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Two results on special points

by

Alan Dow (Charlotte, NC)

Abstract. We show that there is a nowhere ccc σ-compact space which has a remote
point. We show that it is consistent to have a non-compact σ-compact separable space
X such that every point of the remainder is a limit of a countable discrete subset of
non-isolated points of X. This example shows that one cannot prove in ZFC that every
locally compact non-compact space has discrete weak P -points.

1. Introduction. A point p ∈ βX \ X is a remote point of X if p
is not the limit of any nowhere dense subset of X. Remote points were
introduced by Fine and Gillman [8]. The reals and, with additional set-
theoretic assumptions, many ccc spaces, have been shown to have remote
points ([3, 5, 2]). In addition, specifically under the continuum hypothesis,
non-pseudocompact spaces of weight ℵ1 have remote points [11] and a weak
form of the continuum hypothesis is necessary [4].

Many weakenings of the notion of remote have been considered in which
the collection of sets that p should be remote from is restricted. Thus a
point p could be said to be a remote discrete weak P -point of a space X
if p is not in the closure of any countable discrete subset of X. If X has no
isolated points then a remote point is a remote discrete weak P -point. Van
Mill asks in [12, 10.1] if every σ-compact locally compact space of weight at
most 2ω has a remote discrete weak P -point. We show in this paper that this
is not the case. The author has asked [7] if there is, in ZFC, a nowhere ccc
σ-compact space which has a remote point and we show that this is the case.

Our primary interest will be in spaces which have the form ΣnX, i.e. the
form ω × X, for a compact space X. We will also consider countable free
unions of posets P . In each case, we will refer to the elements of ΣnX (or
ΣnP ) using ordered pairs (n, x) (or (n, p)), but when there is no danger of
confusion, we will suppress the first coordinate.
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We recall the following two results from the Handbook of Boolean Alge-
bras [9, 4.11, 4.16]

Definition 1.1 (and Lemma). Let P be a partial order, and for p ∈ P ,
let up = {q ∈ P : q ≤ p}. The set {up : p ∈ P} is a base of the partial order
topology on P . A subset u of P is open iff [p] ∈ u and q ≤ p imply q ∈ u.

Any space P with a topology has an associated complete Boolean alge-
bra, RO(P ), consisting of the regular open subsets (join and complement
involve taking interior of closures). Although a given up need not be regu-
lar open, the mapping e(p) = int clup is an order preserving embedding of
(P,<) into (RO(P ),⊂).

Proposition 1.2. Let P be a partial order and (e,B = RO(P )) the
completion of P constructed in 1.1. The following are equivalent :

(1) P is separative,
(2) e(p) = int clup coincides with up for every p ∈ P ,
(3) e is an isomorphism from P onto the partial order e[P ] ⊂ B.

For each of our two constructions, we will obtain our space by construct-
ing (or examining) a poset. By Proposition 1.2, we may define B(P ) to be
the Boolean subalgebra of RO(P ) which is generated by P . Thus it will be
convenient to translate the existence of a remote point on ΣnS(B(P )) to a
combinatorial property of ΣnP . For convenience, if we say that A = ΣnAn
is a subset of ΣnP , we will infer that A ∩ ({n} × Pn) = {n} ×An.

Definition 1.3. A collection L of subsets of ΣnP will be a remote filter
if

(1) for each L = ΣnLn ∈ L, Ln is finite for each n,
(2) for each maximal antichain A = ΣnAn, there is an L = ΣnLn ∈ L

such that L ⊂ A,
(3) for any finite set L′ ⊂ L, there is an n and a p ∈ P so that for each

ΣnLn ∈ L′, there is a q ∈ Ln such that p < q.

Lemma 1.4. Let P be an atomless poset. The space ΣnS(B(P )) has a
remote point if and only if ΣnP has a remote filter.

Proof. Let X denote the space ΣnS(B(P )) = ω×S(B(P )). The assump-
tion that P is atomless is equivalent to the condition that S(B(P )) has no
isolated points, hence every point of x is in the closure of a nowhere dense
subset of X, and so is not a remote point of X. Suppose that x ∈ βX \X
is a remote point of X. For each A = ΣnAn ⊂ ΣnP which is a maximal
antichain, set UA =

⋃{up : p ∈ A}. Since {up : p ∈ P} is a dense subset of
the Boolean algebra RO(P ) and A is a maximal antichain of ΣnP , it follows
that UA is a dense open subset of ΣnS(B(P )). Since x is a remote point,
there is a compact neighborhood KA of x in βX such that KA avoids X\UA.
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For each n, KA ∩ ({n}×S(B(P ))) is a compact subset and so is covered by
some finite subset of {up : p ∈ An}. Thus, there is a finite Ln ⊂ An so that x
is in the interior of the closure of Σn{up : p ∈ Ln}, i.e. this union is a dense
open subset of a neighborhood of x. Clearly by the construction, the set L
of families ΣnLn constructed in this way will satisfy the first and second
clauses of Definition 1.3. Verification of the third clause follows immediately
from the fact that any finite intersection of open sets each of which is dense
in a neighborhood of x will again be dense in a neighborhood of x.

For the other direction, assume that L is a remote filter on ΣnP . We ba-
sically reverse the steps above. For each L = ΣnLn in L, let UL = Σn(

⋃{up :
p ∈ Ln}). By condition (3) of Definition 1.3, the collection {UL : L ∈ L}
will form a filter of open subsets of X. Fix any point x of βX which is in
the closure of UL for all L ∈ L. We check that x is a remote point of X. Fix
any nowhere dense set D ⊂ X. Let A = ΣnAn be any maximal antichain of
ΣnP with respect to the property that (clup) ∩D is empty for each p ∈ A.
Since P is atomless and is dense in B(P ), it follows that A is a maximal
antichain of ΣnP . Let L = ΣnLn ∈ L be any element satisfying the second
condition of 1.3. Then we have a closed subset F = Σn cl(

⋃{up : p ∈ Ln})
of X which has x in its closure and which is disjoint from the closed set D.
Since X is normal, F is completely separated from D, hence F (and x) has
a neighborhood in βX which is disjoint from D.

2. A nowhere ccc space with a remote point. In this section we
prove that ΣnP has a remote filter where P is a poset invented by Baum-
gartner (see Definition 2.1) to illustrate the difference between Axiom A
forcings and proper forcings. It is interesting to us because it is nowhere ccc
but everywhere ω1. The combination of its being proper (with finite condi-
tions) and having cardinality ω1 allows us to generalize an older proof that
every compact ccc space with π-weight ω1 has remote points.

Definition 2.1 [14, VII, 4.3A]. A condition p is a member of P if p is
finite and there is a continuous increasing f : ω1 → ω1 such that p ⊂ f . This
is the same as f being the enumeration of a cub subset of ω1. The set P is
ordered by simple reverse inclusion: p < q if p ⊃ q.

Let p ∈ P and let C ⊂ ω1 be any cub such that p is a subset of the
enumerating function for C. Fix δ ∈ C such that dom(p) ⊂ δ and C ∩ δ has
order type δ. It is easily shown that {p ∪ {(δ + 1, γ)} : δ < γ < ω1} is an
uncountable antichain of conditions below p. Therefore, P (and S(B(P )))
is nowhere ccc.

As we said, Baumgartner shows (see 2.3) that this poset P is proper
in a very strong sense. For the rest of the paper, we may fix a regular
cardinal θ which is larger than 2ℵ1 and let H denote any sufficiently large
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submodel of the set-theoretic universe with the property that Hω1 ⊂ H
such as H(θ) or Vθ. We will use the notion of a subset M of H being an
elementary submodel, written M ≺ H (see [10, 13]). For our purposes it
should be enough to realize that this means intuitively that if m1, . . . ,mn

are elements of M , and ϕ(x1, . . . , xn) is a formula of set theory (using only
∈ and =) with all free variables shown, then ϕ(m1, . . . ,mn) holds in M if
and only if it holds in H.

Definition 2.2. Let P be a poset. A set D ⊂ P is predense below an
element p ∈ P if for each q ≤ p, there is a d ∈ D and an r ≤ q such that
r ≤ d. A set is said to be predense if it is predense below every element of P .

Proposition 2.3. If P ∈ M ≺ H and p ∈ P ∩M , then p ∪ {〈δ, δ〉} is
(P,M)-generic where δ = M ∩ω1. That is, if A ∈M is any predense subset
of P , the subset A ∩M is predense below p ∪ {〈δ, δ〉}.

The above statement implicitly recalls the definition of proper (see [14,
III, 1.9 and 2.8]) as it applies to P .

Proof. Let p ∈ P ∩M , δ = M ∩ ω1, and A ∈ M be predense. To check
that A∩M is predense below p′ = p∪{(δ, δ)}, we let q ≤ p. By the definition
of P , it is clear that q∩M = q∩(δ × δ) is also a member of M ∩P . Applying
elementarity to q∩M and A, there is an a ∈ A∩M such that a∪(q∩M) is a
member of P . We finish by checking that a∪q is also a member of P . Fix any
cub Cq ⊂ ω1 such that q is a subset of the enumeration function of Cq. Also,
fix such a cub C ′ for a∪ (q ∩M) but choose C ′ ∈M . Since C ′ is closed and
unbounded, and M ≺ H, it follows that δ ∈ C ′. Set C = (C ′ ∩ δ) ∪ (Cq \ δ)
and let fC denote the enumerating function of C. It is easily seen that C is
closed, that a ∪ (q�δ) ⊂ fC�δ, and that q�[δ, ω1) ⊂ fC . Therefore, a ∪ q is in
P as required.

It is useful to make note of the following result which follows directly
from the proof.

Corollary 2.4. If M ≺ H is countable with P ∈M and M ∩ ω1 = δ,
then each p ∈ P such that p(δ) = δ is (P,M)-generic.

If U is a filter on ω, then the ordering, <U , on ωω is given by f <U g
if {n : f(n) < g(n)} is a member of U . If U is an ultrafilter, then <U
determines a linear ordering (on the equivalence classes). We will hereafter
fix an ultrafilter U on ω and let κU denote the minimum cardinality of a
cofinal sequence in (ωω,<U ) (i.e. the ultrapower ordering). It is easily seen
that κU is a regular uncountable cardinal.

Theorem 2.5. There is a remote filter on ΣnP , hence the space X =
ΣnSt(RO(P )) is σ-compact , nowhere ccc, and has remote points.
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Proof. Fix any ultrafilter U on ω and let κ = κU . Also, fix any sequence
{fγ : γ < κ} which is U-increasing and cofinal in (ωω,<U).

Throughout the proof, fix for each δ ∈ ω1 a 1-1 enumeration Pδ =
{p(δ, k) : k ∈ ω} where p ∈ Pδ so long as p ⊂ δ × δ. In effect, we have a
function ι : ω1 × ω → P , and we will let ιδ(p) = k abbreviate that p ∈ Pδ
and p(δ, k) = p.

Fix any maximal antichain A = ΣnAn of ΣnP ; we show how to construct
an L = ΣnLn to put in a remote collection L. Fix a countable elementary
submodel M0 = MA of H so that ι, P,ΣnAn,U , {fγ : γ < κ} are all in M0.
Next, for 0 < j < ω, let Mj ⊃ Mj−1 be a countable elementary submodel
containing ι, P,ΣnAn,U , {fγ : γ < κ} and Mj−1. Since Mj−1 is countable,
there is an ordinal γ < κ such that fγ is bigger than any function g ∈
ωω ∩Mj−1 in the ordering <U . By elementary considerations, there is some
γAj < κ in Mj such that g <U fγAj whenever g ∈Mj−1 ∩ ωω.

Let δA = MA ∩ ω1 and put ηA = sup{γAj : j ∈ ω}.
The definition of the required L = ΣnLn is completely trivial, simply

Ln = {p ∈ An : ιδA(p) < fηA(n)}.
This definition certainly guarantees that L satisfies the conditions (1) and (2)
of 1.3 but we have to check the non-trivial third (filter) condition.

Suppose that Ai = ΣnA
i
n are dense sequences for i ≤ m and are enu-

merated so that η0 ≤ η1 ≤ . . . ≤ ηm, where ηi = ηAi . Let us write similarly
δi = δA

i
, γij = γAij and M i

j = MAi
j . We will let M i denote M i

0, hence
δi = M i ∩ ω1.

Let r denote the identity function with domain {δi : i ≤ m}. Clearly
r ∈ P since the set ω1 is cub in ω1. Note also that each extension of r is
(M,P )-generic for any countable M ≺ H such that M ∩ ω1 ∈ dom(r), in
particular, for every M i, i ≤ m.

For each i ≤ m choose γiji from the strictly increasing sequence used to
define ηi so that 1 < ji and γiji+1 < γi+1

ji+1−1.
Now we prove the following condition (∗)m by induction on m; it is clear

that it completes the proof that L is a remote filter.

(∗)m There is a set U ∈ U such that for each n ∈ U and i ≤ m, there are
ki(n) < fγiji

(n) such that

p(δi, ki(n)) ∈ Ain and r ∪
⋃

i≤m
p(δi, ki(n)) ∈ P.

If m = 0, then for s = r�δ0 + 1 and n ∈ ω, there is some p(n) ∈ A0
n ∩M0

such that s∪p(n) ∈ P by 2.4. We can find such a p(n) with ιδ0(p(n)) minimal.
Then the function g(n) = ιδ0(p(n))+1 is defined with all parameters in M 0

1 .
By the definition of γ0

j0
we know that the inequality g(n) < fγ0

j0
(n) holds for
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all n ∈ U for some U ∈ U . Obviously, r∪p(n) is an extension of r�δ0+1∪p(n)
which is in P . Therefore setting k0(n) = ιδ0(p(n)) for each n demonstrates
the validity of (∗)0.

Induction step. Put s = r�δm and define h : m+ 1→ m+ 1 by h(i) = i
if δi ≤ m, and h(i) = m otherwise. By induction assumption, there is some
U ∈ U such that for each n ∈ U and i < m there is a ki(n) < fγiji

(n)

such that p(δi, ki(n)) ∈ Ain ∩ Pδi and r ∪ ⋃i<m p(δi, ki(n)) ∈ P . If we put
p′i,n = p(δi, ki(n))�δm, then we have r ∪⋃i<m p

′
i,n ∈ Pδm as well.

Let li(n) ∈ ω be such that p′i,n = p(δh(i), li(n)). Obviously li(n) = ki(n)
if δi ≤ δm. We claim that there is a set U ′ ∈ U such that for each n ∈ U ′
and i < m, li(n) < fγiji+1

(n). This is a clear consequence of the inductive

assumption if δi ≤ δm, since then li(n) = ki(n) and the inequality ki(n) <
fγiji

(n) is satisified for all n ∈ U . But if δm < δi, we can still capture
enough of this relationship between the functions k and l. Define a mapping
g : ω → ω by the rule

g(n) = min{c ∈ ω : if k < fγiji
(n) and p(δi, k)�δm = p(δm, l)}, then l < c}.

Since all parameters in this formula belong toM i
j , the mapping g is inM i

j .
Since g <U fγiji+1, there is a set Ui ∈ U such that g(n) < fγiji

(n) for all

n ∈ Ui. It remains to put U ′ = U ∩⋂i<m, δm<δi
Ui. Note that ki(n) < fγiji

(n)

for all n ∈ U ′ and so li(n) < g(n) < fγij+1
(n).

Let U ′′ ⊂ U ′ be a member of U such that for all n ∈ U ′′ and all i < m,
fγiji+1

(n) < fγmjm−1
(n) < fγmjm (n).

Now recall that s is (Mm, P )-generic since s(δm) = δm. Therefore, we
can define a mapping f : ω → ω by the rule: f(n) is the minimal c < ω such
that whenever a finite sequence of integers 〈li(n) : i < m〉 ∈ fγmjm−1

(n)m

satisfies
s ∪

⋃

i<m

p(δh(i), li(n)) ∈ P,

then there is an integer km(n) < c such that p(δm, km(n)) ∈ Amn and

p(δm, km(n)) ∪ s ∪
⋃

i<m

p(δh(i), li(n)) ∈ P.

All parameters again belong to Mm
jm−1, hence f belongs to Mm

jm−1. Since
f <U fγmjm , there is some U ′′′ ∈ U with U ′′′ ⊂ U ′′ such that for all n ∈ U ′′′,
f(n) < fγmjm (n).

From (∗)m−1 and from the fact that s is (Mm, P )-generic, we conclude
that for all n ∈ U ′′′ and i ≤ m, there is some ki(n) < fγiji

(n) with

p(δi, ki(n)) ∈ Ain such that
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r ∪
⋃

i<m

p(δi, ki(n)) ∈ P

and with
p(δm, km(n)) ∪ s ∪

⋃

i<m

p(δh(i), li(n)) ∈ P.

Since p(δm, km(n)) ∈ Pδm and since p(δh(i), li(n)) either equals p(δi, ki(n))
or is a restriction of some p(δi, ki(n)) to δm, we also obtain

r ∪
⋃

i≤m
p(δi, ki(n)) ∈ P

whenever n ∈ U ′′′, which shows (∗)m.

3. A separable space with no remote weak P -point. In this section
we prove that the space constructed in [6] provides an example which will
prove the following theorem.

Theorem 3.1. It is consistent that there is a compact separable space X
with no isolated points such that ΣnX does not have any remote discrete
weak P -points. In particular , every point of β(ΣnX) is a limit point of a
countable nowhere dense discrete subset of ΣnX.

The space X is given as S(B(P )) for a poset of the following type.

Definition 3.2. For Z ⊂ 2ω, consider 2<ω ∪ Z as a subtree of 2≤ω and
define PZ = {a ⊂ 2<ω ∪ Z : a is a finite non-maximal antichain}; PZ is
ordered by reverse inclusion.

Since PZ is separative we can think of the elements of PZ as correspond-
ing to members of B(PZ) and also as corresponding to clopen subsets of
S(B(PZ)). For a, b ∈ PZ , we let a ⊥ b denote the relation a∪ b 6∈ PZ (which
means that either a ∪ b is maximal or is not an antichain of 2<ω ∪Z). Note
that being an antichain of PZ is different than being an antichain of 2≤ω.
For a ∈ PZ , we let [a] denote the set consisting of all branches b ∈ 2ω with
the property that either b ∈ a or b�n ∈ a for some n ∈ ω.

PZ is σ-centered since for each b ∈ P∅, {a ∈ PZ : a∩2<ω = b} is centered.
It is shown in [6] that if Z = 2ω then ΣNPZ has remote filters. However, the
following is also established.

Theorem 3.3 ([6]). In the model obtained by adding ω2 side-by-side
Sacks reals, there is an uncountable dense and co-dense subset Z of 2ω such
that ΣnPZ does not have a remote filter.

Since every non-remote point is in the closure of a nowhere dense subset,
we finish the proof of Theorem 3.1 by establishing the following lemma.
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Lemma 3.4. If Z is an uncountable dense co-dense subset of 2ω, every
nowhere dense subset of S(B(PZ)) is contained in the closure of a countable
discrete subset of S(B(PZ)).

Proof. Fix any maximal antichain {an : n ∈ ω} of PZ . Let {cl : l ∈ ω}
enumerate P∅. We define an,m for each n,m so that {an,m : m ∈ ω} is an
antichain which is predense below an and so that for each l ≤ n and each i,
an,i ⊥ cl or cl ⊂ an,i (it is easy to see that this can be done). We also
assume, for convenience, that an,i ∩ Z is not empty for each n, i. Next, for
each n, i, we fix any yn,i ∈ 2ω so that yn,i 6∈ Z ∪ [an,i], hence an,i ∪ {yn,i} is
an antichain. Since yn,i is not in [an,i] ∪ Z, we may let j0(n, i) be minimal
such that an,i∩Z is disjoint from [yn,i�j0(n, i)]. Suppose that b ∈ PZ is such
that an,i ⊂ b. Clearly yn,i 6∈ b since yn,i 6∈ Z. In addition, yn,i�j 6∈ b for each
j < j0(n, i) since, by the minimality of j0(n, i), an,i ∪ {yn,i�j} is not in PZ .
For each j ≥ j0(n, i), the choice of yn,i and the definition of j0(n, i) ensure
that an,i,j = an,i ∪ {yn,i�j} is an antichain. In addition, since an,i ∩Z is not
empty, an,i,j ∈ PZ since it is not maximal. For j < j0(n, i), an,i ∪ {yn,i�j}
is not an antichain, hence it follows that {an,i,j : j0(n, i) ≤ j} is predense
below an,i.

Now, for each n, i and j0(n, i) ≤ j, we define a filter base on B(PZ). Let

Yn,i,j = {a′ ∪ b ∈ PZ : a′ ⊆ an,i,j and b ⊂ Z \ [an,i,j ]}.
It can be shown that Yn,i,j is a point (generates an ultrafilter) in S(B(PZ)).
We note that the family {Yn,i,j : n, i ∈ ω and j0(n, i) ≤ j} is discrete. The
key properties then are:

(1) {an,i : i ∈ ω} is an antichain, an ⊂ an,i for each i, and for each l ≤ n,
cl is either contained in an,i or incompatible with an,i.

(2) For each n, i, {an,i,j : j0(n, i) ≤ j ∈ ω} is defined as an,i ∪ {yn,i�j}
where yn,i 6∈ Z, and clearly, if j0(n, i) ≤ j1 < j2, then an,i,j1 and an,i,j2 are
incompatible.

Now suppose that b ∈ PZ is such that b ∪ an ∈ PZ for infinitely many n.
We will show that there are n, i, j such that an,i ∪ b ∈ Yn,i,j . Let l be such
that cl = b ∩ 2<ω. Fix n > l such that b ∪ an ∈ PZ . Fix any i such that
b ∪ an,i ∈ PZ ; note that cl ⊂ an,i. Now fix any j ≥ j0(n, i) large enough so
that [yn,i�j] is disjoint from b∩Z. Since b∩2<ω = cl ⊂ an,i,j and (b∩Z)∩[an,i]
is empty, it follows that (b∩Z)∩ [an,i∪{yn,i�j}] is also empty. It then follows
that b ∈ Yn,i,j as required.

This proves that the closure of the discrete set {Yn,i,j : n, i ∈ ω and
j0(n, i) ≤ j} contains the complement of

⋃{an : n ∈ ω} (when the latter is
considered as an open subset of S(B(PZ))).

It is an open problem to determine if all extremally disconnected spaces
have a discrete weak P -point (also called discretely untouchable). Simon
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[15] proves that if the space is ccc and satisfies cf(g(Clop(X))) > ω then
it will have such points, where g(B) for a Boolean algebra B is the mini-
mum cardinality of a subfamily which is not contained in a proper complete
subalgebra.
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