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Dedicated to Prof. J. Smı́tal on the occasion of his 60th birthday

Abstract. Let I be a compact real interval and let f : I → I be continuous. We
describe an interval analogy of the irrational circle rotation that occurs as a subsystem
of the dynamical system (I, f)—we call it an irrational twist system. Using a coding we
show that any irrational twist system is strictly ergodic. We also prove that irrational
twist systems exist as subsystems of a large class of systems (I, f) having a cycle of odd
period greater than one.

0. Introduction. Let (T, g) be a line (resp. interval) dynamical system
that consists of a nonempty compact subset (resp. subinterval) T of the
real line and a continuous map g mapping T into itself. The question of
coexistence of different types of line systems arises in the theory of interval
dynamical systems.

For instance, the case when T ’s are finite and line systems are created
by cycles has been deeply studied [ALM]. In recent works [Bl1-5], [B2-3],
[BK3], [Y] the authors deal with infinite line systems (#T = ∞) and show
interesting results concerning their coexistence.

The aim of this paper is to complete our investigation of twist (line) sys-
tems. The class of twist systems can be briefly described as follows: A system
(T, g) is said to be ergodic if T = suppµ for some ergodic g-invariant Borel
probability measure. Let E be an eccentricity (function with finite or infi-
nite values, to be introduced later in detail) defined on the set of all line
systems. An ergodic system (T, g) is a twist system if there is an interval
map f : conv T → conv T such that f |T = g, E(T, g) = E(conv T, f) and
E(S, f) < E(T, g) whenever S ⊂ conv T , (S, f) is ergodic and S \ T 6= ∅. In
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other words, it is an ergodic system that does not force more complicated
behaviour—as measured by the eccentricity—than is realized by (T, g) it-
self. Our main result (Theorem 4.5) states that irrational twist systems (i.e.,
those with irrational eccentricity) are strictly ergodic. In Theorem 5.2 we
prove that such systems occur as subsystems of any interval system (I, f)
having a cycle of odd period greater than one.

The paper is organized as follows:

In Section 1 we give some basic notation and definitions used throughout
the paper.

Section 2 is devoted to the description of useful (known) properties of
(twist) systems. An important property of codings of twist cycles is proved
in Lemma 2.3.

Section 3 is devoted to the investigation of rational twist systems. Their
study is based on statements 2.1–2.3 and 3.1, 3.3 and Example 3.2. The
main result of this section is Theorem 3.4.

In Section 4, using Lemmas 4.1–4.4, we prove that irrational twist sys-
tems are strictly ergodic (Theorem 4.5).

Finally, Section 5 is devoted to the proof of Theorem 5.2 that completes
the knowledge of twist systems (both rational and irrational) realized by
continuous interval maps.

1. Notation, definitions. By R, N, N0 we denote the sets of real
numbers, positive integers and nonnegative integers respectively. Let T ,
resp. I ⊂ T , be the set of all nonempty compact subsets, resp. subinter-
vals, of R and let C(T ) be the set of all continuous functions which map
T ∈ T into itself. We consider the space C(T ) =

⋃{C(T ) : T ∈ T }, resp.
C(I) =

⋃{C(I) : I ∈ I}. For g ∈ C(T ) we define gn inductively by g0 = id
and (for n ≥ 1) gn = g ◦ gn−1.

Let J be a nonempty (maybe one-point) subset of T ∈ T . The orbit of J
under g is orb(g, J) = {gn(J)}∞n=0. The ω-limit set ω(g, x) of x ∈ T consists
of all the limit points of orb(g, x). We will say that a set J ⊂ T (or a point
x ∈ T ) is g-periodic (of period n) if J, . . . , gn−1(J) are pairwise disjoint and
gn(J) = J . A fixed point is a periodic point of period 1 and Fix(g) is the
set of all fixed points of g.

For g ∈ C(T ) we will say that (T, g) is a system, resp. interval system
for T ∈ I. For a system (T, g), a map g̃ ∈ C(conv T ) is said to be (T, g)-
monotone if g̃|T = g and g̃|J is (not necessarily strictly) monotone for any
interval J ⊂ conv T such that J ∩ T = ∅. We will use the notation C(T, g)
for the set of all (T, g)-monotone maps. In particular, the (T, g)-monotone
map which is affine on each component of conv T \T will be denoted by gT .

An interval map f ∈ C(I) is piecewise monotone if there are k ∈ N
and points min I = c0 < c1 < . . . < ck < ck+1 = max I such that f is
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monotone on each [ci, ci+1], i = 0, . . . , k. The minimal such k will be called
the modality of f , resp. of (T, g) if f = gT .

A system (T, g) is said to be minimal , resp. transitive, if ω(g, x) = T
for each x ∈ T , resp. for some x ∈ T . Such a point will be called transitive.
A cycle is a minimal system (T, g) for which T is finite. A function f ∈ C(I)
has a system (T, g) if f |T = g. In this case we will sometimes write (T, f)
instead of (T, g).

Let (T, g) be a system. Suppose there are T -blocks Bi = [ai, bi] ∩ T ,
i ∈ {1, . . . , k}, such that bi < ai+1 for i ∈ {1, . . . , k − 1} and T =

⋃k
i=1 Bi.

We will say that (T, g) has a block structure over a cycle (S, f) if S = {s1 <
. . . < sk}, and g(Bi) = Bj if and only if f(si) = sj .

Classification of transitive systems. It is known [BCp] that for a transi-
tive system (T, g) exactly one of the following three possibilities is satisfied:
(i) T is finite; (ii) T is a Cantor set; (iii) T is the union of elements of an
orbit of a closed periodic interval.

In what follows we will use some notions from ergodic theory [DGS]. Let
µ be a Borel probability measure on a compact topological space (X, τ) and
let g : X→X be continuous. We will say that µ is g-invariant if µ(g−1(S)) =
µ(S) for any Borel S ⊂ X. We denote by M(g) the set of all g-invariant
measures. A measure µ ∈ M(g) is called ergodic if for any Borel set S ⊂ X
satisfying g(S) ⊂ S we have either µ(S) = 0 or µ(S) = 1. We denote the
set of all g-invariant ergodic measures byMe(g). The support of a measure
µ, denoted by suppµ, is the smallest closed set S ⊂ X such that µ(S) = 1.
A point x ∈ suppµ is said to be µ-generic if limn→∞ n−1#{0 ≤ i ≤ n− 1 :
gi(x) ∈ U} = µ(U) for each open set U ⊂ suppµ (in the relative topology)
such that µ(bdU) = 0. If G(µ) denotes the set of all µ-generic points then
µ(G(µ)) = 1, i.e. for an ergodic measure almost every point is generic.

A system (T, g) is said to be ergodic if T = suppµ for some µ ∈Me(g).
An ergodic system is called strictly ergodic if #Me(g) = 1. It is known that
an ergodic, resp. strictly ergodic system is transitive, resp. minimal. We have
the following ergodic decomposition.

Theorem 1.1 ([Ph]). Let g ∈ C(T ) and µ ∈ M(g). Then there is a
measure m on Me(g) such that µ(S) =

�
Me(g) λ(S) dm for any measurable

set S.

For our investigation in Section 3 it will be important to know whether
for a system (T, g) there are measures in Me(g) with support T . There is
the following remarkable result.

Theorem 1.2 ([Bl4], [DGS]). Let (I, f) be a transitive interval system.
Then (I, f) has the specification property , hence the set of ergodic measures
from M(f) with support I is Gδ dense in M(f).
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Definition of eccentricity. Let (T, g) be a system, c ∈ conv T and µ be a
measure on T . Let β=µ([minT, c])/µ([c,maxT ]) (β=∞ if µ([c,maxT ])=0).
We define E(µ, c) = max{β, 1/β}, E(µ) = sup{E(µ, c) : c ∈ Fix(gT )} and

E(T, g) = sup{E(µ) : µ ∈ Me(g)}.
The value E(T, g) will be called the eccentricity of (T, g).

Remark 1.2. (i) By means of Theorem 1.1 we can verify that E(T, g) =
sup{E(µ) : µ ∈ M(g)} for a system (T, g). (ii) If I ∈ T is an interval and
f ∈ C(I) then we often write E(f) instead of E(I, f). (iii) As shown in
[BK2] if for g ∈ C(T ) the number of fixed points of gT is greater than one
then E(gT ) = ∞. In this paper our interest is focused on maps with finite
eccentricities. So in what follows we will not consider any map gT with more
fixed points.

Definition of unisystem. A system (T, g) is said to be a unisystem if gT
is piecewise monotone and # Fix(gT ) = 1. The set of all unisystems will be
denoted by U .

Remark 1.3. (i) Let (T, g) ∈ U . In what follows we always use the letter
c to denote the unique fixed point of gT . We will also write T = TL ∪ TR

where TL = [minT, c] ∩ T and TR = [c,maxT ] ∩ T .
(ii) Our definition of eccentricity gives E(gT ) ≥ E(T, g). It is well known

that E(gT ) > E(T, g) for some unisystems (T, g) [BK2].

In the following key definition we work with unisystems only.

Definition of twist (β)-system. Let β ∈ (1,∞). A system (T, g) ∈ U
is said to be a twist (β)-system if T = suppµ for some µ ∈ Me(g) with
E(µ) = β, E(gT ) = β and

(?) ∀ν ∈ Me(gT ) : E(ν) = β ⇒ supp ν ⊂ T.
Remark 1.4. (i) If (T, g) is a twist (β)-system then from Theorem 1.1

it follows that

∀ν ∈M(gT ) : E(ν) = β ⇒ supp ν ⊂ T.
(ii) In [BK2] we have studied a particular case of twist systems given

by a finite set T . In that case (T, g) is a cycle and we will call it the twist
cycle. We will show in Section 3 that a twist system (T, g) with a rational
eccentricity need not satisfy #T < ∞. Our investigation of twist systems
has been extended to the irrational case in [BK3]. The main result of that
paper is stated in Proposition 2.2.

Remark 1.5. It is a consequence of the results proved in [Bl2] that for
(T, g) ∈ U with E(gT ) ∈ [1,∞) there is some µ ∈ Me(gT ) such that E(µ) =



Twist systems on the interval 101

E(gT ). In what follows we will always assume that

E(µ) = µ([minT, c])/µ([c,maxT ]).

Otherwise we would use instead of gT the map h ◦ gT ◦ h−1 with h(x) =
−x+ minT + maxT , x ∈ [minT,maxT ].

Definition of (β)-code and (β)-coding. Let (T, g) ∈ U , β ∈ (1,∞). For
x ∈ T \ {c} a function Kx : orb(g, x) → R is a (β)-code of orb(g, x) if for
each i ∈ N0,

(1) Kx(gi+1(x)) =
{
Kx(gi(x)) + 1/(1 + β) if gi(x) < c,
Kx(gi(x))− β/(1 + β) if gi(x) > c.

We say that the (β)-code of orb(g, x) is monotone, resp. strictly monotone,
if for any y, z ∈ orb(g, x) the relation y ∈ conv{z, c} implies Kx(y) ≥ Kx(z),
resp. Kx(y) > Kx(z). A continuous function K : T → R is said to be a (β)-
coding of (T, g) if for each x ∈ T \ {c} the function K|orb(g, x) = Kx is a
(β)-code of orb(g, x). A (β)-coding K is monotone, resp. strictly monotone,
if so are all codes K|orb(g, x), x ∈ T . A coding K : T → R satisfying
K(minT )=0 will be called the normalized coding .

Remark 1.6. By its definition, a coding K of (T, g) (if it exists) is
uniquely determined up to an additive constant. In Section 5 we will write
Kx(·, β) to emphasize the choice of β.

In Section 3 we use symbolic dynamics [DGS]. Consider {0, 1, 2} as a
finite space with the discrete topology, and denote by Ω3 the infinite product
space

∏∞
i=0 Xi, where Xi = {0, 1, 2} for all i. The shift map σ : Ω3 → Ω3 is

defined by (σ(ω))i = ωi+1, i ∈ N0. Obviously, Ω3 is a compact metrizable
topological space and σ : Ω3 → Ω3 is continuous. Thus, the pair (Ω3, σ) is
a topological dynamics. If a probability vector p = (p0, p1, p2) with positive
coordinates defines a measure ν on {0, 1, 2} satisfying ν{i} = pi then the
corresponding product measure λ =

∏∞
i=0 ν on Ω3 (Bernoulli measure given

by p) is σ-invariant, ergodic and suppλ = Ω3.

2. Useful properties of (twist) systems. This section is devoted to
the description of the necessary auxiliary results. Important known prop-
erties of twist cycles are listed in the next proposition. Statement (iv) is a
special case of a more general one proved in [Bl2].

Proposition 2.1. (i) [BK2] A cycle (T, g) is a twist (β)-cycle if and
only if there is a strictly monotone (β)-coding of (T, g). In this case if β =
m/n with m,n coprime then (T, g) has a period m+ n.

(ii) [Bl5] Let f ∈ C(I) and β ∈ [1, E(f)) be rational. Then f has a twist
(β)-cycle.
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(iii) [B1, 3.2(ii)] Let (T = {t1 < . . . < tk}, g) be a twist cycle. If (T, g)
has a block structure over a cycle (S = {s1 < . . . < sl}, f) with l > 1 then
k = l, and g(ti) = tj if and only if f(si) = sj. Moreover , (conv T, gT ) is
transitive.

(iv) [Bl2] Let (T, g) be piecewise monotone. If the eccentricity E(gT ) > 1
of gT is rational then gT has a twist E(gT )-cycle.

(v) [BK3] If (T, g) is a twist (β)-system for β ∈ (1,∞) then T ∩
Fix(gT ) = ∅.

The next proposition recalls the main results describing twist systems
with irrational eccentricity. Of course, in this case the set T carrying an
irrational system (T, g) has to be infinite.

Proposition 2.2 ([BK3]). Let (T, g) ∈ U and let β ∈ (1,∞) be irra-
tional. The following statements are equivalent.

(i) (T, g) is a twist (β)-system.
(ii) T = suppµ for some µ ∈ Me(g) with E(µ) = β and there is a map

g̃ ∈ C(T, g) such that E(g̃) = β.
(iii) There is a transitive point x ∈ T such that the (β)-code Kx of

orb(g, x) is monotone.
(iv) (T, g) is minimal and there is a (β)-coding K : T → R such that for

each x ∈ T , the (β)-code Kx = K|orb(g, x) of orb(g, x) is strictly monotone.
(v) T = suppµ for some µ ∈Me(g) with E(µ) = β, for any g̃ ∈ C(T, g)

we have E(g̃) = β and

∀ν ∈ M(g̃) : E(ν) = β ⇒ supp ν = T.

Let (T, g) be a twist (β)-cycle. Using Proposition 2.1(i) we can verify that
the modality M(T, g) of (T, g) is odd; Remark 1.5 implies that g(TR) ⊂ TL

(both properties easily follow from the fact that the (β)-coding of (T, g) is
strictly monotone). Put M(T, g) = 2j − 1 ∈ N, write TR = T0 and express
TL as a union of 2j consecutive blocks, i.e.

TL =
⋃

1≤i≤j
T2i−1 ∪ T2i

where for 1 ≤ i ≤ j each block with odd (resp. even) index is mapped by
g into TL (resp. TR) and they are ordered (from the left) according to their
labels (see also [B1, Section 3]).

The following statement will be important when proving Theorem 5.2.
It provides some extra information on codings of twist cycles and we present
it in this summarizing section.

Lemma 2.3. Let (T, g) be a twist (β)-cycle with modality M(T, g) =
2j − 1, and denote by K its normalized (β)-coding. Then maxK|T2k <
kβ/(1 + β) for each k ∈ {1, . . . , j}. In particular , maxK|TL < jβ/(1 + β).
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Proof. Since by Proposition 2.1(i) the (β)-coding K : T → R is strictly
monotone we must have

(2) g|⋃1≤i≤j T2i−1 is increasing & g|⋃0≤i≤j T2i is decreasing.

Using (1) we have for each x ∈ ⋃1≤i≤j T2i the relations

K(g2(x)) = K(x) +
1− β
1 + β

< K(x),

hence g2(x) < x.
Set xi = minTi and yi = maxTi for i ∈ {1, . . . , 2j}. We are going to

show that for each i ∈ {1, . . . , j}:
(i) g(y2i−1) ≥ y2i with equality iff i = j,

(ii) K(y2j)−K(y2j−1) = 1/(1 + β) and K(y2i)−K(y2i−1) ≤ 1/(1 + β)
for i < j,

(iii) g2(x2i) ≤ x2i−1 with equality iff i = 1,
(iv) K(x2)−K(x1) = (β − 1)/(1 + β) and K(x2i)−K(y2i−2) ≤ (β − 1)/

(1 + β) for i > 1.

Let us prove (i). Clearly for each x ∈ ⋃
1≤i≤j T2i we have g2(x) <

g2(y2j) < y2j . Since g(T ) = T , from (2) we obtain g(y2j−1) = y2j .
Let i < j and suppose that g(y2i−1) ≤ y2i. Then putting S = (T1 ∪

T2) ∪ . . . ∪ (T2i−1 ∪ T2i) we get from (2) the relations S ∪ g(S) ( T and
g(S ∪ g(S)) ⊂ S ∪ g(S), which contradicts g(T ) = T . Thus g(y2i−1) > y2i.

Property (ii) follows directly from (i).
In order to prove (iii) we start by showing that g2(x2) = x1. Indeed, by

(2) we have g(x2) = maxT and g2(x2) = g(maxT ) = minT = x1.
Let i > 1 and suppose that g2(x2i) ≥ x2i−1. Define R = (T2i−1 ∪ T2i) ∪

. . .∪ (T2j−1 ∪ T2j). Then by (2) we obtain R∪ g(R) ( T and g(R∪ g(R)) ⊂
R ∪ g(R)—a contradiction. This means g2(x2i) < x2i−1.

Property (iv) follows easily from (iii).
Fix k ∈ {1, . . . , j}. Using K(x1) = 0 we have

K(y2k) =
k−1∑

i=1

(K(y2i+2)−K(x2i+2) +K(x2i+2)−K(y2i))(3)

+K(y2)−K(x2) +K(x2)−K(x1)

=
k−1∑

i=0

(K(y2i+2)−K(x2i+2))

+K(x2)−K(x1) +
k−1∑

i=1

(K(x2i+2)−K(y2i));
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by (ii) we can verify that K(y2i+2) − K(x2i+2) < 1/(1 + β) for each i ∈
{0, . . . , k − 1}, and similarly it follows from (iv) that K(x2) − K(x1) =
(β − 1)/(1 + β) and for each i ∈ {1, . . . , k−1} we have K(x2i+2)−K(y2i) ≤
(β − 1)/(1 + β). Summarizing, (3) together with the last inequalities gives

K(y2k) < k
1

1 + β
+ k

β − 1
1 + β

= k
β

1 + β
.

Since maxK|T2k = K(y2k) the conclusion follows.

Corollary. Let (T, g) be a twist (β)-cycle with modality M(T, g) =
2j − 1, and denote by K its (β)-coding. Then for each x, y ∈ T we have

K(x)−K(y) <
jβ + 1
1 + β

.

Proof. By (1) and Proposition 2.1(i) we have

maxK = K(minTR) = K(maxTL) +
1

1 + β

and maxTL = y2j . Without loss of generality we can assume that K is
normalized. Then by Lemma 2.3 for each x, y ∈ T we obtain

K(x)−K(y) ≤ maxK < j
β

1 + β
+

1
1 + β

.

Remark. Thus we have shown that the modality of a twist cycle is
closely connected with a bound for its coding. For more detailed results of
this type see [BM].

Lemma 2.4. Let (T, g) be a system.

(i) For every interval J ⊂ conv T we have

conv(J ∩ T ) = J ⇒ conv(gT (J) ∩ T ) = gT (J).

(ii) [Pr] If (T, g) is transitive, gT piecewise monotone and for some
R ⊂ T the system (R, g) is a cycle then there is a transitive gT -periodic
interval [a, b] such that T ⊂ ⋃ orb(gT , [a, b]).

Proof. (i) This follows directly from the definitions of (T, g) and gT .

3. Rational twist systems. In [BK3] we have described some basic
properties of irrational twist systems. Theorem 3.4 and further results of
this section provide an analogous description for rational eccentricities. In
particular, we find that our definition of a twist system (T, g) does not imply
#T <∞ in the rational case.

Let g ∈ C(T ). If the system (conv T, gT ) is transitive we will briefly say
that gT is transitive. It is known [BCp] that a piecewise monotone map gT
with E(gT ) > 1 is transitive if and only if (for c < d)

∀[c, d] ⊂ conv T ∃m ∈ N : gmT ([c, d]) = conv T.
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We will also say that J ⊂ conv T is a transitive gT -periodic interval
whenever it is a gT -periodic interval of period n for which the system (J, gnT )
is transitive. Then the set Per(gT )∩J is dense in J . Note that such an interval
is maximal, i.e. there is no other transitive gT -periodic interval I ⊂ conv T
such that I ) J .

Lemma 3.1. Let (T, g) be a twist (β)-system for β ∈ (1,∞) rational.
If gT is not transitive then T is the union of elements of the orbit of a
transitive gT -periodic interval and the system (T, g) has a block structure
over a twist (β)-cycle.

Proof. Let β = m/n, m,n coprime. It follows from Proposition 2.1(iv)
that gT has some twist (β)-cycle (R, g); this notation is correct since by (?)
in the definition of twist system and Proposition 2.1(iii) we have R ( T .
This means that #T = ∞ and (T, g) is transitive (as the support of an
ergodic measure) but not minimal.

By Lemma 2.4(ii) there is a transitive gT -periodic interval [a, b] of period
k > 1 such that T ⊂ ⋃ orb(gT , [a, b]). Using Proposition 2.1(iii) we see that
#(R ∩ giT ([a, b])) = 1 for each i ∈ {0, . . . , k− 1}, and (i) of the same propo-
sition shows that k = m+ n. Obviously all measures supported by periodic
orbits in

⋃
orb(gT , [a, b]) have eccentricity β, hence by the definition of a

twist system, T =
⋃

orb(gT , [a, b]). Moreover, (T, g) has a block structure
over (R, g).

In the previous lemma we assumed that for a rational twist system (T, g)
the map gT was not transitive. By Proposition 2.1(iii) this is not true for T
finite. In what follows we show that gT can be transitive even for infinite T .
Our example of this phenomenon requires a more detailed explanation. The
reason is that such a rational twist system (T, g) has to be ergodic (not
minimal) and satisfy condition (?) from Section 1.

Example 3.2. Consider the cycle (S, f) given by S = {1, 2, 3, 4, 5, 6}
and f(1) = 3, f(2) = 6, f(3) = 4, f(4) = 5, f(5) = 2, f(6) = 1. Then
E(S, f) = 2 and (S, f) ∈ U . Moreover, (S, f) has a monotone (but not
strictly monotone) (2)-coding and E(fS) ≥ 2 (we will see in part I of the next
proof that E(fS) = 2) for fS ∈ C([1, 6]). It follows from Proposition 2.1(i)
that the cycle (S, f) is not a twist (2)-cycle, hence again from Proposition
2.1(i),(ii),(iv), fS has a cycle of period 3 (that is, a twist (2)-cycle). It is
known [MN] that the map fS is transitive. Put

M = {ν ∈ Me(fS) : E(ν) = 2}, T =
⋃

ν∈M
supp ν, g = fS |T.

Lemma 3.3. If (T, g) is as above then T is a Cantor set and (T, g) is a
twist (2)-system.



106 J. Bobok

Proof. Clearly (T, g) is a system and gT = fS , hence (T, g) ∈ U . By the
definition of T if ν ∈ Me(gT ) and E(ν) = 2 then supp ν ⊂ T . Thus, it is
sufficient to show that T is a Cantor set and T = suppµ for some µ ∈ Me(g)
with E(µ) = 2. The proof will be divided into several parts.

Since gT = fS , the map gT is transitive. Denote by C,D the subsets of
[1, 6] defined by C = {y : gjT (y) 6= c for j ∈ N0}, D = {y : gjT (y) 6∈ S for j ∈
N0}, and set I0 = [c, 5], I1 = [5, 6], I2 = [1, 2], I3 = [2, 3], I4 = [3, 4],
I5 = [4, 5]. A subset J ⊂ [1, 6] covers a subset L ⊂ [1, 6] if L ⊂ gT (J). In
this case we write J → L. The reader can verify that the covering properties
of I0, I1, I2, I3, I4, I5 are I0 → I3 ∪ I4 ∪ I5, I1 → I2, I2 → I0 ∪ I1 ∪ I4 ∪ I5,
I3 → I0 ∪ I1 ∪ I5, I4 → I0 ∪ I5, I5 → I0.

I. The symbolic itinerary I(y) = y(0)y(1) . . . y(j) . . . of y ∈ C satisfies

y(j) ∈ {0, 1} & (c− gjT (y))(−1)y(j) > 0 for each j ∈ N0.

For k ∈ N and r(k), s(k), t(k) ∈ N0 put

A(k) = (010001)r(k)(001)s(k)(01)t(k),

where ( )m denotes the m-fold repetition of the bracketed term. Then using
the covering properties of I0, I1, I2, I3, I4, I5 we find that for any y ∈ C∩[1, c)
there are sequences {r(y, k)}, {s(y, k)}, {t(y, k)} depending on y such that
I(y) can be written as

I(y) = A(1)A(2) . . . A(k) . . .

Notice that as a consequence we obtain E(gT ) = E(fS) = 2.
II. Let ν ∈ Me(gT ) be such that E(ν) = 2 and fix x ∈ G(ν) ∩ [1, c).

Since x is generic, its itinerary I(x) = x(0)x(1) . . . x(j) . . . satisfies

(4) E(ν) = 2 = lim
n→∞

∑n−1
j=0 1−x(j)
∑n−1
j=0 x(j)

= lim
n→∞

#{0 ≤ j ≤ n− 1 : x(j) = 0}
#{0 ≤ j ≤ n− 1 : x(j) = 1} ;

by the above we can write I(x) = A(1)A(2) . . . A(k) . . . Since x is generic, by
(4) it can be easily seen that t(x, k) = 0, i.e. A(k) = (010001)r(x,k)(001)s(x,k)
for each k ∈ N.

III. Thus, the symbolic itinerary I(x) of x ∈ G(ν) ∩ [1, c) is built up
from two blocks (010001) and (001). These blocks correspond to the blocks
of covering intervals. Namely, using the symbols J → L if L ⊂ gT (J), and
(JK . . .M) if J → K → . . .→ M , we have the following relations between
finite symbolic and interval blocks (draw a picture):

(010001)↔ (I3I1I2I4I5I0), (001)↔





(I3I5I0),
(I4I5I0),
(I2I4I0),
(I2I5I0).



Twist systems on the interval 107

Assume that x ∈ D. As in part I, the interval itinerary J(x) = J(0)J(1) . . .
. . . J(j) . . . of x satisfies

J(j) ∈ {I0, I1, I2, I3, I4, I5} & gjT (x) ∈ intJ(j) for each j ∈ N0.

Let us show that J(x) cannot contain blocks (I2I4I0) and (I2I5I0). To
the contrary, suppose J(x) contains (I2II0), I ∈ {I4, I5}, as a block
(J(j)J(j + 1)J(j + 2)). Then we can suppose that j ≥ 3 (x is generic)
and J(x) has to contain the interval block (KJI1I2II0), where (KJ) ∈
{(I1I2), (I0I3)}. In any case the corresponding symbolic block of I(x) is
(101001), which contradicts the result of part II.

IV. Consider the symbolic dynamics (Ω3, σ) and let λ ∈ Me(σ) satisfy
suppλ = Ω3 (see Section 1). Let ω = (ω(0), ω(1), . . .) be a generic point for
the measure λ. There is a sequence {j(k)}k∈N satisfying

(i) 0 = j(1) < j(2) < . . . ,
(ii) ω(j(k)) ≤ ω(j(k) + 1) ≤ . . . ≤ ω(j(k+ 1)− 1) and ω(j(k+ 1)− 1) >

ω(j(k + 1)) for each k ∈ N.

For each k ∈ N put

r(k) = #{j(k) ≤ i ≤ j(k + 1)− 1 : ω(i) = 0},
s1(k) = #{j(k) ≤ i ≤ j(k + 1)− 1 : ω(i) = 1},
s2(k) = #{j(k) ≤ i ≤ j(k + 1)− 1 : ω(i) = 2}.

We know that I0 → I3 and I0 → I4. This means that we can consider the
interval itinerary J = B(1)B(2) . . . B(k) . . . , where

B(k) = (I3I1I2I4I5I0)r(k)(I3I5I0)s1(k)(I4I5I0)s2(k).

Since the map gT is transitive there exists a unique x ∈ [1, 6] such that
J(x) = J . We assume that ω ∈ Ω3 is generic for the measure λ ∈ Me(σ)
and gT is transitive. The following facts are rather easy consequences of
parts I–III. We leave their verification to the reader.

(i) x ∈ ω(g, x). (Hint: ω is a transitive point in (Ω3, σ).)
(ii) ω(g, x) = T and T is a Cantor set. (Hint: Parts II–III.)
(iii) There is a measure µ ∈ Me(g) such that T = suppµ = ω(g, x).

(Hint: λ ∈ Me(σ) and suppλ = Ω3.)

This proves the lemma.

Remark. The reader should notice that the measure µ from (iii) de-
pends on the choice of λ.

We now state the main result of this section. In its formulation we use
the decomposition T = TL ∪ TR introduced in Remark 1.3.

Theorem 3.4. Let (T, g) ∈ U and β ∈ (1,∞) be rational. The following
statements are equivalent.
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(i) (T, g) is a twist (β)-system and T is not a Cantor set.
(ii) The set T is the union of elements of the orbit of a transitive gT -

periodic (maybe one-point) interval and the system (T, g) has a block struc-
ture over a twist (β)-cycle. All points of this cycle can be taken as the max-
ima, resp. minima, of the connected components of TL, resp. TR. In partic-
ular , there is a (β)-coding K : T → R such that for each x ∈ T , the (β)-code
Kx = K|orb(g, x) of orb(g, x) is monotone.

Proof. By Proposition 2.1 the conclusion is true for any system (T, g) ∈
U with T finite. So suppose that #T =∞ and β = m/n for m,n coprime.

(i)⇒(ii). By the classification of transitive systems presented in Section 1
and Proposition 2.1(v) the map gT is not transitive. Let [a1 = minT, b1]
be a transitive gT -periodic interval of period k = m + n > 1 ensured by
Lemma 3.1. Denote by J1 = [a1, b1] < . . . < Jk = [ak, bk] the spatially
ordered connected components of T =

⋃
orb(gT , J1) and consider (R =

{r1 < . . . < rk}, g) as in the proof of Lemma 3.1. From Lemma 3.1 we know
that Ji = Ji ∩ T , i ∈ {1, . . . , k}, and

gT (Ji) = Jj ⇔ g(Ji) = Jj ⇔ g(ri) = rj .

Using (1) and Proposition 2.1(i) we can consider a strictly monotone
(

n
m+n

)
-

coding KR of (R, g) such that KR(r1) = 0. We have seen that R ⊂ T and the
map KR can be extended to an

(
n

m+n

)
-coding K : T =

⋃
orb(gT , J1) → R

by K(Ji) = KR(ri), i = 1, . . . , k. ClearlyK is still monotone, but not strictly
since it is constant on each interval Ji. Let Mi, i = 1, . . . ,m+ n, be closed
(T ∪ {c})-contiguous intervals labeled from the left, i.e. Mi = [bi, ai+1] for
i ∈ {1, . . . ,m − 1}, Mi+1 = [bi, ai+1] for i ∈ {m + 1, . . . ,m + n − 1} and
Mm = [bm, c], Mm+1 = [c, am+1] . Clearly

M1 < . . . < Mm−1 < Mm ≤ c ≤Mm+1 < . . . < Mm+n.

Since minMi ∈ T for i ≤ m and maxMi ∈ T when i > m we can define the
map  L : {Mi}m+n

i=1 → R by

 L(Mi) =
{
K(minMi), 1 ≤ i ≤ m,
K(maxMi), m < i ≤ m+ n.

By the definitions of K and  L we have for each r ∈ R the implication

( L(Mi) = K(r) &  L(Mj) = K(g(r))) ⇒ gT (Mi) ⊃Mj .

Using that we can see the following: There exists a closed interval J ⊂ M1

for which gjT (J) ⊂M ∈ {Mi}m+n
i=1 with  L(M) = K(gj(r1)) for each 0 ≤ j <

m+n and J ⊂ gm+n
T (J) = M1. In other words,

⋃
orb(gT , J) ⊂ ⋃m+n

i=1 Mi and⋃
orb(gT , J) contains some cycle (S, gT ) with a strictly monotone

(
n

m+n

)
-

coding. By Proposition 2.1(i), (S, gT ) is a twist (β)-cycle corresponding to
the same cyclic permutation as (R, g). Since the system (T, g) has a block
structure over (R, g), the interval J ⊂ M1 can be chosen in such a way



Twist systems on the interval 109

that maxJ < a2. Supposing that the choice of points of S described in our
statement is not possible we find that also minJ > b1. But then S∩T = ∅—
a contradiction. This proves the first part of our theorem.

(ii)⇒(i). By our assumption (T, g) ∈ U . Suppose that (ii) is satisfied.
Then Theorem 1.2 shows that for some µ ∈ Me(g) we have T = suppµ and
E(µ) = β. Thus, we need to verify that E(gT ) = β and the property (?).

Denote by (R = {r1 < . . . < rm+n}, g) the guaranteed cycle created by
maxima and minima of M ’s. Choose some ν ∈Me(gT ) with supp ν \T 6= ∅.
Then for a ν-generic point y ∈ supp ν ∩Mj we have orb(gT , y) ∩ T = ∅ and
there is a unique sequence {Ni}i∈N0 of elements of {Mi}m+n

i=1 (withN0 = Mj)
such that yi = giT (y) ∈ intNi for each i ∈ N0.

Notice the following property implied by monotonicity of the (β)-coding
K: if gT (Ni) ⊃ Nj then

 L(Nj) ≥
{

 L(Ni) + 1
1+β for Ni < c,

 L(Ni)− β
1+β for Ni > c.

Clearly gT (Ni) ⊃ Ni+1. By the above, if we put

 L(Ni+1) =

{
 L(Ni) + 1

1+β + ε(yi) for Ni < c,

 L(Ni)− β
1+β + ε(yi) for Ni > c,

then {εi = ε(yi)}i≥0 is a sequence with finitely many nonnegative values,
and for each n ∈ N we can write

1
n

 L(Nn) =
1
n

 L(N0) +
1

1 + β

1
n

n−1∑

i=0

χL(yi)(5)

− β

1 + β

1
n

n−1∑

i=0

χR(yi) +
1
n

n−1∑

i=0

εi.

Here χL, resp. χR is the indicator function of [minT, c], resp. [c,maxT ].
Clearly limn n

−1  L(Nn) = limn n
−1  L(N0) = 0. Now we use the fact

that y is ν-generic. Obviously the monotonicity of K gives E(ν) = γ =
ν([minT, c])/ν([c,maxT ]) and then

lim
n→∞

1
n

n−1∑

i=0

χL(yi) =
γ

1 + γ
& lim

n→∞
1
n

n−1∑

i=0

χR(yi) =
1

1 + γ
.

Putting the last limits into (5) we get

0 ≤ lim
n

1
n

n−1∑

i=0

εi =
β − γ

(1 + β)(1 + γ)
.

Now we can see that γ < β if and only if 0 < limn n
−1∑n−1

i=0 εi.
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I. Let  L(Ni) = K(gi(rj)) for each i ∈ N0, i.e. let all εi be zero. Recall
that gT is affine on each interval Ni; if we put

Jk = {x ∈ N0 : giT (x) ∈ Ni for i ∈ {0, . . . , k}}, k ∈ N0,

then Jk is a closed subinterval of N0, Jk ⊃ Jk+1 and y ∈ ⋂Jk. Without
loss of generality we can assume that N0 = Mm. Since (R, g) is a twist
cycle and β > 1 we have N1 = Mm+1 and N2 < Mm. At the same time
Mm+1 → N2 ∪ . . . ∪Mm. This implies that |J2| = c|N0| for some c ∈ (0, 1).
Since the sequences { L(Ni)}i∈N0 , {Ni}i∈N0 are periodic with period m+ n,
for each l ∈ N we obtain |J2+l(m+n)| ≤ cl+1|N0|. Thus, the intersection

⋂
Jk

contains exactly one point rm ∈ R—a contradiction with the choice of the
generic point y ∈ G(ν) with supp ν \T 6= ∅. This shows that some εi = ε(yi)
has to be positive.

II. Thus we can find a neighborhood U(yi) of yi satisfying

gT (U(yi)) ⊂ Ni+1, ν(bdU(yi)) = 0, ν(U(yi)) = δ > 0.

It is clear that if for some k ∈ N we have yk ∈ U(yi) then also ε(yk) = ε(yi).
Since for the ν-generic point y we have limn→∞ n−1#{j ≤ n − 1 : yj ∈
U(yi)} = δ, we also have limn n

−1∑n−1
j=0 εj ≥ δε(yi) > 0, hence γ < β.

We have proved that E(ν) < β whenever ν ∈Me(gT ) and supp ν\T 6= ∅.
This finishes the proof of this part.

4. Strict ergodicity of irrational twist systems. By (1) it is natural
to view an irrational twist system as a modification of the irrational circle
rotation. Unfortunately, we lack a more detailed knowledge of their relation,
for instance how to construct all irrational twist systems. Of course, one can
“derive” some properties of irrational twist systems using the known ones
for twist cycles [BK2].

It was shown in [BK3] that each irrational twist system is minimal. In
this section we will prove even more. Just as any irrational circle rotation,
every irrational twist system turns out to be strictly ergodic.

For β > 0 define Rβ : [0, 1)→ [0, 1) by

Rβ(x) = x+
1

1 + β
(mod 1).

The following lemma states one known property of Rβ .

Lemma 4.1 ([DGS]). The Lebesgue measure λ is in Me(Rβ) if and only
if β is irrational.

Let (T, g) be an irrational twist (β)-system, and again denote by K
its normalized (β)-coding. We define the map L : T → [0, 1) by L(x) =
K(x) (mod 1), x ∈ T (cf. [BM, Proposition 5.9]). If Z denotes the set of
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all endpoints of contiguous intervals of T then the sets Z and L(Z) are
countable, and C ⊂ [0, 1) defined by

(6) C =
∞⋂

n=0

Rnβ([0, 1) \ L(Z))

has Lebesgue measure 1. In Lemmas 4.2–4.3 we show that—in a sense—any
irrational twist (β)-system is an extension of Rβ (for the notion of extension
see [DGS]).

Lemma 4.2. Let (T, g) be an irrational twist (β)-system. Then:

(i) L ◦ g = Rβ ◦ L on T .
(ii) L(T ) = [0, 1).
(iii) For each x ∈ [0, 1), L−1(x) is finite.
(iv) For x1, x2 ∈ T , if L(x1) = L(x2) ∈ C then there exists n ∈ N such

that gn(x1) = gn(x2).

Proof. Properties (i)–(iii) follow from Proposition 2.2.
Let us prove (iv). From (i) and definition (6) of C we obtain

(7) (orb(g, x1) ∪ orb(g, x2)) ∩ Z = ∅.
Assume that L(x1) = L(x2), i.e. {K(gi(x2)) −K(gi(x1)) : i ∈ N} ⊂ Z.

Notice that by (7) and Proposition 2.2(iii) we have, for any i ∈ N,

(8) c 6∈ conv{gi(x1), gi(x2)} & K(gi(x1)) =K(gi(x2)) ⇒ gi(x1) = gi(x2).

Suppose that (iv) does not hold, i.e. gi(x1) 6= gi(x2) for each i ∈ N. Since
β > 1 without loss of generality we can assume that x1, x2 ∈ [minT, c) (see
Remark 1.3) and x1 < x2; the monotonicity of the coding K gives

(9) K(x1) < K(x2).

In what follows we will say that some couple (gi(x1), gi(x2)), i ∈ N0, is
ordered if gi(x1), gi(x2) ∈ [minT, c) and K(gi(x1)) < K(gi(x2)). Thus the
couple (x1, x2) is ordered.

We know from Proposition 2.2(iii) that (T, g) is minimal. Take ε ∈
(0, β/(1 + β)). The coding K is normalized and we can consider i ∈ N for
which K(gi(x2)) < ε; since (iv) does not hold, from (8) we have

(10) K(gi(x1)) > K(gi(x2)).

But from the definition of K we can see that

(K(gi+1(x1))−K(gi+1(x2)))− (K(gi(x1))−K(gi(x2))) ∈ {−1, 0, 1}.
This gives K(gj(x1)) = K(gj(x2)) for some j ∈ {1, . . . , i − 1}. Let i0 ∈ N
be the least number with this property. By (8), c ∈ conv{K(gi0(x1)),
K(gi0(x2))}. We distinguish two possibilities:
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I. If K(gi0(x1)) < c < K(gi0(x2)) then (8) gives K(gi0−1(x1)) −
K(gi0−1(x2)) = 1 > 0, which together with (9) contradicts the choice of i0.
So this situation is not possible.

II. Thus K(gi0(x2)) < c < K(gi0(x1)). Since β > 1 there is the least posi-
tive integer j0 such that gi0+j0(x1), gi0+j0(x2) ∈ [minT, c); we have excluded
the possibility K(gi0+j0(x1)) = K(gi0+j0(x2)), hence by the definition of K
the couple (gi0+j0(x1), gi0+j0(x2)) is ordered. Notice that

{K(gi(x2))−K(gi(x1)) : i = 0, . . . , i0 − 1} ⊂ N,
{K(gi(x2))−K(gi(x1)) : i = i0, . . . , i0 + j0} ⊂ {0, 1}.

Now repeating the previous procedure for the points gi0+j0(x1), gi0+j0(x2)
in place of x1, x2 we can find the least positive integer i1 > i0 + j0 such
that K(gi1(x1)) = K(gi1(x2)) and the least positive integer j1 for which the
couple (gi1+j1(x1), gi1+j1(x2)) is ordered; etc.

Summarizing, if (iv) does not hold we obtain

{K(gi(x2))−K(gi(x1)) : i = 0, 1, . . .} ⊂ N0,

which is impossible by (10). This finishes the proof.

Let (T, g) be an irrational twist (β)-system. Using Proposition 2.2 we
define mT = [maxK(T )]+1, where [x] is the integer part of a real number x,
and V = {0, 1}2mT ; we define η : [0, 1)→ V by setting η(x) = (v1, . . . , v2mT )
where for i ∈ {1, . . . ,mT } (see Remark 1.3),

vi =
{

1, [i− 1, i) ∩K(TL ∩ L−1(x)) 6= ∅,
0, otherwise,

and similarly for i ∈ {mT + 1, . . . , 2mT },

vi =
{

1, [i−mT − 1, i−mT ) ∩K(TR ∩ L−1(x)) 6= ∅,
0, otherwise.

We set Ck = {x ∈ [0, 1) : #L−1(x) = k}, k ∈ N. It follows from Lemma
4.2(ii)–(iii) that [0, 1) =

⋃
k∈N Ck.

Lemma 4.3. Let (T, g) be an irrational twist (β)-system. Then λ(C1)=1.

Proof. First we show that all sets Ck are λ-measurable.
For each j ∈ {0, . . . , 2mT } define Vj = {v = (v1, . . . , v2mT ) ∈ V : j =∑
vi}. If Πi : V → {0, 1} denotes the usual ith projection then we deduce

from Proposition 2.2 that in the relative topology of [0, 1),

∀i ∈ {1, . . . , 2mT } : η−1 ◦Π−1
i (a) is

{
closed if a = 1,
open for a = 0.
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Now, for v = (v1, . . . , v2mT ) ∈ V,

η−1(v) =
2mT⋂

i=1

η−1 ◦Π−1
i (vi),

and Ck =
⋃
v∈Vk η

−1(v), hence all sets Ck are λ-measurable. Since the coding
K is monotone and bounded there has to exist k0 ∈ N such that Ck = ∅
for k > k0, i.e. [0, 1) =

⋃k0
k=1 Ck. Put Dj =

⋃
k≤j Ck, j ∈ {1, . . . , k0}. Then

by Lemma 4.2(i), Rβ(Dj) ⊂ Dj for each j and there exists j0 ∈ {1, . . . , k0}
such that λ(Cj0) = 1.

Let us show that j0 = 1. If j0 > 1 then we would have λ(C ∩ C̃) = 1 for
C̃ defined by

C̃ =
∞⋂

n=0

Rnβ(Cj0)

and C given by (6); obviously for x ∈ C∩ C̃ and two distinct points x1, x2 ∈
L−1(x) we have gi(x1) 6= gi(x2) for each i ∈ N. This contradicts conclusion
(iv) of Lemma 4.2. Thus j0 = 1 and the proof of the lemma is finished.

Let (X, %) be a metric space. For δ > 0 and x ∈ X we use the notation
U(x, δ) = {y ∈ X : %(x, y) < δ}. We denote by B(X) the set of all Borel
sets in (X, %).

Lemma 4.4. Let µ, ν be two Borel probability measures on a compact
metric space (X, %). If there exists Y ∈ B(X) such that µ(Y ) = ν(Y ) = 1
and

(11) ∀x∈Y ∃δ = δ(x)> 0 ∀M ∈B(X) : M⊂U(x, δ) ⇒ µ(M) = ν(M),

then µ = ν.

Proof. Take some G ∈ B(X) and fix ε > 0. Since both measures µ, ν are
regular we can find some open set U with X \ Y ⊂ U and

(12) µ(U) + ν(U) < ε.

Consider the system {U} ∪ {U(x, δ(x))}x∈Y of open sets given by (11).
Obviously X = U ∪ ⋃x∈Y U(x, δ(x)) and since X is compact we can find
x1, . . . , xn ∈ Y for which X = U ∪ ⋃ni=1 U(xi, δ(xi)). For simplicity put
Ui = U(xi, δ(xi)), i ∈ {1, . . . , n}, and Un+1 = U . Define Gj by G1 = U1 ∩G
and Gj = Uj ∩ (G\⋃j−1

i=1 Ui), j ∈ {2, . . . , n+1}. Then Gj ∈ B(X), Gj ⊂ Uj ,
Gj(1) ∩Gj(2) = ∅ for distinct j(1), j(2) and G =

⋃n+1
j=1 Gj . By (11) and (12)

we can see that

|µ(G)− ν(G)| =
∣∣∣
n+1∑

j=1

µ(Gj)−
n+1∑

j=1

ν(Gj)
∣∣∣ = |µ(Gn+1)− ν(Gn+1| < ε.

Since ε was arbitrary we obtain µ(G) = ν(G) for every G ∈ B(X).
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We now state the main result of this section. By a portion of T we mean
any set J ∩ T , where J is an open subinterval of R.

Theorem 4.5. Let (T, g) be an irrational twist (β)-system. Then (T, g)
is strictly ergodic.

Proof. By Proposition 2.2(iii) it is sufficient to show that #Me(g) = 1.
Let µ ∈ Me(g). It follows from the minimality of (T, g) guaranteed by

Proposition 2.2(iii) that µ is nonatomic and suppµ = T .
I. First we show that for any Borel set N ⊂ [0, 1) the equality λ(N) = 0

implies µ(L−1(N)) = 0. Recall that both measures λ and µ are regular
[DGS]. Assuming λ(N) = 0, for any positive ε we can find finitely many
intervals Jk, k = 1, . . . ,m, such that J =

⋃m
k=1 Jk ⊃ N and λ(J) = ε. By

Lemmas 4.1 and 4.2 for a µ-generic point x ∈ T we obtain

ε = λ(J) = lim
n→∞

#{i < n : Riβ(L(x)) ∈ J}
n

= lim
n→∞

#{i < n : L(gi(x)) ∈ J}
n

= lim
n→∞

#{i < n : gi(x) ∈ L−1(J)}
n

= µ(L−1(J)) ≥ µ(L−1(N)).

This means µ(L−1(N)) = 0.
II. In order to finish the proof we will use Lemma 4.4 putting X = T

with the Euclidean metric % and Y = L−1(C1 \ {0}) (cf. Lemma 4.3).
As above let µ ∈ Me(g). We know from Lemma 4.3 that λ(C1\{0}) = 1,

hence from the first part of this proof we get µ(Y ) = 1. Fix x ∈ Y . Obviously
there are i0 ∈ {1, . . . ,mT } and S ∈ {R,L} (see Remark 1.3) such that
x ∈ TS ∩K−1((i0 − 1, i0)). It follows from the properties of the (β)-coding
K described in Proposition 2.2(iii) and the definition of the map L that
for L(x) ∈ C1 we can find an open interval J ⊂ [0, 1) such that L(x) ∈ J
and L−1(J) ⊂ TS ∩ K−1((i0 − 1, i0)). Then for sufficiently small δ = δ(x)
and any portion G ⊂ (x − δ(x), x + δ(x)) ⊂ L−1(J) of T we obtain, from
Lemmas 4.1 and 4.2,

λ(L(G)) = lim
n→∞

#{i < n : Riβ(L(x)) ∈ L(G)}
n

(13)

= lim
n→∞

#{i < n : L(gi(x)) ∈ L(G)}
n

= lim
n→∞

#{i < n : gi(x) ∈ G}
n

= µ(G).

Since the measure µ is regular, (13) implies that µ(M) = λ(L(M)) when-
ever M ⊂ (x − δ(x), x + δ(x)) and M ∈ B(T ). Using Lemma 4.4 we can
see that µ is the unique measure in Me(g). The proof of the theorem is
finished.
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5. Strictly ergodic twist systems exhibited by continuous maps.
In [BK2], [BK3] and the previous sections we gave a description of basic
properties of twist systems. Moreover, Proposition 2.1(ii) states that any
continuous interval map f has twist cycles of all rational eccentricities from
(1, E(f)). However, it is still not clear what can be said about irrational twist
systems that are realized by f . This gap will be removed by Theorem 5.2.

Proposition 5.1 ([B3], [BK1]). Let f ∈ C(I) and assume there is a set
S ⊂ I such that (S, f) is a system. Then for fS ∈ C(convS) and T ⊂ convS
such that (T, fS) is a minimal system there is T ? ⊂ convS for which (T ?, f)
is also a minimal system and

(14) f iS(minT ) < f jS(minT ) ⇔ f i(minT ?) < f j(minT ?), i, j ∈ N0.

We now state the main result of this part. Note that by Proposition 2.1(ii)
for f ∈ C(I) we have E(f) > 1 if and only if f has a cycle of odd period
greater than one.

Theorem 5.2. Let f ∈ C(I) and β ∈ (1, E(f)). Then f has a strictly
ergodic twist (β)-system.

Proof. Since every cycle is a strictly ergodic system, the conclusion holds
for β rational by Proposition 2.1(ii).

So suppose that β is irrational and fix some α ∈ (β,E(f)) rational. By
the above, the map f has a twist (α)-cycle (S, f).

I. First we will show that g = fS ∈ C(convS) has some twist (β)-system.
Again by Proposition 2.1(ii) we can consider a sequence {βn}n∈N ⊂ (β, α)
of rational numbers and a sequence {Tn}n∈N of finite subsets of I = convS
such that limn→∞ βn = β and

(15) ∀n ∈ N : (Tn, g) is a twist (βn)-cycle.

Recall that (S, g) ∈ U and Fix(g) = {c}. Using Remark 1.5 without loss of
generality we can assume that for each n,

(16) E(Tn, g) =
#(Tn ∩ [minS, c))
#(Tn ∩ (c,maxS])

.

By Lemma 2.3 and the monotonicity of each (βn)-coding of (Tn, g) (for
each n we have M(Tn, g) ≤ M(S, g)), we obtain (S ∪ {c}) ∩ D = ∅ where
D =

⋂∞
k=1

⋃∞
n=k Tn. Clearly g(D) ⊂ D, i.e. (D, g) is a system and we can

consider T ⊂ D such that (T, g) is a minimal system [DGS].
Now we are going to show that (T, g) is a twist (β)-system. By (1) and

Proposition 2.2(ii) it is sufficient to verify that for t = minT the (β)-code
Kt given by Kt(t) = 0 is monotone. Suppose to the contrary that there
are y = gi(t), z = gj(t) ∈ orb(g, t) for which y ∈ conv{z, c} and at the
same time Kt(y, β) < Kt(z, β) (see Remark 1.6). Then also Kt(y, βn) <
Kt(z, βn) for each n > n0 with n0 sufficiently large. Obviously there are
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some n > n0, t̃ ∈ Tn close to t and ỹ = gi(t̃), z̃ = gj(t̃) ∈ orb(g, t̃) satisfying
ỹ ∈ conv{z̃, c} and Kt̃(ỹ, βn) < Kt̃(z̃, βn)—a contradiction with (15), (16)
and Proposition 2.1(i). Thus, the (β)-code Kt of t ∈ T is monotone and
fS = g has a twist (β)-system (T, g).

II. In order to finish the proof we will use Proposition 5.1. By its con-
clusion there is a set T ? ⊂ I such that (T ?, f) is minimal and for t as above
and t? = minT ? with the help of (14) we obtain

f iS(t) < f jS(t) ⇔ f i(t?) < f j(t?), i, j ∈ N0.

Now the reader can verify that the (β)-code Kt? of t? is monotone, i.e. the
map f has a twist (β)-system (T ?, f). This proves the theorem.
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[ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in
Dimension One, Adv. Ser. Nonlinear Dynam. 5, 2nd ed., World Sci. Singapore,
2000.

[BCp] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in
Math. 1513, Springer, Berlin, 1992.

[Bl1] A. Blokh, Rotation number for unimodal maps, MSRI, 1994, Preprint # 58-94.
[Bl2] —, On rotation intervals for interval maps, Nonlinearity 7 (1994), 1395–1417.
[Bl3] —, The spectral decomposition for one-dimensional maps, Dynamics Reported 4

(1995), 1–59.
[Bl4] —, Decomposition of dynamical systems on an interval , Russian Math. Surveys

38 (1983), 133–134.
[Bl5] —, Functional rotation numbers for one-dimensional maps, Trans. Amer. Math.

Soc. 347 (1995), 499–514.
[BM] A. Blokh and M. Misiurewicz, Rotating an interval and a circle, ibid. 351 (1999),

63–78.
[B1] J. Bobok, On entropy of patterns given by interval maps, Fund. Math. 162 (1999),

1–36.
[B2] —, On the topological entropy of green interval maps, J. Appl. Anal. 7 (2001),

107–112.
[B3] —, Forcing relation on minimal interval patterns, Fund. Math. 169 (2001), 161–

173.
[BK1] J. Bobok and M. Kuchta, Invariant measures for maps of the interval that do not

have points of some period , Ergodic Theory Dynam. Systems 14 (1994), 9–21.
[BK2] —, —, X-minimal patterns and a generalization of Sharkovskĭı’s theorem, Fund.
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