be dense in X, D ∈ M , |D| ≤ ℵ1. Note that because 2ℵ0 ⊆ M ,
we have D ⊆M .

Now, by 5.5, we have t(X) = ℵ0. Thus we can write X = D =
⋃{E :

E ∈ [D]ω}.
Then XM =

⋃{EM : E ∈ [D]ω ∩M} (since D ∩M = D). Each such
EM = E (by 4.9). Thus XM =

⋃{E : E ∈ [D]ω ∩ M}. But D ∈ M so
[D]ω ∈ M . Also, |[D]ω| ≤ 2ℵ0 , so [D]ω ⊆ M (because 2ℵ0 ⊆ M), which
implies [D]ω ∩M = [D]ω. We then conclude that X = XM .

Now we want to weaken character to tightness. Let X be a topological
space and x ∈ X. Recall that a local π-base for x is a collection V of non-
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empty open sets in X such that if U is any open neighborhood of x, then
there is V ∈ V such that V ⊆ U . We can then define πχ(x,X) = min{|V| :
V is a local π-base for x}, and πχ(X) = sup{πχ(x,X) : x ∈ X}. We will
denote by hπχ(X) the hereditary π-character, i.e. sup{πχ(Y ) : Y ⊆ X}.

Theorem 5.7. Suppose 2ℵ0 ⊆ M . If XM is compact T2 with countable
tightness and countable cellularity , then XM = X.

Proof. First note that, since XM has countable tightness, by Theo-
rem 5.5, X must also have countable tightness. For compact T2 spaces tight-
ness is equal to hπχ (see for example [4] or [5]). Since XM is compact, X is
also compact [6] and therefore hπχ(X) = ω. In particular, πχ(X) = ω.

Note that, as in the proof of 4.9, c(XM) = ω implies that c(X) = ω.
A result of Shapirovskĭı (see for example [4] or [5]) entails that for a reg-

ular space Y , w(Y ) ≤ πχ(Y )c(Y ). Thus, w(X) ≤ 2ℵ0 , which by Theorem 4.1
implies X = XM (since 2ℵ0 ⊆M).

Corollary 5.8. If XM is compact T2 with countable tightness, count-
able cellularity and no isolated points, then XM = X.

Corollary 5.9. Assume 0# does not exist. Suppose X has countable
tightness and countable cellularity. If (Xκ)M is compact T2, then (Xκ)M
= Xκ.

Corollary 5.10. Assume κ is less than the first inaccessible. Suppose
X has countable tightness and countable cellularity. If (Xκ)M is compact
T2, then (Xκ)M = Xκ.

Remark 5.11. Example 3.1 shows that the hypothesis of having no iso-
lated points cannot be removed from Corollary 5.8.

6. Scattered spaces. Corollary 4.3 says that if X is compact and first
countable, then there is no elementary submodel M such that XM is com-
pact and different from X. It is natural to ask if the opposite can happen,
i.e., XM be compact for every M . After Piotr Koszmider informed us of
a Boolean version (for generic extensions) of the following—which he at-
tributed to folklore—we proved the following result, which was also proved
by him independently:

Theorem 6.1. If X is a compact T2 scattered space, then XM is com-
pact for every elementary submodel M such that X ∈M .

Proof. We first recall that if X is a compact scattered T2 space, then
X is zero-dimensional. This is folklore but we sketch the proof here for
completeness. For x ∈ X, let A be the intersection of all clopen subsets of
X that contain x. Since X is compact, it is enough to show that A = {x}.
If not, there is y ∈ A \ {x} such that {y} is an isolated point in A. Let
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V1 and V2 be disjoint open sets separating the closed disjoint sets A \ {y}
and {y}, respectively. If W is a clopen set containing x included in V1 ∪ V2
(there is one because A is compact), we can show that W ∩ V1 is a clopen
set containing x, but not containing y, contradicting y ∈ A.

Without loss of generality we can suppose X = {xα : α ≤ κ} (here κ
could be an ordinal). Also, since X is a compact T2 scattered space, for every
α ≤ κ there is a clopen set Uα such that Uα ⊆ {xβ : β ≤ α}, and such that
Vα = {Uα \

⋃
γ∈F Uγ : F ⊆ α,F finite} forms a base at xα. To see this, use

the fact that X is zero-dimensional. For each xα pick a clopen neighborhood
Uα of xα witnessing that xα is an isolated point in the subspace {xβ : β ≥ α}
and then use compactness of X to show that Vα forms a base at xα.

Let M be an elementary submodel such that X ∈ M , and thus κ ∈ M .
We want to show that XM is compact. The perfect map π defined as in
2.1 exists for any compact T2 X ∈ M [7], but need not have all of X as
domain. We will show it does in our situation, and hence XM is compact.
It suffices to show that for every y ∈ X there is an x ∈ X ∩M such that
y ∈ Kx =

⋂{U ∈ T ∩M : x ∈ U}.
If y = xα for α ∈ M , we do not have anything to prove. Suppose then

that y = xα for α 6∈M . Let β = min((κ+ 1 \α)∩M). We will show that in
this case xα ∈ Kxβ .

For that we first note that for each V ∈ Vβ, that is, V = Uβ \
⋃
γ∈F Uγ

with F a finite subset of β, the set V is in M if and only if F ⊆M . That is
because, if V ∈M , we can reflect to M the following sentence: “there is an
F ⊆ κ such that F is finite and V = Uβ \

⋃
γ∈F Uγ”.

Now to show that xα ∈ Kxβ , fix V ∈ Vβ ∩M . Thus V = Uβ \
⋃
γ∈F Uγ

for some finite F ⊆ β ∩M . But by the definition of β, β ∩M < α. Thus by
the choices of the Uγ’s we must then have xα ∈ V .

Example 6.2. Let X be the long line of length (2ℵ0)+ + 1. Take M
and N to be two elementary submodels both including [0, 1] but such that
cf(M ∩ (2ℵ0)+) = ω and cf(N ∩ (2ℵ0)+) = ω1. Then XM and XN are both
compact and non-homeomorphic. If we take a model P such that [0, 1] 6⊆ P
we will find that XP is not compact.

Corollary 6.3. If X is compact scattered and Y is compact , then
(X×Y )M is compact for every elementary submodel M such that X,Y ∈M
and YM = Y .

Proof. This is because, by elementarity, (X × Y )M = XM × YM .

Example 6.4. Let X be the space obtained by replacing each point of
Iκ by a compact scattered space of size > 2κ and let M be an elementary
submodel of cardinality 2κ. Then XM is compact but XM 6= X, yet X can
be mapped onto Iκ.
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We now show that actually the other direction of 6.1 also holds:

Theorem 6.5. If there is a countable elementary submodel M such that
X ∈M and XM is compact T2, then X is scattered.

Proof. Suppose not. By elementarity we can fix F ∈ M such that F is
closed and F has no isolated points. Then FM is closed in XM and therefore
it is compact T2. But FM is countable and every compact T2 countable space
must have an isolated point (by the Baire Category Theorem). So FM has
an isolated point, which implies, by elementarity, that F has an isolated
point, a contradiction.

Corollary 6.6. The following are equivalent :

(a) X is compact , scattered and T2;
(b) there is a countable elementary submodel M such that XM is com-

pact T2;
(c) XM is compact T2 for every elementary submodel M such that

X ∈M .

7. Extremally disconnected spaces and Boolean algebras. For
our first result we need the following lemma:

Lemma 7.1. If XM is extremally disconnected , then so is X.

Proof. For a point x ∈ X∩M , let Bx be a base at x inX. By elementarity
we can take Bx ∈M and also Bx ∩M is a base at x in XM .

Suppose X is not extremally disconnected. Then there is an open set V
in X such that V is not open in X. This means that

(∃V ∈ T )(∃x ∈ X)[(∀Vx ∈ Bx, Vx ∩ V 6= ∅) and (∀Vx ∈ Bx, Vx 6⊆ V )].

By elementarity we then have

(∃V ∈ T ∩M)(∃x ∈ XM )[(∀Vx ∈ Bx ∩M, Vx ∩ V ∩M 6= ∅)
and (∀Vx ∈ Bx ∩M, Vx ∩M 6⊆ clXM V )].

Thus V ∩M is an open set in XM whose closure is not open, contradicting
the fact that XM is extremally disconnected.

Theorem 7.2. Assume 0# does not exist. If XM is compact and ex-
tremally disconnected , then XM = X.

Proof. This is obvious if X is finite. If X is infinite, X is extremally
disconnected by the previous lemma, so by the Balcar–Franěk Theorem (see
for example [3, 6.2.G, p. 372]), |X| = 2w(X) and X maps onto Dw(X). Then
since XM is compact, (Dw(X))M is compact, so by Theorem 2.6, 2w(X) ⊆M ,
so X and T are included in M , so X = XM .
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Corollary 7.3. If XM is compact and extremally disconnected and
w(X) is less than the first inaccessible, then XM = X.

Proof. This follows from 2.4.

In [14], it is shown that if there is a 2-huge cardinal, then there is a κ
such that X = (Dκ)M is compact but 6= Dκ. The Stone space E(X) of the
regular open algebra of X will be an example of a space X such that XM is
compact and extremally disconnected but 6= X.

Definition 7.4. λ is a 2-huge cardinal if there is an elementary em-
bedding j : V → N , an inner model, with critical point λ, such that
j(j(λ))N ⊆ N .

Theorem 7.5. If λ is 2-huge, then there is an elementary submodel M
such that (E(Dλ))M is compact and extremally disconnected but 6= E(Dλ).

Proof. Arguing in analogy to [14], observe that

E(Dj(λ)) ∩ j′′Vj(λ) = {j(S) : j(S) ∈ E(Dj(λ)) and S ∈ Vj(λ)}
= {j(S) : S ∈ E(Dλ) and S ∈ Vj(λ)}
= j′′(E(Dλ)).

The second equality follows by elementarity; the third since j(λ) is much
bigger than λ. The space j ′′(E(Dλ)) is compact T2 and extremally discon-
nected; it is the same as (E(Dj(λ)))j′′Vj(λ)

, since that is a weaker T2 topology
on the set j′′(E(Dλ)).

As in [14], we note that j ′′Vj(λ) and Vj(j(λ)) are in N and that the proof
that the former is an elementary submodel of the latter can be carried
out in N . Thus N thinks there is an elementary submodel M of H(j(j(λ)))
such that (E(Dj(λ)))M is compact T2 and extremally disconnected but
6= E(Dj(λ)) (since j(λ) is much bigger than λ). By elementarity, there is
then in V an elementary submodel M ′ of H(j(λ)) such that (E(Dλ))M ′ is
compact but 6= E(Dλ).

We now look at Boolean algebras. We would like to thank Piotr Kosz-
mider for helping get these results. If A is a Boolean algebra, we will denote
by S(A) the Stone space of A. Here we will always assume that M is an
elementary submodel such that A ∈ M . Note that in general S(A)M is
homeomorphic to S(A ∩M) ∩M .

Lemma 7.6. If S(A)M is compact then S(A)M is homeomorphic to
S(A ∩M).

Proof. Define f : S(A)M → S(A ∩M) by f(u) = u ∩M .
First note that f is well defined. If u ∈ S(A)M , then u is an ultrafilter in

A and u ∈M . Then by elementarity we deduce that u ∩M is an ultrafilter
in A ∩M .
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Also, f is 1-1: if u, v ∈ S(A) ∩M and u 6= v, by elementarity we have
u ∩M 6= v ∩M .

It is easy to see that f is continuous.
Since S(A)M is compact, it is enough to show that f(S(A)M ) is dense

in S(A ∩M). In fact, let a ∈ A ∩M and V (a) = {u ∈ S(A ∩M) : a ∈ u}
be a basic open set. Since a ∈ M , by elementarity there is an ultrafilter
u ∈ S(A) ∩M such that a ∈ u. But then u ∈ S(A)M and f(u) ∈ V (a), and
we are done.

Theorem 7.7. Assume 0# does not exist. Let A be a Boolean algebra.
If A ∩M is complete and S(A)M is compact , then A = A ∩M .

Proof. Since A ∩ M is complete, S(A ∩ M) is extremally disconnected.
But then, by Lemma 7.6, S(A)M is also extremally disconnected. Thus
S(A)M is compact extremally disconnected, so by Theorem 7.2, S(A)M =
S(A). We then find, by the lemma again, that S(A) is homeomorphic to
S(A ∩M), which implies that A = A ∩M . This follows from a result in
Boolean algebra, but we will prove it here for completeness. Suppose not, and
let a∈A\M . Let [a]A denote the corresponding clopen set in S(A) and f be
the homeomorphism between S(A) and S(A∩M) (which takes u to u∩M).
Then f([a]A) is clopen so there is b ∈ A ∩M such that f([a]A) = [b]A∩M .
We will show that a = b, which is a contradiction. If there is u ∈ [b]A \ [a]A,
then u ∩ M ∈ [b]A∩M and u 6∈ [a]A; but this implies f(u) ∈ [b]A∩M and
f(u) 6∈ f([a]A), contradiction. If there is u ∈ [a]A \ [b]A, then f(u) ∈ f([a]A),
but f(u) 6∈ [b]A∩M , again a contradiction.

Example 7.8. Let λ be 2-huge and A be the regular open algebra of
Dλ. By Theorem 7.5 there is an elementary submodel M such that S(A)M
is compact extremally disconnected but 6= S(A) (and they are not even
homeomorphic). Since S(A)M is compact, it is homeomorphic to S(A∩M)
by Lemma 7.6, so S(A∩M) is extremally disconnected. Thus A is such that
S(A)M is compact, A ∩M is complete, but A 6= A ∩M .

The next example (due to Piotr Koszmider) shows that the hypothesis
of S(A)M being compact is essential:

Example 7.9. Let B′ be a measure algebra such that B = B′/null is
c.c.c., has size > 2ℵ0 and is complete. Let M be a countably closed elemen-
tary submodel of size 2ℵ0 . Then B 6= B ∩M , but B ∩M is complete. This is
because B has the countable chain condition, M is countably closed and a
Boolean algebra is complete if and only if every antichain has a supremum.

We would like to thank Ofélia Alas for her useful comments on an earlier
version of this paper.
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Remark. After this paper was completed, K. Kunen [10] achieved much
sharper bounds for the consistency strength of the existence of a compact
(Dκ)M 6= Dκ. Thus the results here depending on that consistency strength
can also be sharpened. Another recent result is due to E. T. Eisworth [2],
who proved the converse of Example 1.6, i.e. that if there is an M and a
space X ∈M such that XM is homeomorphic to X but 6= X, then there is
a Jónsson cardinal.
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