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Abstract. We study a notion of potential isomorphism, where two structures are
said to be potentially isomorphic if they are isomorphic in some generic extension that
preserves stationary sets and does not add new sets of cardinality less than the cardinality
of the models. We introduce the notion of weakly semi-proper trees, and note that there
is a strong connection between the existence of potentially isomorphic models for a given
complete theory and the existence of weakly semi-proper trees.

We show that the existence of weakly semi-proper trees is consistent relative to ZFC
by proving the existence of weakly semi-proper trees under certain cardinal arithmetic
assumptions. We also prove the consistency of the non-existence of weakly semi-proper
trees assuming the consistency of some large cardinals.

Introduction. Two structures are said to be potentially isomorphic if
they are isomorphic in some extension of the universe in which they reside.
Different notions of potential isomorphism arise as restrictions are placed on
the method to extend the universe. Nadel and Stavi [13] considered generic
extensions in which there are no new subsets of cardinality less than κ,
where κ is the cardinality of the models. They used some cardinal arithmetic
assumptions on κ to show the existence of a pair of non-isomorphic but
potentially isomorphic models. This kind of result can be interpreted as a
non-structure theorem for the theory of the models in question.

In [6] these studies were continued, with an emphasis on classification
theory. One of the results obtained there concerning the notion introduced
in [13] is:
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Theorem 1. Let T be a countable first order theory and let κ = κℵ0

be a regular cardinal. The theory T is unclassifiable if and only if there
exists a pair of non-isomorphic but potentially isomorphic models of T of
cardinality κ+.

A theory is said to be unclassifiable if it is unsuperstable or has either
the dimensional order property (DOP) or the omitting types order property
(OTOP).

Baldwin, Laskowski, and Shelah [1, 11] studied another notion by con-
sidering isomorphism in extensions by ccc forcing notions, which allows
changes in the universe that affect small substructures of the models in
question. They showed that even classifiable theories may have a pair of
non-isomorphic models that are potentially isomorphic in this sense.

We must have some restrictions on how cardinals can be collapsed in
the extensions, because otherwise potential isomorphism will be reduced to
L∞ω-equivalence. But one may consider weakening the requirement that
the extension must be generic. Such notions are studied in [4], and it is
shown there that this kind of notions are not always decidable. By a cardinal
preserving extension of L we mean a transitive model of ZFC that contains
all ordinals, is contained in a set-generic extension of V , and has the same
cardinals as L. For a tree T ∈ L on (ω1)L, let CT denote the set of all the
trees T ′ ∈ L on (ω1)L that are isomorphic to T in some cardinal preserving
extension of L. The following was proved in [4]:

Theorem 2. Assume 0] exists. There exists a tree T ∈ L on (ω1)L such
that CT is equiconstructible with 0].

The topic of this paper is a very strong notion of potential isomorphism.
We consider generic extensions that preserve stationary subsets of the car-
dinality of the models and do not add new sets of cardinality less than
the cardinality of the models. To investigate this notion of potential iso-
morphism is natural since Theorem 1 was proved in [6] by coding a sta-
tionary set S into a pair of models, which are then forced isomorphic by
killing S.

A (λ, κ)-tree is a tree with the properties that every branch has length
less than κ and every element has less than λ immediate successors. Thus a
(λ, κ)-tree has height at most κ. Bearing some of the forthcoming proofs in
mind it is worth noting that the cardinality of a (λ+, κ)-tree is at most λ<κ.

We say that a (λ, κ)-tree T is weakly semi-proper if there exists a forcing
notion P that adds a κ-branch to T , but preserves stationary subsets of κ
and adds no sets of cardinality less than κ. If T itself, regarded as a forcing
notion, has the properties of P mentioned above, then we say that T is
strongly semi-proper or just semi-proper.
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The following fact has led us to questions concerning the existence of
weakly semi-proper (κ+, κ)-trees (for simplicity we consider only countable
theories):

Theorem 3. Assume that κ is uncountable and κ<κ = κ. The following
statements are equivalent :

(i) There exists a weakly semi-proper (κ+, κ)-tree.
(ii) There exists a pair of non-isomorphic structures of size κ that can

be made isomorphic by forcing , without adding new sets of cardinality less
than κ or destroying stationary subsets of κ.

(iii) Statement (ii) strengthened with the requirement that the structures
can be chosen to be models of any complete countable theory T such that
either

1. T is unstable,
2. T has DOP , κ > (cr)

+, and ξcr < κ for every ξ < κ, where cr is
the smallest regular cardinal not less than the continuum, or

3. T is superstable with DOP or OTOP.

Proof. (ii) implies (i). Suppose that two non-isomorphic structures A

and B of size κ can be forced to be isomorphic without killing stationary
sets or adding new subsets of cardinality less than κ. Assume that κ is the
universe of both structures. Let P denote the set of partial isomorphisms
from A to B of cardinality less than κ. Let Tα denote the set

{f ∈ P : α ⊆ dom f ∩ ran f, f [κ \ α] ∪ f−1[κ \ α] ⊆ α}
and let T =

⋃
α<κ Tα ordered by inclusion. We shall prove that T is a

(κ+, κ)-tree and that any forcing notion that makes A and B isomorphic
without adding bounded subsets of κ adds a κ-branch to T .

It is straightforward to check that T is indeed a tree. Since κ<κ = κ, the
cardinality of P is κ. Therefore every node in T has at most κ immediate
successors. The union of a κ-branch would clearly be an isomorphism, so T
cannot have κ-branches. Finally suppose that f is an isomorphism between
A and B in a generic extension. If there are no new bounded subsets of
κ in the extension, then the function (f |α) ∪ (f−1|α)−1 is in Tα for every
α < κ and it follows that P(f) ∩ T is a κ-branch through T in the generic
extension.

(i) implies (ii). The proof of Lemma 7.13 of [6] is essentially the proof of
this implication. It relies on results of [9] and [8].

Suslin trees are semi-proper (ℵ2,ℵ1)-trees, and are in fact used in that
role in the proof of Lemma 7.13 of [6], but in this paper we shall see that
semi-proper trees exist under much weaker assumptions than Suslin trees.
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The following theorem summarises the rest of the results of this paper except
for some minor observations and strengthenings:

Theorem 4. (a) It is consistent relative to a supercompact cardinal that
there are no weakly semi-proper (∞,ℵ1)-trees.

(b) (Gregory) If 2ℵ0 < 2ℵ1 then there exists a semi-proper (ℵ2,ℵ1)-tree.
(c) It is consistent relative to a weakly compact cardinal that there are

no weakly semi-proper (ℵ3,ℵ2)-trees.
(d) Under GCH there exists a semi-proper (κ++, κ+)-tree for every infi-

nite successor cardinal κ.
(e) For any regular κ > ℵ1 there exists a semi-proper ((2κ)+, κ)-tree.

Clause (c) is proved in Section 2, (b) and (d) are proved in Section 3, and
Section 4 constitutes the proof of (e). Clause (a) follows from the observation
that under Martin’s maximum (the semi-proper forcing axiom) there exist
no weakly semi-proper (∞,ℵ1)-trees. Feng [3] has made a similar observation
concerning strongly semi-proper (∞,ℵ1)-trees.

On the necessity of a weakly compact cardinal in clause (c) we want to
state the following:

Conjecture 1. Let κ > ℵ1 be a regular cardinal. If there are no semi-
proper (κ+, κ)-trees then κ is weakly compact in L.

1. Preliminaries and notation. Let A be a set of ordinals. The set
of ordinals α such that sup(A ∩ α) = α (the accumulation points of A) is
denoted by acc+A; moreover, accA = acc+A ∩ A and naccA = A \ accA.
For infinite cardinals κ and µ we let Sκµ denote the set {α ∈ accκ : cf α = λ}.
NSκ denotes the ideal of non-stationary subsets of κ.

We say that a tree T is splitting if it has unique limits and if every node
of T has at least two immediate successors. If T is splitting and for every
x ∈ T and α < htT there exists an element y ∈ T such that x <T y and
ht y ≥ α, then we say that T is normal. Let κ be regular and uncountable
and let T be a normal tree of height κ. If forcing with T adds a new set of
cardinality less than κ, then κ becomes singular in the generic extension.
Thus if forcing with T preserves stationary subsets of κ, then no new sets
of cardinality less than κ are added.

In forcing arguments we follow the convention that p ≤ q means “p is
stronger than q”. Our upward growing trees get inverted, often without
explicit mention, as soon as forcing with the tree in question is discussed.

2. A consistency result. We say that a tree T is an α-representation
(of a tree) if the domain of T is the ordinal α and x <T y implies x < y for
all x, y ∈ T . Note that under the assumption κ<κ = κ, every (κ+, κ)-tree of
height κ is isomorphic to a κ-representation.
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Lemma 1. If κ is a regular uncountable cardinal , T is a κ-representation
of a (κ+, κ)-tree and the set

S = {α < κ : T ∩ α has no α-branch}
is stationary , then T is not weakly semi-proper.

Proof. Suppose that P is a forcing notion and Ḃ is a P -name for a
κ-branch through T . Let Ċ be a P -name that satisfies

 “Ċ = {α < κ : ot(Ḃ ∩ α) = α}”.
Assuming that κ remains regular in the generic extension by P , we get

 “Ċ is club and Ċ ∩ Š = ∅”.
Thus P necessarily kills a stationary set, which shows that T cannot be
weakly semi-proper.

Let κ be weakly compact. There exist (κ+, κ)-trees that receive κ-
branches when used as forcing notions. An example is T ({α < κ : cf α 6= α}),
where T (A) denotes (see e.g. [16]) the set of closed bounded subsets of A
ordered by end extension. However, the lemma above yields the following:

Corollary 1. If κ is weakly compact then weakly semi-proper (κ+, κ)-
trees do not exist.

Proof. Let T be a κ-representation for a (κ+, κ)-tree. The fact that T
has no cofinal branches can be expressed as a Π1

1-statement in the struc-
ture 〈Vκ,∈, T 〉. For regular α < κ the same Π1

1-statement interpreted in
〈Vα,∈, T ∩ Vα〉 expresses the fact that T ∩ α has no α-branches. Given
this Π1

1-statement, the corollary immediately follows from Lemma 1 by Π1
1-

reflection.

We shall now give the definition of a forcing notion that was introduced
by Mitchell [12]. Let κ be a weakly compact cardinal. Let P be the classical
forcing notion for adding κ Cohen reals. In other words P is the set of finite
partial functions from κ to 2, ordered by reverse inclusion. Let B(P ) be the
complete boolean algebra associated with P . For s ⊆ P we shall use the
notation bs for the regular open cover (see e.g. Jech [10, Lemma 17.2]) of s,
so that we have B(P ) = {bs : s ⊆ P}.

Let Pα = {p ∈ P : p|α = p} and Bα = {bs : s ⊆ Pα}. Then Bα
is isomorphic to B(Pα). A partial function f : κ → B(P ) is acceptable if
|f | < ℵ1 and f(γ) ∈ Bγ+ω for every γ < κ. We let A denote the set of all
acceptable functions. Given a P -generic set G, we define a forcing notion Q
in V [G] as follows: For every f ∈ A, where A is regarded as an element of V ,
let f denote the characteristic function of {γ ∈ dom f : f(γ)∩G 6= ∅}. Then
let Q be {f : f ∈ A} ordered by reverse inclusion. With Q̇ being a P -name
for Q, we finally let R be the two-step iteration P ∗ Q̇. We shall also refer to
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R as the Mitchell forcing . The model V R obtained by assuming GCH and
then forcing with R will be called the Mitchell model. In the notation of [12]
our R is isomorphic to R2(ℵ0,ℵ1, κ).

Let Qα = {f ∈ Q : f |α = f} and let Rα = Pα ∗ Q̇α where the ordering
of Qα is reverse inclusion. Thus Rκ = R. For any R-generic set G, we let
Gα denote the set G ∩Rα. We shall need the following results from [12]:

Lemma 2 (Mitchell). Assume that GCH holds.

(a) Suppose that α is a limit ordinal in κ and G is an R-generic set.
Then Gα is Rα-generic.

(b) Suppose that cf γ > ω and f is a function γ → V in V R. If
f |ζ ∈ V Rα for every ζ < γ then f ∈ V Rα .

(c) R has the κ-cc.
(d) In V R, 2ℵ1 = κ = ℵ2.

Proposition 1. In the Mitchell model there are no weakly semi-proper
(ℵ3,ℵ2)-trees.

Proof. Let Rκ be the Mitchell forcing notion and let Ṫ be an Rκ-name
for an arbitrary (ℵ3,ℵ2)-tree. By clause (d) of Lemma 2 we can assume that
Ṫ is a name for an ω2-representation and by Lemma 1 it is then enough to
prove that

Rκ “{α < ω2 : Ṫ ∩ α has no α-branch} is stationary”.

Since Rκ is κ-cc and therefore does not destroy stationary sets, it is sufficient
to find a stationary set S ⊆ κ in the ground model such that

Rκ “Ṫ ∩ α has no α-branch when α ∈ Š”.(1)

We shall use Π1
1-reflection to find a stationary set S satisfying (1). To be

able to capture various facts about forcing using Π1
1-statements in a structure

like 〈Vκ,∈, Rκ, Ṫ 〉 we need to make some assumptions on the names used.
The name Ṫ can be assumed to be a subset of (κ×κ)×Rκ where we identify
ordinals with their canonical names. Furthermore we can assume that for
every (α, β) ∈ κ× κ the set

A(α,β) = {p ∈ Rκ : ((α, β), p) ∈ Ṫ}
is a maximal antichain of the set consisting of all conditions p with the
property p  (α, β) ∈ Ṫ . Then for any q ∈ Rκ, q  (α, β) 6∈ Ṫ if and only
if {p ∈ A(α,β) : p‖q} is empty. An arbitrary name for a subset of Ṫ can
be thought of as a name for a subset of κ and then there always exists an
equivalent name that is a subset of κ× Rκ and has similar properties to Ṫ
above. For such a name Ḃ for a subset of Ṫ the statement

Rκ “Ḃ is a κ-branch through Ṫ”
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can be expressed by a first order sentence in the structure 〈Vκ,∈, Rκ, Ṫ , Ḃ〉.
Let us call a name like Ṫ or Ḃ normal for the rest of the proof. Normality
of a name is also a first order property of the structure mentioned above.

For inaccessible cardinals α < κ we have Rκ ∩ Vα = Rα, and if we let
Ṫα = Ṫ ∩ Vα and Ḃα = Ḃ ∩ Vα then Ṫα and Ḃα are Rα-names. So there is a
Π1

1-sentence σ such that for every inaccessible α ≤ κ, 〈Vα,∈, Rα, Tα〉 |= σ if
and only if Ṫα is normal and

Rα “Ṫα has no α-branch.”(2)

Furthermore there exists a club subset D of κ such that

(Ṫα)Gα = ṪG ∩ α(3)

for every α ∈ D and every Rκ-generic set G. Let S be a stationary set
of ordinals such that (2) and (3) hold for every α ∈ S. By clause (b) of
Lemma 2 it now follows that S satisfies (1).

3. Using weak diamond principles. In this section we shall freely use
some of the results presented in [7] about the ideal I[λ] and the κ-club game
on a subset of λ, although we shall not always stick to the notation used
there. The κ-club game on S ⊆ λ is played by players I and II as follows:
The game lasts for κ rounds. On round ξ player I first picks an ordinal
αξ < λ that is greater than all the ordinals played on earlier rounds. Then
player II picks an ordinal βξ such that αξ < βξ < λ. If the supremum of the
ordinals picked during the entire game is an element of S, then player II wins
the game. Otherwise player I wins the game. The game characterisation of
the κ-club filter on λ is the following statement: If player II has a winning
strategy in the κ-club game on S ⊆ λ then there exists a set C ⊆ S which
is κ-club in λ.

A subset U of a tree T is called a µ-fan of T if there exists a sequence
(δξ : ξ < µ) and an indexed family (xf : f ∈ <µ2) such that:

(1) U = {xf : f ∈ <µ2},
(2) (δξ : ξ < µ) is strictly increasing and continuous,
(3) htT xf = δdom f for every f ∈ <µ2,
(4) infT {xf _(0), xf _(1)} = fx for every f ∈ <µ2.

We say that T is µ-fan closed if T is µ-closed as a forcing notion, and for
every µ-fan U of T there exists an element x ∈ T that extends one of the
cofinal branches in U .

Lemma 3. Suppose that µ<µ = µ and κ = µ+. Then every splitting
µ-fan closed (∞, κ)-tree is semi-proper.

Proof. It is straightforward to prove by induction that a splitting µ-fan
closed (∞, κ)-tree must be a normal tree of height κ. By normality, forcing
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with the tree must produce a κ-branch. Thus it only remains to prove that
stationary sets are preserved.

Let P be an inverted normal µ-fan closed tree of height κ, let S ⊆ κ,
and let Ċ be a P -name such that

 “Ċ is club and Ċ ∩ Š = ∅”.
Because I[κ] is improper by our assumptions, the game characterisation
of the µ-club filter on κ holds. We shall finish the proof by showing that
player II has a winning strategy in the µ-club game on the complement
of S. This will be enough since we can assume that S ⊆ Sκµ . The strategy
can be described as follows. At round ξ in the game, player I has picked αξ
and player II should now answer with βξ > αξ. But before fixing βξ we pick
a set {pf : f ∈ ξ2} of conditions in P and a set {γf : f ∈ ξ2} of ordinals
such that the following holds for every f and g in ξ2:

(5) pf ≤ pf |ν for every ν < ξ.
(6) If f 6= g then ht pf = ht pg and if ξ = ν + 1 then sup{pf , pg} = pf |ν .
(7) If ξ is a limit ordinal then ht pf = supν<ξ ht pf |ν .
(8) ht pf > γh for every h ∈ ⋃ν<ξ

ν2.

(9) γf > αξ and if ξ is a successor ordinal then pf  γf ∈ Ċ.

Then we put βξ = sup{γf ∪ ht pf : f ∈ ξ2} if ξ is a successor ordinal and
βξ = αξ + 1 otherwise. Let α = supξ<µ αξ. Since {pf : f ∈ ⋃ξ<µ

ξ2} is a
µ-fan, there exists a function f : µ→ 2 and a condition p such that p ≤ pf |ξ
for every ξ < µ. Now p  α ∈ Ċ, which implies that α 6∈ S.

The combinatorial principle called weak diamond defined in [2] is equiv-
alent to 2ℵ0 < 2ℵ1 . The tree construction in the proof below is essentially
due to Gregory [5]. The proof is considerably shortened by the use of the
weak diamond principle of [2], which is implicitly proved in Gregory’s con-
struction.

Proposition 2 (Gregory). If 2ℵ0 < 2ℵ1 then there exists a semi-proper
(ℵ2,ℵ1)-tree.

Proof. We can recursively define a function F : <ω12 → 2 with the
following property: Every ℵ0-fan of <ω12 has two cofinal branches such that
if x and y are the unions of these branches then F (x) 6= F (y). By the weak
diamond principle there exists a function g : ω1 → 2 such that {α < ω1 :
F (f |α) = g(α)} is stationary for every f : ω1 → 2. Clearly

T = {f ∈ <ω12 : F (f |α) 6= g(α) for all α ∈ acc+(dom f)}
is a splitting (ℵ2,ℵ1)-tree. The function F was constructed in such a way that
T is guaranteed to be ℵ0-fan closed. Then T is a semi-proper (ℵ2,ℵ1)-tree
by Lemma 3.
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Let E be a stationary subset of κ+ where κ is some infinite cardinal. For
δ ∈ E, let ηδ : cf δ → δ be an increasing continuous function with limit δ.
We let Φ(ηδ : δ ∈ E) denote the following combinatorial principle: There
exists a sequence (dδ : δ ∈ E) where each dδ is a function cf δ → δ such
that for any function h : κ+ → 2, there is a stationary set of ordinals δ ∈ E
satisfying

{i < cf δ : dδ(i) = h(ηδ(i))} is stationary in cf δ.

The sequence (dδ : δ ∈ E) can be referred to as a weak diamond sequence.
We shall use the following result by Shelah [15, Appendix, Theorem 3.6]:

Lemma 4. If κ = κ<κ and κ = 2θ for some cardinal θ, then Φ(ηδ :
δ ∈ Sκ+

κ ) holds for any sequence (ηδ : δ ∈ Sκ+

κ ) as defined above.

Proposition 3. If κ = θ+ = 2θ for some cardinal θ then there exists a
semi-proper (κ++, κ+)-tree.

Proof. Let E = Sκ
+

κ , fix (ηδ : δ ∈ E), and let (dδ : δ ∈ E) be a weak
diamond sequence given by Φ(ηδ : δ ∈ E). We claim that

T = {f ∈ <κ+
2 : ∀δ ∈ E ∩ acc+(dom f)({i < κ : dδ(i) = f(ηδ(i))} ∈ NSκ)}

is the required tree. Clearly T is a splitting (κ++, κ+)-tree. By Lemma 3 it
then suffices to prove that T is κ-fan closed.

It is immediate from the definition that T is κ-closed. Let U a κ-fan
of T and suppose that (xf : f ∈ <κ2) and the sequence (δξ : ξ < κ) satisfy
conditions (1)–(4). Let δ = supξ<κ δξ. By (4) we may assume without loss
of generality that

xf (δξ) = f(ξ) for all ξ < κ and f : ξ + 1→ 2.

Now we make use of the fact that {δξ : ξ < κ} ∩ ran ηδ is a club subset of δ.
Define a function f : κ→ 2 by letting f(ν) = 1− dδ(i) whenever ηδ(i) = δν .
Now

⋃
ξ<κ xf |ξ is in T , which shows that T is κ-fan closed.

4. Semi-proper trees in ZFC. This entire section constitutes the
proof of clause (e) of Theorem 4. For convenience we restate the result.

Proposition 4. For any regular κ > ℵ1 there exists a semi-proper
((2κ)+, κ)-tree.

In most of the arguments in this section the assumption κ > ℵ1 could
be replaced by κ ≥ ℵ1. But at the end of the proof of Lemma 6 one needs
to pick an ordinal δ < κ which is not the limit of a certain ω-sequence.
This is accomplished by letting cf δ > ω and Lemma 5 is formulated with
this in mind. Thus with κ ≥ ℵ1 one would get a slightly weaker version
of Lemma 5 that would not suffice for Lemma 6. Recall that clause (a) of
Theorem 4 indicates that the assumption κ > ℵ1 is necessary.
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We shall first define a tree T as a subtree of
⋃
α<κ

α+1P(κ) ordered by in-
clusion. T will be a semi-proper ((2κ)+, κ)-tree unless it has a κ-branch. If T
has a κ-branch we shall use this branch to construct another tree that meets
the requirements. In fact this second tree will be a semi-proper (κ+, κ)-tree.

The first tree. For functions p : α+ 1→P(κ) we shall use the following
notation. The ordinal α is denoted by α(p). For every β ≤ α,

uβ =
{
p(β) if p(β) is a closed subset of β,
∅ otherwise,

Sβ =
{
p(β) if p(β) is stationary in κ,
κ otherwise.

We write upβ and Spβ for uβ and Sβ , respectively, if p is not clear from the
context.

We let p ∈ T if and only if the following conditions hold whenever γ <
β ≤ α:

(1) If uβ is empty then Sβ = p(β).
(2) If γ ∈ uβ then uγ = uβ ∩ γ.
(3) If β is a limit ordinal then uβ is unbounded in β.
(4) If γ ∈ uβ and γ is a limit then γ 6∈ Sminuγ .

We shall now prove that forcing with T does not destroy stationary
subsets of κ. Let S be a stationary set, let p ∈ T , and let Ċ be a name that
is forced by p to be club in κ. We construct a condition q ≤ p such that
q  Ċ ∩ Š 6= ∅. By induction on i < κ we continue for as long as possible
to pick conditions pi and ordinals αi such that the following holds when pi
and αi have been defined for every i < ζ:

(5) Sp0
α0 = S.

(6) (pi : i < ζ) is decreasing and p0 ≤ p.
(7) (αi : i < ζ) is increasing and continuous.
(8) pi+1  Ċ ∩ (αi+1 \ αi) 6= ∅.
(9) α(pi) ≥ αi (alternatively α(pi) = αi) and upiαi = {αj : j < i}.
(10) If αi is a limit then i is a limit and αi 6∈ S.

We shall drop the superscripts on upiβ and Spiβ because condition (6) makes
them obsolete. Clearly we can put p0 = p_(S) and α0 = α(p) + 1. We shall
now check that appropriate pi+1 and αi+1 can always be picked once the
preceding conditions and ordinals have been successfully defined. First pick
q ≤ pi and γ ≥ αi such that q  γ ∈ Ċ. Then let αi+1 = max{α(q), γ}+ 1.
Now we shall define pi+1 : αi+1 +1→P(κ) by fixing uβ and Sβ for ordinals
β such that α(q) < β ≤ αi+1. Let uαi+1 = {αj : j < i + 1} and if αi+1 >
α(q) + 1, let Sα(q)+1 = κ \ αi+1. Finally fill the possible gap by letting
uβ = β \ (α(q) + 1) for those ordinals β that satisfy α(q) + 1 < β < αi+1.
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Now suppose that we are about to pick pi where i is a limit. By (7) we
must have αi =

⋃
j<i αj in this situation. The only possible way to define

pi(αi) is to let uαi = {αj : j < i}. Let q = (
⋃
j<i pj)

_(uαi). If αi happens
to be in the complement of S, we can make the induction go on by putting
pi = q. But if αi ∈ S we are done with the proof because, in any case,
q  αi ∈ Ċ. The latter must happen sooner or later because otherwise we
finally have S ∩ acc{αi : i < κ} = ∅, contradicting the assumption that S is
stationary.

The proof that T is normal is similar to the successor step in the con-
struction above. If T does not have cofinal branches then the proposition
is proved. Let us now assume that T has a cofinal branch and construct
another tree that has the required properties.

The second tree. The cofinal branch through T gives us two sequences
(uβ : β < κ) and (Sβ : β < κ) such that uβ is a closed subset of β and Sβ is
stationary in κ for every β < κ and the conditions (2)–(4) hold. For every
α < κ let

S∗α = {β < κ : α ∈ uβ}(11)

and let Eα be a club subset of κ such that S∗α ∩ Eα = ∅ whenever S∗α is
non-stationary. Let E be the diagonal intersection {β < κ : β ∈ ⋂α<β Eα}.
It is now easy to verify that if β ∈ E then S∗α is stationary for every α ∈ uβ.

Lemma 5. There exist ordinals α(∗) and β(∗) such that α(∗)<β(∗)<κ,
S∗α(∗) and S∗β(∗) ∩ Sκω1

are stationary in κ, and S∗α(∗) ∩ S∗β(∗) = ∅.
Proof. First we shall find limit ordinals α, β ∈ E such that α < β and

α 6∈ uβ. Let α be a limit ordinal in E and let β > α be a limit ordinal in
E ∩ Sminuα . Let γ > β be a limit ordinal in E. If α ∈ uβ then β 6∈ uγ so
the required ordinals can be picked by replacing, if necessary, α and β by β
and γ respectively.

Fix α(∗) ∈ uα such that α(∗) > ⋃(uβ ∩ α) and let β(∗) = min(uβ \ α).
From what was noted above about E it is now clear that S∗α(∗) and S∗β(∗)
are both stationary and disjoint from each other. We shall now prove that
S∗β(∗) ∩ Sκω1

can be assumed to be stationary. Suppose that C is a club such
that S∗β(∗) ∩ Sκω1

∩ C = ∅. Define a function f : Sκω1
\ β(∗) → κ by f(γ) =

min(uγ \ β(∗)). By Fodor’s lemma there exists a stationary set S ⊆ Sκω1
∩C

and an ordinal δ(∗) such that f [S] = {δ(∗)}. Now S∗δ(∗) ∩ Sκω1
is stationary

because it has S as a subset. We must have β(∗) 6∈ uδ(∗) and β(∗) < δ(∗)
because β(∗) ∈ uδ(∗) or β(∗) = δ(∗) would imply that S∗δ(∗) ⊆ S∗β(∗), which
contradicts the assumption that S∗β(∗)∩Sκω1

is non-stationary. But this means
that S∗β(∗) and S∗δ(∗) are disjoint and could thus serve as replacements for
S∗α(∗) and S∗β(∗) respectively.
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Fix ordinals α(∗) and β(∗) with the properties stated in the last lemma.
Next we shall construct a “club guessing” sequence that can be used in tree
constructions in a similar way to the weak diamond principles presented in
Section 3. For sets u and E of ordinals

drop(u,E) = {sup(E ∩ α) : α ∈ u, α > minE}.
One can think of drop(u,E) as the result of “dropping” u onto E. (In [14],
drop(u,E) is denoted by g`(u,E) where g` stands for “glue”.) Some of the
fundamental properties of drop that are needed below can be summarised
as follows: If E is closed then drop(u,E) ⊆ E. If u is a club subset of
some limit ordinal δ and E ∩ δ is club in δ then drop(u,E) is club in δ and
acc(drop(u,E)) ⊆ accu ∩ accE.

Lemma 6. There exists a club E∗ ⊆ accκ and a sequence (Cδ : δ ∈
S∗β(∗) ∩ accE∗) such that :

(12) Cδ is club in δ.
(13) Cδ ∩ S∗α(∗) ⊆ naccCδ.
(14) For any club E′ ⊆ E∗ the set

{δ ∈ S∗β(∗) ∩ accE∗ : δ = sup(E′ ∩ naccCδ ∩ S∗α(∗))}
is stationary in κ.

(15) δ′ ∈ uδ ∩ S∗β(∗) ∩ accE∗ implies Cδ′ = Cδ ∩ δ′.
Proof. Let E0 = accκ and let C0

δ = drop(uδ, E0) for every δ ∈ S∗β(∗) ∩
accE0. By recursion on n we define club sets En and sequences (Cnδ : δ ∈
S∗β(∗) ∩ accEn) such that En+1 ⊆ accEn,

δ > sup(En+1 ∩ naccCnδ ∩ S∗α(∗)) for all δ ∈ S∗β(∗) ∩ En+1,(16)

and Cn+1
δ is defined by

Cn+1
δ = Cnδ ∪

⋃

β

drop(uβ , En+1) \ γnδ (β)(17)

where the large union is taken over all β ∈ (naccCn
δ ) \ (S∗α(∗) ∩ En+1) and

γnδ (β) =
{

max((Cnδ ∩ β) ∪ {0}) if sup(En+1 ∩ β) = β,
max((En+1 ∩ β) ∪ {0}) otherwise.

(18)

We claim that for some n < ω there exists no club En+1 ⊆ En satisfying
(16), and that when this happens the sets Cδ = Cnδ and the set E∗ = En
satisfy the conditions of the lemma.

In fact it is straightforward to check that conditions (12), (13), and
(15) hold for every n < ω even if we drop the requirement (16) and just
pick any club En+1 ⊆ accEn during the construction. To see by induction
that (12) and (13) hold, let (αi : i < ζ) be a strictly increasing sequence
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of ordinals in Cn+1
δ such that α = supi<ζ αi is a limit ordinal and α ≤

min(Cnδ \α0). We shall verify that α ∈ Cn+1
δ \S∗α(∗). Let β be the least ordinal

in (naccCnδ ) \ (S∗α(∗) ∩En+1) not less than α. Without loss of generality we

may assume that {αi : 0 < i < ζ} = Cn+1
δ ∩ (α0, α). Then

{αi : 0 < i < ζ} = drop(uβ, En+1) ∩ (α0, α)

by (18) and the fact that α ∈ En+1 and β ∈ Cnδ .
First suppose that α 6∈ Cnδ . Then α ∈ accuβ ∩ accEn+1, which gives us

α ∈ Cn+1
δ . If β ∈ S∗α(∗) then β 6∈ En+1 and it follows that γnδ (β) ≥ α, which

contradicts the fact that Cn+1
δ ∩ (α0, α) 6= ∅. Thus β 6∈ S∗α(∗), which implies

that uβ ∩ S∗α(∗) = ∅ and thereby that α 6∈ S∗α(∗). In the other case, where
we have α ∈ Cnδ , we only need to check that α 6∈ S∗α(∗). But this is almost
immediate since if α ∈ S∗α(∗) we must have β > α, which again implies the
contradictory inequality γnδ (β) ≥ α.

For condition (15) in the case n = 0 we use (2) and note that δ′ ∈ E0
and (3) gives drop(uδ, E0) ∩ δ′ = drop(uδ ∩ δ′, E0). In the induction step
δ′ ∈ En+1 ∩ uδ implies δ′ ∈ C0

δ ⊆ Cnδ by (2) and (3). Thus γnδ (β) ≥ δ′ for
every β > δ′, which clearly suffices.

It is also straightforward to see that (14) will hold when we reach a
point where no club En+1 ⊆ accEn satisfies (16). We shall now derive a
contradiction from the assumption that (16) holds for every n < ω. Let
Eω =

⋂
n<ω En and pick

δ ∈ acc+(Eω ∩ S∗α(∗)) ∩ S∗β(∗) ∩ Sκω1
.

Let γn = sup(En+1 ∩ naccCnδ ∩ S∗α(∗)) and γ = supn<ω γn. Because δ ∈ Sκω1

we have cf δ > ω and thus by (16) and the fact that δ ∈ Eω ∩ S∗β(∗) we have
γ < δ. Pick α ∈ Eω∩S∗α(∗) such that γ < α < δ and let βn = min(Cnδ \α) for
every n < ω. Clearly α 6∈ naccCnδ and by (13) it then follows that α 6∈ Cn

δ .
Thus βn > α. Because βn > γ we have βn 6∈ En+1 ∩ S∗α(∗) and by (17) and
(18) it then follows that βn+1 < βn. This is a contradiction since n < ω was
arbitrary.

Fix a sequence (Cδ : δ ∈ S∗β(∗) ∩ accE∗) that satisfies the conditions of
the lemma above. Let R0 be the tree consisting of all closed bounded subsets
of κ ordered by end extension and consider the subtree

R = {c ∈ R0 : δ > sup(c ∩ naccCδ ∩ S∗α(∗)) for all δ ∈ S∗β(∗) ∩ accE∗}.
Note that intersecting with S∗α(∗) is not essential in the definition of R.
As far as the argument that follows is concerned, S∗α(∗) could be dropped
from the definition, or more exactly, replaced by any set that contains S∗α(∗).
Condition (13) is essential however. We shall show that R is a semi-proper
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(κ+, κ)-tree. We start by noting that R cannot have κ-branches by condi-
tion (14). Also, for every c ∈ R and α < κ there exists a condition d ∈ R
such that d ≤ c and max d > α. If R does not collapse κ, it then follows
that forcing with R adds a κ-branch. We finish the proof of Proposition 4
by showing that R does not kill stationary sets.

Let S be an arbitrary stationary subset of κ, let Ċ be an R-name for a
club, and let c ∈ R. We shall find a condition c+ ≤ c such that c+  Ċ ∩ Š
6= ∅.

Fix an increasing continuous sequence (Mη : η < κ) of elementary sub-
models of Hχ, where χ is some large enough regular cardinal, such that
|Mη| < κ,

Mη+1 ∩ κ ∈ S∗α(∗),(19)

and (Mν : ν ≤ η) ∈ Mη+1 for all η < κ, and S, R, Ċ, α(∗), β(∗), and the
sequences (uβ : β < κ) and (Cδ : δ ∈ S∗β(∗) ∩E∗) are elements of M0. Pick a
limit ordinal δ(∗) ∈ S ∩ accE∗ such that Mδ(∗) ∩ κ = δ(∗).

The rest of the proof is divided into two cases. In the first case we assume
that δ(∗) 6∈ S∗β(∗). By (2) and (11) it follows from this assumption that

uδ(∗) ∩ S∗β(∗) = ∅.(20)

We shall define a decreasing sequence (ci : i < ζ) of conditions in R simulta-
neously with an increasing sequence (αi : i < ζ) of ordinals such that c0 = c,
supi<ζ αi = δ(∗) and the following conditions hold for every i < ζ:

(21) ci ∈Mδ(∗) and αi < δ(∗),
(22) αi+1 ≥ max ci and ci+1  αi+1 ∈ Ċ,
(23) max ci+1 > min(uδ(∗) \ αi).
We shall also assume that all the choices done during the construction are
made using a choice function that is in Mδ(∗). The length ζ of the sequence
will be determined during the construction. The successor steps in the con-
struction are straightforward and present no problems.

Now suppose that we are about to pick ci and αi where i is a limit ordinal.
Let γ = supj<i max cj . If γ = δ(∗) we put ζ = i and the construction is
successfully completed. Thus assume that γ < δ(∗). Clearly the only things
we have to show now is that

⋃

j<i

cj ∪ {γ} ∈ R(24)

and (cj : j < i) ∈Mδ(∗). By condition (23), γ ∈ uδ(∗), which by (20) implies
that γ 6∈ S∗β(∗) and this takes care of (24). Because the sequence (uβ : β < κ)
is in Mδ(∗) we also have uγ ∈ Mδ(∗). But since uγ = uδ(∗) ∩ γ and the
choice function being used is in Mδ(∗), we could obtain the same sequences
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(cj : j < i) and (αj : j < i) arguing in Mδ(∗), if we replace uδ(∗) by uγ in
condition (23). Thus (cj : j < i) ∈Mδ(∗). Having completed the construction
we just need to put c+ =

⋃
i<ζ ci ∪ {δ(∗)} and note that c+  δ(∗) ∈ Ċ.

We shall now deal with the other case, where we have δ(∗) ∈ S∗β(∗). We
shall reconstruct the sequences (ci : i < ζ) and (αi : i < ζ) in a slightly
different way. We keep conditions (21) and (22) but replace (23) by the
conditions

(25) max ci+1 > max{min(uδ(∗) \ αi),min(E∗ \ αi)},
(26) ci ∩ naccCδ(∗) = c0 ∩ naccCδ(∗),

and require that α0 ≥ β(∗). We first deal with the successor step since now
it requires some work. Suppose that ci and αi are defined. Let η be the least
ordinal in δ(∗) such that ci and the ordinal max{min(uδ(∗)\αi),min(E∗\αi)}
are elements of Mη and let γ = sup(naccCδ(∗) ∩Mη+1). By (12), (13), and
(19), γ ∈ κ ∩ Mη+1. Then pick ci+1 and αi+1 in Mη+1 such that ci+1 ≤
ci ∪ {γ + 1} and conditions (22) and (25) are satisfied. In this way ci+1 ∩
naccCδ(∗) = ci ∩ naccCδ(∗), which takes care of (26).

Suppose then that i is a limit ordinal and γ = supj<i max cj < δ(∗).
Because γ ∈ uδ(∗) and γ > β(∗) we have γ ∈ S∗β(∗) by the assumption δ(∗) ∈
S∗β(∗). Furthermore γ ∈ accE∗ and therefore Cγ = Cδ(∗) ∩ γ by (15). From
now on the argument is very similar to the limit step in the case δ(∗) 6∈ S∗β(∗).
One difference is that Cδ(∗) and Cγ now play the role of uδ(∗) and uγ in the
previous argument. We also have to note that the required initial segment of
the sequence (Mi : i < δ(∗)) is inMδ(∗). Of course (20) does not hold now but
instead condition (26) is designed to make (24) come true. This also applies
in the final limit step where we again put c+ =

⋃
i<ζ ci ∪ {δ(∗)}. We have

found the required condition c+, which concludes the proof of Proposition 4.
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