On the non-extendibility of strongness and supercompactness through strong compactness

by

Arthur W. Apter (New York, NY)

Abstract. If κ is either supercompact or strong and $\delta < \kappa$ is α strong or α supercompact for every $\alpha < \kappa$, then it is known δ must be (fully) strong or supercompact. We show this is not necessarily the case if κ is strongly compact.

1. Introduction and preliminaries. A well-known result of Magidor [16] states that if κ is supercompact and $\delta < \kappa$ is α supercompact for all $\alpha < \kappa$, then δ is supercompact. Indeed, the following is true.

LEMMA 1.1 (Folklore). If κ is a strong cardinal and $\delta < \kappa$ is either α strong, α strongly compact, or α supercompact for every $\alpha < \kappa$, then δ must be (fully) strong, strongly compact, or supercompact.

Proof. Let $\lambda > \kappa$ be a cardinal so that $\lambda = \beth_{\lambda}$, and let $\gamma = \beth_{\omega}(\lambda)$. Take $j: V \to M$ as an elementary embedding witnessing the γ strongness of κ . Since $V \models$ "δ is either α strong, α strongly compact, or α supercompact for every $\alpha < \kappa$ " and $\delta < \kappa$, $M \models$ " $j(\delta) = \delta$ is either α strong, α strongly compact, or α supercompact for every $\alpha < j(\kappa)$ ". In particular, because $j(\kappa) > \gamma > \lambda$, $M \models$ "δ is either λ strong, λ strongly compact, or λ supercompact". As $V_{\gamma} \subseteq M$, $V \models$ "δ is either λ strong, λ strongly compact, or λ supercompact" as well. Since λ may be chosen arbitrarily large, this proves Lemma 1.1. ■

We observe that Lemma 1.1 has a local version. Specifically, if κ is measurable and $\delta < \kappa$ is either α strong, α strongly compact, or α supercompact

²⁰⁰⁰ Mathematics Subject Classification: 03E35, 03E55.

Key words and phrases: supercompact cardinal, strongly compact cardinal, strong cardinal, non-reflecting stationary set of ordinals.

The author wishes to thank the referee for helpful suggestions that have been incorporated into this version of the paper.

for $\alpha < \kappa$, then δ is either $\kappa + 1$ strong, κ strongly compact, or κ supercompact. The proof is essentially the same as the one given above, with j replaced by an elementary embedding witnessing κ 's measurability, and the observation that the κ closure of M with respect to V is enough to ensure that δ is either $\kappa + 1$ strong, κ strongly compact, or κ supercompact in V.

Key to the proof of Lemma 1.1 is the fact that the inner model M contains a large chunk of the universe V, something which will be true if κ is either supercompact or, more weakly, strong. It is not necessarily the case, however, that if κ is only strongly compact, then there is an elementary embedding witnessing any degree of strong compactness into an inner model M containing any more of V than $V_{\kappa+1}$. Thus, we can ask the following question: If κ is a non-supercompact strongly compact cardinal and $\delta < \kappa$ is either α supercompact or α strong for every $\alpha < \kappa$, then must δ be either (fully) supercompact or strong? Note that by a theorem of Di Prisco [7], the answer to the analogue of this question if δ is α strongly compact for every $\alpha < \kappa$ is yes.

The purpose of this paper is to show that the answer to the above question is no. Specifically, we prove the following two theorems.

THEOREM 1. Suppose $V \vDash "ZFC + \kappa_1 < \kappa_2$ are supercompact". There is then a partial ordering $\mathbb{P} \in V$ so that $V^{\mathbb{P}} \vDash "ZFC + \kappa_2$ is strongly compact but not supercompact + κ_1 is α supercompact for every $\alpha < \kappa_2 + \kappa_1$ is not supercompact".

THEOREM 2. Suppose $V \vDash "ZFC + \kappa$ is supercompact". There is then a partial ordering $\mathbb{P} \in V$ and a strong cardinal $\delta < \kappa$ so that $V^{\mathbb{P}} \vDash "ZFC + \kappa$ is strongly compact but not supercompact + δ is α strong for every $\alpha < \kappa + \delta$ is not strong".

Before giving the proofs of Theorems 1 and 2, we briefly mention some preliminary information. Essentially, our notation and terminology are standard, and when this is not the case, this will be clearly noted. For $\alpha < \beta$ ordinals, $[\alpha, \beta], [\alpha, \beta), (\alpha, \beta]$, and (α, β) are as in standard interval notation.

When forcing, $q \ge p$ will mean that q is stronger than p. If G is V-generic over \mathbb{P} , we will use both V[G] and $V^{\mathbb{P}}$ to indicate the universe obtained by forcing with \mathbb{P} . If $x \in V[G]$, then \dot{x} will be a term in V for x. We may, from time to time, confuse terms with the sets they denote and write x when we actually mean \dot{x} , especially when x is some variant of the generic set G, or x is in the ground model V.

If κ is a cardinal and \mathbb{P} is a partial ordering, \mathbb{P} is κ -directed closed if for every cardinal $\delta < \kappa$ and every directed set $\langle p_{\alpha} : \alpha < \delta \rangle$ of elements of \mathbb{P} (where $\langle p_{\alpha} : \alpha < \delta \rangle$ is directed if any two elements p_{ϱ} and p_{ν} have a common upper bound of the form p_{σ}) there is an upper bound $p \in \mathbb{P}$. \mathbb{P} is κ -strategically closed if in the two-person game in which the players construct an increasing sequence $\langle p_{\alpha} : \alpha \leq \kappa \rangle$, where player I plays odd stages and player II plays even and limit stages (choosing the trivial condition at stage 0), player II has a strategy which ensures the game can always be continued. Note that if \mathbb{P} is κ -strategically closed and $f : \kappa \to V$ is a function in $V^{\mathbb{P}}$, then $f \in V$. \mathbb{P} is $\prec \kappa$ -strategically closed if in the two-person game in which the players construct an increasing sequence $\langle p_{\alpha} : \alpha < \kappa \rangle$, where player I plays odd stages and player II plays even and limit stages (again choosing the trivial condition at stage 0), player II has a strategy which ensures the game can always be continued.

Suppose $\kappa < \lambda$ are regular cardinals. A partial ordering $\mathbb{P}_{\kappa,\lambda}$ that will be used in this paper is the partial ordering for adding a non-reflecting stationary set of ordinals of cofinality κ to λ . Specifically, $\mathbb{P}_{\kappa,\lambda} = \{s : s \text{ is a}$ bounded subset of λ consisting of ordinals of cofinality κ so that for every $\alpha < \lambda, s \cap \alpha$ is non-stationary in $\alpha\}$, ordered by end-extension. Two things which can be shown (see [5] or [2]) are that $\mathbb{P}_{\kappa,\lambda}$ is δ -strategically closed for every $\delta < \lambda$, and if G is V-generic over $\mathbb{P}_{\kappa,\lambda}$, in V[G], a non-reflecting stationary set $S = S[G] = \bigcup \{S_p : p \in G\} \subseteq \lambda$ of ordinals of cofinality κ has been introduced. It is also virtually immediate that $\mathbb{P}_{\kappa,\lambda}$ is κ -directed closed.

We mention that we are assuming familiarity with the large cardinal notions of measurability, strongness, strong compactness, and supercompactness. Interested readers may consult [12] for further details. Also, unlike [12], we will say that the cardinal κ is λ strong for $\lambda > \kappa$ if there is $j : V \to M$ an elementary embedding having critical point κ so that $j(\kappa) > |V_{\lambda}|$ and $V_{\lambda} \subseteq M$. As always, κ is strong if κ is λ strong for every $\lambda > \kappa$.

2. The proof of Theorem 1. Let $V \vDash$ "ZFC + $\kappa_1 < \kappa_2$ are supercompact". Without loss of generality, by first using an iteration of Laver's partial ordering of [13] (such as the one given in [1]) to force κ_i for i = 1, 2to have its supercompactness indestructible under κ_i -directed closed forcing, then employing an Easton support iteration to add to every measurable cardinal $\delta > \kappa_2$ a non-reflecting stationary set of ordinals of cofinality κ_2 , and then forcing with a κ_1 -directed closed partial ordering to ensure GCH holds at and above κ_1 , we may also assume that $V \vDash$ "No cardinal $\lambda > \kappa_2$ is measurable + κ_1 's supercompactness is indestructible under κ_1 -directed closed forcing + $2^{\delta} = \delta^+$ for every cardinal $\delta \ge \kappa_1$ ". The fact that no cardinal above κ_2 is measurable in V follows from the Gap Forcing Theorem of [10] and [11].

Take now \mathbb{P}_0 as the Easton support iteration of length κ_2 which adds, to every measurable cardinal $\delta \in (\kappa_1, \kappa_2)$, a non-reflecting stationary set of ordinals of cofinality κ_1 . \mathbb{P}_0 can be defined so as to have cardinality κ_2 . Since $V \models$ "No cardinal $\lambda > \kappa_2$ is measurable $+ 2^{\delta} = \delta^+$ for every cardinal $\delta \geq \kappa_1$ ", a theorem of Magidor (whose proof is given in Theorem 2 of [3]) tells us that $V^{\mathbb{P}_0} \models$ "There are no measurable cardinals in the interval (κ_1, κ_2) $+\kappa_2$ is strongly compact". It then immediately follows that $V^{\mathbb{P}^0} \models$ " κ_2 is not $2^{\kappa_2} = \kappa_2^+$ supercompact". Further, since \mathbb{P}_0 , by its definition, is κ_1 -directed closed, $V^{\mathbb{P}_0} \models$ " κ_1 is supercompact".

Work in $V_0 = V^{\mathbb{P}^0}$. For the remainder of this paper, for α an arbitrary ordinal, let λ_{α} be the least measurable cardinal above α . Since $V_0 \models "\kappa_1$ is supercompact $+ \kappa_2$ is the least measurable cardinal above κ_1 ", by reflection, $A = \{\delta < \kappa_1 : \delta \text{ is } \lambda_{\delta} \text{ supercompact}\}$ is unbounded in κ_1 . Therefore, we may define \mathbb{P}_1 in V_0 as the Easton support iteration of length κ_1 which first adds a Cohen subset of ω and then adds, to every $\delta \in A$, a non-reflecting stationary set of ordinals of cofinality ω . In analogy to the definition of \mathbb{P}_0 , \mathbb{P}_1 can be defined so as to have cardinality κ_1 .

LEMMA 2.1. $V_1 = V_0^{\mathbb{P}^1} \vDash "\kappa_1 \text{ is } \alpha \text{ supercompact for every } \alpha < \kappa_2 ".$

Proof. Let $\eta < \kappa_2$ be an arbitrary inaccessible cardinal in the interval (κ_1, κ_2) , and let $j : V_0 \to M$ be an elementary embedding witnessing the η supercompactness of κ_1 so that $M \models "\kappa_1$ is not η supercompact". Since η is below the least measurable cardinal above $\kappa_1, M \models "\kappa_1$ is not λ_{κ_1} supercompact". This means $j(\mathbb{P}_1) = \mathbb{P}_1 * \dot{\mathbb{Q}}$, where $\dot{\mathbb{Q}}$ is a term for a partial ordering that does not add a non-reflecting stationary set of ordinals of cofinality ω to κ_1 , and the least *M*-cardinal above κ_1 to which $\dot{\mathbb{Q}}$ is forced to add a non-reflecting stationary set of cofinality ω must also be above η .

Let G_0 be V_0 -generic over \mathbb{P}_1 , and let H be $V_0[G_0]$ -generic over \mathbb{Q} . Standard arguments show that $M[G_0]$ remains η closed with respect to $V_0[G_0]$. Further, $j^{"}G_0 \subseteq G_0 * H$. This means that in $V_0[G_0][H]$, j lifts to $j: V_0[G_0] \to M[G_0][H]$. By its definition, the closure properties of $M[G_0]$, and the last sentence of the preceding paragraph, H is $V_0[G_0]$ -generic over a partial ordering which is η -strategically closed in both $V_0[G_0]$ and $M[G_0]$. Therefore, $V_0[G_0] \models "\kappa_1$ is α supercompact for every $\alpha < \eta$ ". Since η was chosen as an arbitrary inaccessible cardinal in the interval (κ_1, κ_2) , this proves Lemma 2.1.

We remark that by the observation made immediately following the proof of Lemma 1.1, Lemma 2.1 actually shows that κ_1 is κ_2 supercompact in V_1 .

LEMMA 2.2. $V_1 = V_0^{\mathbb{P}^1} \vDash "\kappa_1 \text{ is not } 2^{\kappa_2} = \kappa_2^+ \text{ supercompact"}.$

Work in V_0 . For any α , write $\mathbb{P}_1 = \mathbb{Q}_0 * \dot{\mathbb{Q}}_1$, where \mathbb{Q}_0 adds non-reflecting stationary sets of ordinals of cofinality ω to cardinals at most α , and $\dot{\mathbb{Q}}_1$ is a term for the rest of \mathbb{P}_1 . Since $|\mathbb{Q}_0| \leq 2^{\alpha} < \lambda_{\alpha}$, the results of [14] and the fact $\Vdash_{\mathbb{Q}_0}$ " $\dot{\mathbb{Q}}_1$ is λ_{α} -strategically closed" together imply that $(\lambda_{\alpha})^{V_0} = (\lambda_{\alpha})^{V_1}$.

Write $\mathbb{P}_1 = \mathbb{P}' * \dot{\mathbb{P}}''$, where $|\mathbb{P}'| = \omega$ and $\Vdash_{\mathbb{P}'} "\dot{\mathbb{P}}''$ is \aleph_1 -strategically closed". In Hamkins' terminology of [9], [10], and [11], \mathbb{P}_1 "admits a gap at \aleph_1 ", so by the Gap Forcing Theorem of [10] and [11], any cardinal δ which is λ_{δ} supercompact in V_1 had to have been λ_{δ} supercompact in V_0 . Since by its definition, forcing with \mathbb{P}_1 over V_0 destroys the weak compactness of any cardinal $\delta < \kappa_1$ that was λ_{δ} supercompact in V_0 , the preceding sentence implies that $V_1 = V_0^{\mathbb{P}^1} \models$ "No cardinal $\delta < \kappa_1$ is λ_{δ} supercompact". This immediately implies that $V_1 \models "\kappa_1$ is not $2^{\kappa_2} = \kappa_2^+$ supercompact", since otherwise, by choosing $k : V_1 \to N$ as an elementary embedding witnessing the 2^{κ_2} supercompactness of κ_1 and reflecting the fact that $N \models "\kappa_1$ is κ_2 supercompact and κ_2 is the least measurable cardinal above κ_1 ", we would infer that $\{\delta < \kappa_1 : \delta \ is \ \lambda_{\delta} \$ supercompact} is unbounded in κ_1 in V_1 . This proves Lemma 2.2.

By defining $\mathbb{P} = \mathbb{P}_0 * \dot{\mathbb{P}}_1$, Lemmas 2.1 and 2.2 complete the proof of Theorem 1. \blacksquare

We conclude Section 2 with some observations. It is possible to change the definition of \mathbb{P}_1 so as to ensure κ_1 will satisfy a greater degree of supercompactness in V_1 . If, e.g., we modify the definition of \mathbb{P}_1 so that we add non-reflecting stationary sets of ordinals of cofinality ω to every cardinal $\delta < \kappa_1$ which is $\beth_{\delta}(\lambda_{\delta})$ supercompact (and by the supercompactness of κ_1 , there are unboundedly in κ_1 many such cardinals), then in V_1 , κ_1 will be $\beth_{\kappa_1}(\kappa_2)$ supercompact but not $2^{[\beth_{\kappa_1}(\kappa_2)]^{<\kappa_1}} = 2^{\beth_{\kappa_1}(\kappa_2)} = (\beth_{\kappa_1}(\kappa_2))^+$ supercompact. However, due to the restrictions on the proof of Theorem 2 of [3], we need to know that $V \models$ "No cardinal $\lambda > \kappa_2$ is measurable". No such restrictions, however, are required in the proof of Theorem 2 of this paper, which we give below.

3. The proof of Theorem 2. Let $V \vDash$ "ZFC + κ is supercompact". By Lemma 2.1 of [4] and the succeeding remark, we know that $\{\delta < \kappa : \delta \text{ is a strong cardinal}\}$ is unbounded in κ . Without loss of generality, by first forcing GCH, then choosing a strong cardinal $\delta < \kappa$, and then forcing with Gitik and Shelah's indestructibility partial ordering of [8] (which can be defined so as to have cardinality δ), we may further assume that $V \vDash$ "GCH holds for cardinals at and above $\delta + \delta$ is a strong cardinal whose strongness is indestructible under forcing with an iteration of Prikry forcing as defined by Magidor in [15] which adds Prikry sequences to cardinals above δ ".

Take now \mathbb{P}_0 as Magidor's iterated Prikry forcing of [15] which adds, to every measurable cardinal $\gamma \in (\delta, \kappa)$, a Prikry sequence. By the indestructibility properties of V and Magidor's work of [15], $V^{\mathbb{P}_0} = V_0 \models$ "GCH holds for cardinals at and above $\delta + \delta$ is a strong cardinal + κ is strongly compact + There are no measurable cardinals in the interval (δ, κ) ". As in the proof of Theorem 1, $V_0 \models$ " κ is not $2^{\kappa} = \kappa^+$ supercompact".

Work in V_0 . Since $V_0 \models "\delta$ is strong $+ \kappa$ is the least measurable cardinal above δ ", by reflection, $B = \{\gamma < \delta : \gamma \text{ is } \lambda_{\gamma} \text{ strong}\}$ is unbounded in δ . Therefore, in analogy to the proof of Theorem 1, we may define \mathbb{P}_1 in V_0 as the Easton support iteration which begins by adding a Cohen subset of ω and then adds, to every $\gamma \in B$, a non-reflecting stationary set of ordinals of cofinality ω . As in the proof of Theorem 1, \mathbb{P}_1 can be defined so as to have cardinality δ . By the preceding paragraph, this has as an immediate consequence that in V_1 , GCH holds for cardinals at and above δ .

LEMMA 3.1. $V_0^{\mathbb{P}_1} = V_1 \vDash$ " δ is α strong for every $\alpha < \kappa$ ".

Proof. The proof is very similar to the proof of Lemma 2.5 of [4]. We use the notation and terminology from the introductory section of [6]. Fix $\eta > \delta, \eta < \kappa$ an inaccessible cardinal which is not also a Mahlo cardinal. Let $j: V_0 \to M$ be an elementary embedding witnessing the $\eta + 1$ strongness of δ generated by a $(\delta, \eta + 1)$ -extender of width δ so that $M \models$ " δ is not $\eta + 1$ strong", and let $i: V_0 \to N$ be the elementary embedding witnessing the measurability of δ generated by the normal ultrafilter $\mathcal{U} = \{x \subseteq \delta : \delta \in j(x)\}$. We then have the commutative diagram

where $j = k \circ i$ and the critical point of k is above δ .

Since η is below the least measurable cardinal above δ and η is not a Mahlo cardinal, $M \vDash$ "There are no measurable cardinals in the interval $(\delta, \eta] + \delta$ is not λ_{δ} strong". Define ϱ to be the least cardinal in M above δ which is λ_{ϱ} strong. By the next to last sentence, we can now infer that $\varrho > \eta$.

Define $f : \delta \to \delta$ as $f(\alpha)$ = The least inaccessible cardinal above λ_{α} . By our choice of η and the preceding paragraph, $\delta < \eta < j(f)(\delta) < \varrho$. Observe that ϱ is also the least *M*-cardinal above δ to which $j(\mathbb{P}_1)$ adds a non-reflecting stationary set of ordinals of cofinality ω .

Note now that $M = \{j(g)(a) : a \in [\eta^+]^{<\omega}, \operatorname{dom}(g) = [\delta]^{|a|}, g : [\delta]^{|a|} \to V_0\}$ = $\{k(i(g))(a) : a \in [\eta^+]^{<\omega}, \operatorname{dom}(g) = [\delta]^{|a|}, g : [\delta]^{|a|} \to V_0\}$. By defining $\gamma = i(f)(\delta)$, we have $k(\gamma) = k(i(f)(\delta)) = j(f)(\delta) > \eta^+$. This means $j(g)(a) = i(f)(\delta) = j(f)(\delta) > \eta^+$. $k(i(g))(a) = k(i(g) |[\gamma]^{|a|})(a)$, i.e., $M = \{k(h)(a) : a \in [\eta^+]^{<\omega}, h \in N, dom(h) = [\gamma]^{|a|}, h : [\gamma]^{|a|} \to N\}$. By elementariness, we must have $N \models "\delta$ is not λ_{δ} strong and $\delta < \gamma = i(f)(\delta) < \delta_0$ = The least cardinal ζ in N above δ which is λ_{ζ} strong = The least cardinal to which $i(\mathbb{P}_1) - \delta$ adds a non-reflecting stationary set of ordinals of cofinality ω ", since $M \models "k(\delta) = \delta$ is not λ_{δ} strong and $k(\delta) = \delta < k(\gamma) = k(i(f)(\delta)) = j(f)(\delta) < k(\delta_0) = \varrho$ ". Therefore, k can be assumed to be generated by an N-extender of width $\gamma \in (\delta, \delta_0)$.

Write $i(\mathbb{P}_1) = \mathbb{P}_1 * \dot{\mathbb{Q}}_0$, where $\dot{\mathbb{Q}}_0$ is a term for the portion of $i(\mathbb{P}_1)$ adding non-reflecting stationary sets of ordinals of cofinality ω to N-cardinals in the interval $[\delta, i(\delta))$. Since $N \models "\delta$ is not λ_{δ} strong", $\dot{\mathbb{Q}}_0$ is actually a term for a partial ordering adding non-reflecting stationary sets of ordinals of cofinality ω to N-cardinals in the interval $(\delta, i(\delta))$, or more precisely, to N-cardinals in the interval $[\delta_0, i(\delta))$.

Let G_0 be V_0 -generic over \mathbb{P}_1 . By the definition of \mathbb{P}_1 and the fact GCH holds in V_0 for cardinals at and above δ , $N[G_0] \models "|\mathbb{Q}_0| = i(\delta) + |2^{\mathbb{Q}_0}| = i(\delta^+) = (i(\delta))^+$ ". As N is an ultrapower via a normal measure over δ , this means $V_0 \models "|(i(\delta))^+| = \delta^+$ ", so we can let $\langle D_\alpha : \alpha < \delta^+ \rangle \in V_0[G_0]$ be an enumeration of the dense open subsets of \mathbb{Q}_0 present in $N[G_0]$. For the purposes of the argument to be given below, we also assume that $\langle D_\alpha : \alpha < \delta^+ \rangle$ has been defined so that for every dense open subset $D \subseteq \mathbb{Q}_0$ found in $N[G_0]$, for some odd ordinal $\beta + 1$, $D = D_{\beta+1}$. Further, since $V_0 \models "|\mathbb{P}_1| = \delta$ ", standard arguments show that $N[G_0]$ remains δ closed with respect to $V_0[G_0]$. Therefore, as $N[G_0] \models "\mathbb{Q}_0$ is $\prec \delta^+$ -strategically closed", this fact is true in $V_0[G_0]$ as well.

We can now construct an $N[G_0]$ -generic object, G_1^* , in $V_0[G_0]$ as follows. Players I and II play a game of length δ^+ . The initial pair of moves is generated by player II choosing the trivial condition q_0 and player I responding by choosing $q_1 \in D_1$. Then, at an even stage $\alpha + 2$, player II picks $q_{\alpha+2} \ge q_{\alpha+1}$ by using some fixed strategy \mathcal{S} , where $q_{\alpha+1}$ was chosen by player I to be so that $q_{\alpha+1} \in D_{\alpha+1}$ and $q_{\alpha+1} \ge q_{\alpha}$. If α is a limit ordinal, player II uses \mathcal{S} to pick q_{α} extending each q_{β} for $\beta < \alpha$. By the $\prec \delta^+$ -strategic closure of \mathbb{Q}_0 in both $N[G_0]$ and $V[G_0]$, the sequence $\langle q_{\alpha} : \alpha < \delta^+ \rangle$ as just described exists. By construction, $G_1^* = \{p \in \mathbb{Q}_0 : \exists \alpha < \delta^+ \mid q_{\alpha} \ge p\}$ is our $N[G_0]$ -generic object over \mathbb{Q}_0 . Since $i''G_0 \subseteq G_0 * G_1^*$, i lifts to $i : V_0[G_0] \to N[G_0][G_1^*]$, and since $k''G_0 = G_0$ and $k(\delta) = \delta$, k lifts to $k : N[G_0] \to M[G_0]$. By Fact 3 of Section 1.2.2 of [6], $k : N[G_0] \to M[G_0]$ can also be assumed to be generated by an extender of width $\gamma \in (\delta, \delta_0)$.

In analogy to the above, write $j(\mathbb{P}_1) = \mathbb{P}_1 * \dot{\mathbb{Q}}_1$. By the last sentence of the preceding paragraph and the fact δ_0 is the least *N*-cardinal to which $\dot{\mathbb{Q}}_0$ is forced to add a non-reflecting stationary set of ordinals of cofinality ω , we can use Fact 2 of Section 1.2.2 of [6] to infer that $H = \{p \in \mathbb{Q}_1 :$ $\exists q \in k''G_1^* \ [q \ge p] \}$ is $M[G_0]$ -generic over $k(\mathbb{Q}_0) = \mathbb{Q}_1$. Thus, k lifts to $k : N[G_0][G_1^*] \to M[G_0][H]$, and we get the new commutative diagram

Since $\rho > \eta$, the *M*-cardinals to which $\dot{\mathbb{Q}}_1$ is forced to add non-reflecting stationary sets of ordinals of cofinality ω lie in the interval $(\eta^+, j(\delta))$. Therefore, as $V_{\eta+1} \subseteq M$, $V_{\eta+1}[G_0] \subseteq M[G_0]$, and as \mathbb{Q}_1 adds non-reflecting stationary sets of ordinals of cofinality ω to certain inaccessible *M*-cardinals in the interval $(\eta^+, j(\delta))$, $V_{\eta+1}[G_0]$ is the set of all sets of rank below $\eta + 1$ in $M[G_0][H]$. Hence, j is an $\eta + 1$ strong embedding. Since η was an arbitrary non-Mahlo inaccessible cardinal below κ , this proves Lemma 3.1.

We remark that by the observation made immediately following the proof of Lemma 1.1, Lemma 3.1 actually shows that δ is $\kappa + 1$ strong in V_1 .

LEMMA 3.2. $V_1 \vDash$ " δ is not $\kappa + 2$ strong".

Work in V_0 . As in the proof of Lemma 2.2, for any ordinal α , $(\lambda_{\alpha})^{V_0} = (\lambda_{\alpha})^{V_1}$. Also, we can once more write $\mathbb{P}_1 = \mathbb{P}' * \dot{\mathbb{P}}''$, where $|\mathbb{P}'| = \omega$ and $\Vdash_{\mathbb{P}'}$ " $\dot{\mathbb{P}}''$ is \aleph_1 -strategically closed". As before, \mathbb{P}_1 "admits a gap at \aleph_1 ", so by the Gap Forcing Theorem of [10] and [11], any cardinal ζ which is λ_{ζ} strong in V_1 had to have been λ_{ζ} strong in V_0 . Since by its definition, forcing with \mathbb{P}_1 over V_0 destroys the weak compactness of any cardinal $\zeta < \delta$ that was λ_{ζ} strong in V_0 , the preceding sentence implies that $V_1 = V_0^{\mathbb{P}^1} \models$ "No cardinal $\zeta < \delta$ is λ_{ζ} strong". This immediately implies that $V_1 \models "\delta$ is not $\kappa + 2$ strong", since otherwise, by choosing $\ell : V_1 \to M^*$ as an elementary embedding witnessing the $\kappa + 2$ strong easily the fact that $M^* \models "\delta$ is κ strong and κ is the least measurable cardinal above δ ", we would infer that $\{\zeta < \delta : \zeta \text{ is } \lambda_{\zeta} \text{ strong}\}$ is unbounded in δ in V_1 . This proves Lemma 3.2.

By defining $\mathbb{P} = \mathbb{P}_0 * \dot{\mathbb{P}}_1$, Lemmas 3.1 and 3.2 complete the proof of Theorem 2.

We conclude Section 3 and this paper with several observations. First, as the referee has essentially indicated, if $V \vDash$ "ZFC + GCH + $\delta < \kappa$ are so that δ is strong and κ is strongly compact", then we may force over V with the partial ordering \mathbb{P} as just defined in order to obtain the conclusions of Theorem 2. In addition, as before, it is possible to change the definition of \mathbb{P}_1 so as to ensure δ will satisfy a greater degree of strongness in V_1 . If, e.g., we change the definition of \mathbb{P}_1 so that we add non-reflecting stationary sets of ordinals of cofinality ω to every cardinal $\zeta < \delta$ which is $\beth_{\zeta}(\lambda_{\zeta})$ strong (and by the strongness of δ , there are unboundedly in δ many such cardinals), then in V_1 , δ will be $\beth_{\delta}(\kappa)$ strong but not $\beth_{\delta}(\kappa) + 1$ strong. Also, since Magidor's proof from [15] that iterated Prikry forcing preserves the strong compactness of κ is valid regardless of the large cardinal structure of the universe above κ , unlike Theorem 1, there is no need to do an initial forcing to ensure that $V \models$ "No cardinal $\lambda > \kappa$ is measurable".

Finally, we note that under the same hypotheses as in Theorem 1, i.e., that $V \vDash$ "ZFC + $\kappa_1 < \kappa_2$ are supercompact", it is possible to modify the definition of the partial ordering \mathbb{P} of Theorem 1 so that $V^{\mathbb{P}} \models$ "ZFC + κ_2 is strongly compact but not supercompact + κ_1 is α supercompact for every $\alpha < \kappa_2 + \kappa_1$ is not supercompact $+ \kappa_1$ is strong". To do this, we observe that Lemma 2.1 of [4] and the succeeding remark actually imply that if $j: V \to M$ is an elementary embedding witnessing (at least) the $2^{\lambda_{\kappa_1}}$ supercompactness of κ_1 , then $M \models \kappa_1$ is a strong cardinal and κ_1 is λ_{κ_1} supercompact", meaning that $A = \{\delta < \kappa_1 : \delta \text{ is a strong cardinal and } \delta \text{ is}$ λ_{δ} supercompact} is unbounded in κ_1 . Therefore, if \mathbb{P}_0 is as in the definition given in the proof of Theorem 1, $V_0 = V^{\mathbb{P}_0}$, and \mathbb{P}_1 is defined in V_0 as the Easton support iteration of length κ_1 which first adds a Cohen subset of ω and then adds, to every $\delta \in A$, a non-reflecting stationary set of ordinals of cofinality ω , the exact same arguments as before show that $V^{\mathbb{P}} \models \text{``ZFC} +$ κ_2 is strongly compact but not supercompact + κ_1 is α supercompact for every $\alpha < \kappa_2$ ". If in the proof of Lemma 2.2, we replace the property " δ is λ_{δ} supercompact" with " δ is a strong cardinal and δ is λ_{δ} supercompact", then the same proof as given in Lemma 2.2 remains valid and shows $V^{\mathbb{P}} \models "\kappa_1$ is not $2^{\kappa_2} = \kappa_2^+$ supercompact". Further, if we choose $\lambda > \kappa_2$ as any cardinal so that $\lambda = \aleph_{\lambda} = \beth_{\lambda}$ and $j: V_0 \to M$ as an elementary embedding witnessing the λ strongness of κ_1 so that $M \models "\kappa_1$ is not λ strong", then either the argument given in the proof of Lemma 2.5 of [4] or the one in the proof of Lemma 3.1 shows that $V_0^{\mathbb{P}_1} = V^{\mathbb{P}} \vDash "\kappa_1 \text{ is } \lambda \text{ strong}"$. Since λ may be chosen arbitrarily large, this means that $V^{\mathbb{P}} \vDash "\kappa_1$ is strong". And, in analogy to what was mentioned in the concluding remarks of Section 2, it is possible to change the definition of \mathbb{P}_1 to ensure that κ_1 witnesses a greater degree of supercompactness in $V^{\mathbb{P}}$, assuming that the cardinals to which non-reflecting stationary sets of ordinals of cofinality ω are added are also strong.

· • •

References

- A. Apter, Laver indestructibility and the class of compact cardinals, J. Symbolic Logic 63 (1998), 149–157.
- [2] —, Strong compactness, measurability, and the class of supercompact cardinals, Fund. Math. 167 (2001), 65–78.
- [3] A. Apter and J. Cummings, *Identity crises and strong compactness*, J. Symbolic Logic 65 (2000), 1895–1910.
- [4] —, —, Identity crises and strong compactness II: strong cardinals, Arch. Math. Logic 40 (2001), 25–38.
- [5] J. Burgess, *Forcing*, in: J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 403–452.
- [6] J. Cummings, A model in which GCH holds at successors but fails at limits, Trans. Amer. Math. Soc. 329 (1992), 1–39.
- [7] C. Di Prisco and J. Henle, On the compactness of ℵ₁ and ℵ₂, J. Symbolic Logic 43 (1978), 394–401.
- [8] M. Gitik and S. Shelah, On certain indestructibility of strong cardinals and a question of Hajnal, Arch. Math. Logic 28 (1989), 35–42.
- [9] J. D. Hamkins, Destruction or preservation as you like it, Ann. Pure Appl. Logic 91 (1998), 191–229.
- [10] —, Gap forcing, Israel J. Math. 125 (2001), 237–252.
- [11] —, Gap forcing: generalizing the Lévy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264–272.
- [12] A. Kanamori, *The Higher Infinite*, Springer, Berlin, 1994.
- [13] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385–388.
- [14] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234–248.
- [15] M. Magidor, How large is the first strongly compact cardinal?, Ann. Math. Logic 10 (1976), 33–57.
- [16] —, On the role of supercompact and extendible cardinals in logic, Israel J. Math. 10 (1971), 147–157.

Department of Mathematics Baruch College of CUNY New York, NY 10010, U.S.A. E-mail: awabb@cunyvm.cuny.edu http://math.baruch.cuny.edu/~apter

> Received 24 November 2001; in revised form 24 February 2002