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Convex Corson compacta and Radon measures

by

Grzegorz Plebanek (Wrocław)

Abstract. Assuming the continuum hypothesis, we show that

(i) there is a compact convex subset L of Σ(Rω1), and a probability Radon measure
on L which has no separable support;

(ii) there is a Corson compact space K, and a convex weak∗-compact set M of Radon
probability measures on K which has no Gδ-points.

1. Introduction. In an important paper [1], S. Argyros, S. Mercourakis
and S. Negrepontis proved several results on the structure of Corson compact
spaces and Banach spaces of continuous functions on such compacta. Section
3 of [1] is devoted to the study of Corson compact spaces with property
(M), i.e. spaces on which every Radon measure has a separable support. In
particular, the following statement may be found there:

(∗) If L is a convex compact subset of Σ(Rκ) then L has property (M).

Recall that it follows from Martin’s axiom and the negation of the continuum
hypothesis that every Corson compact space has property (M) (see [13] or
Section 2 below), so the point here is that the convexity assumption enables
one to prove the claim without additional set-theoretic assumptions.

As observed by O. Kalenda, the proof of (∗) given on p. 215 of [1] contains
a gap, namely the final statement of that proof is not correct. Since that
difficulty seemed to be hard to overcome, O. Kalenda asked if (∗) was true
at all (more precisely, if (∗) is provable in ZFC).

It was noted by Todorčević (see [21, Lemma 9.5]) that (∗) holds under the
additional assumption that L is contained in Σ(Rκ+). Using similar methods
we prove below that every Radon measure of countable type defined on a
compact convex subset of Σ(Rκ) has a separable support (Theorem 2.2).
It turns out, however, that (∗) need not hold: Assuming the continuum
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hypothesis (CH) we construct a convex compact set L ⊆ Σ(Rω1) with a
Radon measure which has no separable support (Theorem 4.2).

The paper is organized as follows. In Section 2 we recall basic facts
concerning Radon measures and Corson compact spaces, and give a short
account of (essentially known) results related to the question of whether
every Radon measure defined on a Corson compact space has a separable
support. In Section 3 we present two CH examples of 0-dimensional Corson
compact spaces with measures, both resulting from various algebras of sets.
The first one is used in the proof of the main result of Section 4. The other
is a Corson compact space K such that there is a nonempty weak∗-compact
convex subset of C(K)∗ having no Gδ-points. This answers a problem posed
in [16, Question 2, p. 517]. Section 4 contains a construction of a CH coun-
terexample to (∗) mentioned above, and a related result (due to O. Kalenda)
on Banach spaces with a Corson compact dual unit ball.

The author is very grateful to M. Džamonja, O. Kalenda and W. Mar-
ciszewski for inspiring discussions concerning the subject and several helpful
comments on the earlier versions of this paper.

2. Corson compact spaces and measures. Let us briefly recall some
terminology and notation. For a given cardinal κ, the Corson space Σ(Rκ)
is defined as

Σ(Rκ) = {x ∈ Rκ : |{α < κ : x(α) 6= 0}| ≤ ω}.
A topological space K is called a Corson compactum if K is homeomor-

phic to a compact subset of Σ(Rκ) for some κ.
Given a compact space K, we denote by P (K) the set of all probability

Radon measures on K. As a topological space, P (K) will always be equipped
with the weak∗ topology inherited from C(K)∗ (and we sometimes write µ(g)
for

�
g dµ).

Saying that a given µ ∈ P (K) has a separable support, we mean that
there is a separable closed L ⊆ K with µ(L) = 1. Recall that a measure
µ itself is called separable if L1(µ) is a separable Banach space. To avoid
confusion, we shall say that such a measure µ is of countable type (cf. [8]).

In general, those two countability conditions for measures are not re-
lated. For instance, if µ is the Lebesgue measure on [0, 1], and µ̂ is the
corresponding measure defined on the Stone space of the measure algebra
of µ, then µ̂ is of countable type but has no separable support. On the
other hand, the usual product measure on the separable space {0, 1}ω1 is of
type ω1.

Recall that a (finite Borel) measure µ on a topological space X is said to
be strictly positive if µ(V ) > 0 for every nonempty open set V ⊆ X. In the
case of a Radon measure µ ∈ P (K) this condition simply means that the
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whole space K is “the” support of µ. Chapter 6 of [5] is the basic reference
for this subject.

It is well known that every separable Corson compact space is metrizable
(see e.g. [17, 6.3(c)]). Hence if a measure µ ∈ P (K) on a Corson compactum
K has a separable support then µ is of countable type. Following [1] we say
that a Corson compact space K has property (M) if every µ ∈ P (K) has a
separable support.

Let us recall that it is undecidable in ZFC if every Corson compact
space has property (M). For instance, this is so under Martin’s axiom and
the negation of CH (see below). Therefore one cannot expect to have a
counterexample to (∗) constructed without extra axioms. Several authors
presented constructions carried out under CH (or weaker axioms) of non-
separable Corson compact spaces of weight ω1, and Radon measures defined
on them (which can be either of countable or of uncountable type): see Hay-
don [10], Talagrand [20], Kunen [12], Kunen & van Mill [13] (cf. [1], [6], [7],
[19]).

Suppose now that K is a compact convex subset of Σ(Rκ). For every
α < κ we denote by πα the usual projection onto the αth coordinate. As
noted in [1, p. 215], every µ ∈ P (K) has a barycentre point bµ ∈ K such
that for every α < κ we have

�
πα dµ = πα(bµ) = bµ(α).

Indeed, the convexity of K implies the existence of a barycentre of any mea-
sure µ which is a finite combination of Dirac measures, and the compactness
implies that every µ ∈ P (K) has a barycentre.

The remark above gives short proofs of the following two results; note
that the first result is applicable to any compact convex subset of the positive
cone Σ(Rκ+) of Σ(Rκ) (cf. [21, Lemma 9.5]).

Theorem 2.1. Assume that K ⊆ Σ(Rκ) is compact and convex , and
has the property that |x| ∈ K for every x ∈ K. Then every µ ∈ P (K) has a
separable support.

Proof. Let a(x) = |x|; then a : K → K is a continuous mapping. Take
any µ ∈ P (K) and consider the image measure ν = a(µ). Then bν ∈ K and
the set I = {α < κ : bν(α) 6= 0} is countable. For α 6∈ I, we have πα ≥ 0
ν-almost everywhere, and

�
πα dν = bν(α) = 0. Hence ν({πα = 0}) = 1, and

it follows that ν is concentrated on the metrizable subspace

KI = {x ∈ K : x(α) = 0 for all α ∈ κ \ I}.
Consequently, µ(KI) = 1 and the proof is complete.

Theorem 2.2. Let K be a compact convex subset of Σ(Rκ) and let µ ∈
P (K). Then µ is of countable type if and only if it has a separable support.
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Proof. The condition is clearly sufficient since separable Corson com-
pacta are metrizable and every measure on a metrizable compact space is
of countable type.

If the measure µ is of countable type then there is a countable family C
of Borel subsets of K such that for every Borel set B ⊆ K and ε > 0 we
have µ(B4C) < ε for some C ∈ C. We can assume that µ(C) > 0 for every
C ∈ C.

For any C ∈ C, we denote by νC the probability measure defined by the
formula νC(·) = µ( · ∩ C)/µ(C). Denote by bC the barycentre of νC , and let

I = {α < κ : bC(α) 6= 0 for some C ∈ C}.
Then I is countable and it suffices to check that µ(KI) = 1 (where KI is
defined as in the proof of Theorem 2.1). If α ∈ κ \ I then

1
µ(C)

�

C

πα dµ =
�
πα dνC = bC(α) = 0

for every C ∈ C. It follows that
�
B πα dµ = 0 for every Borel set B, since the

family C is 4-dense. Thus πα = 0 µ-almost everywhere, and we are done.

Theorem 4.2 presented below shows that there are no obvious general-
izations of Theorem 2.1 which would be true in ZFC. It also implies that
the statement

(∗∗) K has property (M) if and only if clRκ(convK) ⊆ Σ(Rκ),

where K ⊆ Σ(Rκ) is compact, is not provable in ZFC (cf. [1, Corollary 3.6]).
(Here and below we write convK for the convex hull of K and clRκ(A) for
the closure of A ⊆ Σ(Rκ) in Rκ.) It is interesting to compare (∗∗) with
Corollary 2.4 below, which can be derived from Kunen & van Mill [13] and
the following result due to Marciszewski [15].

Theorem 2.3 (Marciszewski). The following are equivalent.

(a) There is a compact K ⊆ Σ(Rω1) such that clRκ(convK) ⊇ [0, 1]ω1.
(b) There is a compact K ⊆ Σ(Rω1) such that clRκ(convK) 6⊆ Σ(Rω1).
(c) ω1 is not a precaliber of measure algebras.

Recall that a cardinal number κ is a precaliber of a Boolean algebra A if
for every (aξ)ξ<κ ⊆ A+ there is X ⊆ κ with |X| = κ such that (aξ)ξ∈X is
centred, i.e.

∏
ξ∈J aξ 6= 0 for every finite J ⊆ X.

Some facts concerning precalibers of measure algebras can be found in
Cichoń et al. [4], Cichoń [3] (see also [8], [9], [5]). We need to know that
ω1 is a precaliber of all measure algebras if and only if it is a precaliber of
the measure algebra of the product measure on {0, 1}ω1 , and the latter is
equivalent to saying that {0, 1}ω1 cannot be covered by ω1 null sets (see [9,
A2U], cf. [19]).
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Combining the result from Kunen & van Mill [13] (stating that (b) and
(c) below are equivalent) with Theorems 2.2 and 2.3 and the above remark
on precalibers we conclude the following.

Corollary 2.4. The following are equivalent.

(a) Every Corson compact space has property (M).
(b) Every Radon measure on a Corson compactum is of countable type.
(c) {0, 1}ω1 cannot be covered by ω1 null sets.
(d) ω1 is a precaliber of measure algebras.
(e) clRκ(K) ⊆ Σ(Rκ) for every κ and every compact K ⊆ Σ(Rκ).

3. Two 0-dimensional Corson compacta. The spaces constructed
below are defined as the Stone spaces of some algebras of sets. If A is an
algebra of subsets of some fixed space then Ult(A) denotes the Stone space
of all ultrafilters on A. For a set A ∈ A, we denote by Â ⊆ Ult(A) the clopen
set associated to A via the usual isomorphism.

We write A = alg(G) if A is the algebra of sets generated by a family G.
Observe that if G is a family with the property that every centred subfamily
G′ of G is countable, then K = Ult(A) is Corson compact. Indeed, the family
{Ĝ : G ∈ G} is then point-countable and separating, and the mapping
g(s) = (χĜ(s))G∈G is a continuous embedding of K into Σ(RG).

By a quasi-measure we mean a nonnegative finitely additive set function
defined on an algebra of sets. If K = Ult(A) then every quasi-measure ν on
A uniquely defines a Radon measure ν̂ on K, where ν̂(Â) = ν(A) for every
A ∈ A. In what follows, we denote ν̂ simply by ν, and it should be clear
from the context whether we treat ν as a quasi-measure on A or as a Radon
measure on K.

The construction used in the proof of the theorem given below is a mod-
ification of the reasoning from [19, Theorem 5.2(a)], which in turn is an
alternative approach to Kunen & van Mill’s result from [13]. Note that we
might relax CH to a weaker axiom (see [19] for details).

Theorem 3.1. (CH) There are a nonseparable Corson compact space
K, a strictly positive measure µ ∈ P (K) of uncountable type, and a family
(gα)α<ω1 ⊆ C(K) of norm one functions such that for every ν ∈ P (K), the
set {ξ < ω1 :

�
gξ dν 6= 0} is countable.

Proof. We shall work with the usual product measure λ defined on the
Baire σ-algebra Ba{0, 1}ω1 (which is generated by all clopen subsets of
{0, 1}ω1). Recall that every set B ∈ Ba{0, 1}ω1 is determined by coordinates
in some countable set I ⊆ ω1, that is, B = π−1

I πI(B), where πI denotes the
projection from {0, 1}ω1 onto {0, 1}I .
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(1) We shall construct a suitable algebra A contained in Ba{0, 1}ω1.
This A will be defined as A =

⋃
α<ω1

Aα, where (Aα)α<ω1 is an increasing
sequence of countable algebras. We let A0 be some countable nonatomic
subalgebra of Ba{0, 1}ω1 , and impose the following requirements:

(i) λ(A) > 0 for every nonempty A ∈ A;
(ii) Aα = alg(

⋃
β<αAβ ∪ {H0

α,H
1
α}), where H0

α ∩H1
α = ∅, Fα := H0

α ∪
H1
α 6= ∅, and λ(C ∩H0

α) = λ(C ∩H1
α) whenever β < α and C ∈ Aβ;

(iii) if (An)n ⊆ A is a decreasing sequence with limλ(An) = 0, then
there is α < ω1 such that for all η > α there is n such that An ∩ Fη = ∅.

(2) We now show how to define the algebras Aα by induction on α < ω1.
For every constructed Aα we fix, using CH, an enumeration (sαβ)β<ω1 of all
decreasing sequences (An)n ⊆ Aα satisfying limn→∞ λ(An) = 0.

Having Aη defined for η < ξ, write C =
⋃
η<ξAη. First find a set B ∈

Ba{0, 1}ω1 of positive measure such that if α, β < ξ then there is n such
that sαβ(n) ∩B = ∅. The existence of such a set follows from the fact that

λ
( ⋃

α,β<ξ

sαβ(nα,β)
)
<

1
2

for some choice of natural numbers nα,β.
Now we define Fξ ∈ Ba{0, 1}ω1 by

Fξ = B \
⋃
{C ∈ C : λ(C ∩B) = 0}.

Notice that there is a countable set I ⊆ ω1 such that Fξ, as well as every
C ∈ C, is determined by coordinates in I. Take any γ ∈ ω1 \ I; set Dγ =
{x ∈ {0, 1}ω1 : x(γ) = 0}, H0

ξ = Fξ ∩Dγ, H1
ξ = Fξ \Dγ. Now if C ∈ C then

λ(C ∩H0
ξ ) = λ(C ∩ Fξ ∩Dγ) = λ(C ∩ Fξ)λ(Dγ)

= λ(C ∩ Fξ)λ(Dc
γ) = λ(C ∩ Fξ ∩Dc

γ) = λ(C ∩H1
ξ ),

and (ii) follows.
It is clear that if the set C∩Fξ is nonempty then it has positive measure,

and from the above formulas it follows that the sets H i
ξ have the same

property, so (i) is satisfied.
Finally, the algebra A satisfies (iii), since for every sequence (An)n ⊆ A

as in (iii), there are α, β < ω1 such that (An)n = sαβ .

(3) Let K = Ult(A). It follows from (iii) that K is Corson compact (see
the remarks at the beginning of this section). The measure λ restricted to A
uniquely defines a Radon measure µ on K. Condition (ii) implies that the
measure µ is of uncountable type. Indeed,

µ(C 4H0
ξ ) = µ(C \H0

ξ ) + µ(H0
ξ \ C) ≥ µ(C ∩H1

ξ ) + µ(H1
ξ \ C) = µ(H1

ξ )
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whenever C ∈ Aα and α < ξ. As µ(H1
ξ ) > 0, no countable part of A is

4-dense in A.
For every ξ < ω1 we define a function gξ : K → R by the formula

gξ = χ
Ĥ0
ξ

− χ
Ĥ1
ξ

.

Clearly gξ ∈ C(K), and ‖gξ‖ = 1.

(4) We claim that for a given compact G ⊆ K, if µ(G) = 0 then F̂ξ ∩G
6= ∅ only for countably many ξ.

Indeed, since G is a compact set of measure zero, there is a decreasing
sequence (Ân)n of clopen sets such that G ⊆ ⋂

n∈ω Ân and λ(An) → 0.
Hence the claim follows from (iii).

(5) Now we check that the functions defined in (3) have the required
property. This is a consequence of the following two observations.

(i) If a measure ν ∈ P (K) is singular with respect to µ, then ν(
⋃
nGn)

= 1 for some closed sets Gn with µ(Gn) = 0. Hence the set {ξ < ω1 :
�
gξ dν

6= 0} is countable by (4).
(ii) Consider a measure ν ∈ P (K) which is absolutely continuous with

respect to µ, and let ν(·) =
�
· h dµ for a Borel function h defined on K. As

C(K) is dense in L1(µ), there is ξ < ω1 such that for every ε > 0 there is a
function h′ of the form

h′ =
∑

i≤k
ciχÂi , where Ai ∈ Aξ, ci ∈ R,

such that
�
|h− h′| dµ < ε.

We claim that
�
gη dν = 0 for η > ξ. Indeed, take any η > ξ and consider

a function h′ as above. By (1)(ii) we have µ(H0
η ∩Ai) = µ(H1

η ∩Ai) for every
i ≤ k, and hence

�

Ĥ0
η

h′ dµ =
�

Ĥ1
η

h′ dµ, so
�
gηh
′ dµ = 0.

Consequently,
�
gηh dµ = 0 by approximation. But h is the Radon–Nikodym

derivative of ν with respect to µ so we get
�
gη dν =

�
gηh dµ = 0. This

completes the proof of the theorem.

Before proving the next theorem we recall some basic facts concerning
extensions of quasi-measures. Let ν be a quasi-measure on the algebra A of
subsets of X. For every Z ⊆ X we write

ν∗(Z) = inf{ν(A) : Z ⊆ A ∈ A} ν∗(Z) = sup{ν(A) : Z ⊇ A ∈ A}.
Recall that ν can be extended to a quasi-measure on any algebra B ⊇ A.
In particular, if B is generated by A and a set Z ⊆ X, then for every
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c ∈ [ν∗(Z), ν∗(Z)] there is an extension of ν to a quasi-measure ν̃ on B with
the property that ν̃(Z) = c (see e.g. [14] for further references).

Lemma 3.2. Let K = Ult(A), and let M ⊆ P (K) be any set. If ν ∈ M
is a Gδ-point in M then there is a countable subalgebra C ⊆ A such that if
ν ′ ∈M and ν ′(C) = ν(C) for all C ∈ C then ν ′ = ν.

Proof. If ν ∈M is Gδ then there is a countable family (gn) ⊆ C(K) such
that whenever ν ′ ∈ M and ν ′(gn) = ν(gn) for every n then ν ′ = ν. Take C
to be a countable algebra in A with the property that every gn is a uniform
limit of a sequence of functions of the form

∑
i≤k χĈi . Then the algebra C

has the required property.

Theorem 3.3. (CH) There is a Corson compact space K and a non-
empty weak∗-compact convex subset of P (K) such that M has no Gδ-points.

Proof. Let I be a countable infinite set such that I ∩ ω1 = ∅, and let
X = I ∪ ω1. This time we shall work with the usual product measure λ on
{0, 1}X , defined on the Baire σ-algebra Ba{0, 1}X . Given ξ < ω1, we put

Dξ = {x ∈ {0, 1}X : x(ξ) = 0}.
(1) Denote by λI the usual measure on (the Cantor set) {0, 1}I . Using

CH, we can write {0, 1}I =
⋃
ξ<ω1

Nξ, where λI(Nξ) = 0, and Nη ⊆ Nξ for
η < ξ < ω1. For every ξ < ω1 we find a closed subset Zξ of {0, 1}I such
that λI(Zξ) > 0 and Zξ ∩Nξ = ∅. Note that if Z is a centred subfamily of
{Zξ : ξ < ω1} then Z =

⋂Z 6= ∅. Taking any x ∈ Z we have x ∈ Nξ for
some ξ < ω1, so Z is necessarily countable.

We put Fξ = π−1
I (Zξ). Then every Fξ is a closed subset of {0, 1}X with

λ(Fξ) > 0. It is clear that every centred subfamily of {Fξ : ξ < ω1} must be
countable.

(2) For every ξ < ω1, we define a set Hξ ∈ Ba{0, 1}X by Hξ = Fξ ∩Dξ.
Now we put

H = {Hξ : ξ < ω1}, F = {Fξ : ξ < ω1}, A = alg(F ∪H),

and denote by K the Stone space of A. It follows from (1) that {Ĝ : G ∈
F ∪H} is a point-countable separating family of clopen subsets of K, so K
is Corson compact.

(3) Denote by µ the measure λ restricted to A (as well as the corre-
sponding measure from P (K)). We define M ⊆ P (K) to be the set of those
ν that agree with µ on F , formally

M = {ν ∈ P (K) : ν(F̂ ) = µ(F̂ ) for every F ∈ F}.
Then M is a nonempty compact convex subset of P (K). The fact thatM has
no Gδ-points is a consequence of Lemma 3.2 and the following observation.
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(4) Claim. For every ν ∈M , and every countable algebra C ⊆ A, there
is ν ′ ∈M such that ν ′ 6= ν, while ν ′(C) = ν(C) for C ∈ C.

Indeed, since C is countable, there is η < ω1 such that Hξ 6∈ C for every
ξ ≥ η. Fix any ξ > η, and consider the set H := Hξ. Further let σ denote ν
restricted to the algebra B = alg(F ∪ {Hα : α < η}). Note that σ∗(Dξ) = 1
while σ∗(Dξ) = 0 (since Dξ is “independent” of the domain of σ). Hence

σ∗(H) = σ∗(Fξ ∩Dξ) = σ(Fξ) = µ(Fξ) > σ∗(H) = 0.

By the remarks preceding this theorem we may extend σ to a quasi-measure
ν ′ on A in such a way that ν ′(H) 6= ν(H). Then ν ′ ∈ M since B ⊇ F , and
this proves the claim.

Note that in the proof of Theorem 3.3 we used CH only in (1) to write
the Cantor set as a union of ω1 null sets, and hence the theorem holds under
this set-theoretic assumption.

4. A counterexample to (∗). The proof of the main result of this sec-
tion is based on Theorem 3.1 and another result on the existence of strictly
positive measures. The theorem given below is due to Argyros & Negrepon-
tis [2]. We enclose here a much shorter proof taken from the unpublished
thesis [18] (actually, in what follows we use only (i)⇒(ii)).

Theorem 4.1. The following are equivalent for a compact space K:

(i) K admits a strictly positive Radon measure;
(ii) the space (P (K), weak∗) admits a strictly positive Radon measure.

Proof. (i)⇒(ii). Let µ ∈ P (K) be strictly positive. For every n putDn =
{r ∈ [0, 1]n :

∑
i≤n r(i) = 1}, and let the mapping ϕn : Dn ×Kn → P (K)

be defined by ϕn(r, t1, . . . , tn) =
∑

i≤n r(i)δti .
For every n the space Dn×Kn has a strictly positive probability Radon

measure µn (see [5, Chapter 6]). Since every ϕn is continuous, and the set⋃
n ϕn(Dn×Kn) is weak∗-dense in P (K), it follows that the Radon measure

Υ =
∑∞

n=1 2−nϕn(µn) is strictly positive on P (K).
(ii)⇒(i). Suppose that Υ is a strictly positive probability Radon measure

on P (K). Then the formula

θ(g) =
�

P (K)

g(ν) dΥ (ν),

where ν(g) =
�
g dν, defines a positive functional on C(K) with ‖θ‖ = 1. By

the Riesz theorem θ is represented by some µ ∈ P (K), which is easily seen
to be strictly positive.

Now we are ready to prove the result announced in the introduction.
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Theorem 4.2. (CH) There exist a compact convex subspace L of
Σ(Rω1), and a measure λ ∈ P (L) which has no separable support (and ,
moreover , is of uncountable type).

Proof. Let K and (gξ)ξ<ω1 be as in Theorem 3.1. Then

Φ : P (K)→ Σ(Rω1), Φ(ν) =
( �
gξ dν

)
ξ<ω1

,

is an affine continuous mapping, and hence L = Φ(P (K)) is a compact
convex subset of Σ(Rω1). It is clear that L is nonseparable. Indeed, for
every ξ < ω1, taking any tξ ∈ K with gξ(tξ) = 1, we have Φ(δtξ)(ξ) = 1.

Now P (K) has a strictly positive Radon measure by Theorems 4.1 and
3.1; suppose Υ is such a measure. Then the image measure λ = Φ(Υ ) is
strictly positive and Radon on L, and thus λ has no separable support (and
λ is of uncountable type by Theorem 2.2).

We remark that in Theorem 4.1 we may replace P (K) by the unit ball
of C(K)∗. Consequently, the space L from Theorem 4.2 can be taken to be
absolutely convex.

As mentioned above, the measure λ in Theorem 4.2 is of uncountable
type. Note that writing Lξ = {x ∈ L : x(ξ) ≥ 1/2} we have an uncountable
family (Lξ)ξ<ω1 of compact convex sets of positive measure with the property
that none of its uncountable subfamilies has a nonempty intersection. It is
plausible that Theorem 2.2 can be generalized to saying that such a family
can exist for no Radon measure of countable type which is defined on a
locally convex vector space.

It should be stressed that the space P (K) itself, where K is the space
from Theorem 3.1, is not Corson compact (since P (K) is not Fréchet–
Urysohn; cf. [11] for other topological properties of such spaces). This implies
that the mapping Φ considered above cannot be injective. O. Kalenda ob-
served that, based on Theorem 3.5 from [1] and Theorem 2.1 above, we can
conclude the following.

Theorem 4.3. For a compact K the following are equivalent :

(a) K is Corson compact and has property (M);
(b) P (K) is Corson compact ;
(c) P (K) is Corson compact and has property (M);
(d) BC(K)∗ is Corson compact ;
(e) BC(K)∗ is Corson compact and has property (M).

So for a Banach space of the form C(K), the dual unit ball BC(K)∗ has
property (M) provided it is Corson compact at all. On the other hand, we
have the following.
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Corollary 4.4 (Kalenda). Under CH , there is a Banach space E such
that the dual unit ball BE∗ is a Corson compact space without property (M).

Proof. In the notation of Theorem 3.1, let E be the closed subspace
of C(K) spanned by the family (gα)α<ω1. Write B = BE∗ for the dual
unit ball; it is the image of BC(K)∗ under the natural restriction map r :
BC(K)∗ → B. We can use again the mapping Φ : BC(K)∗ → Σ(Rω1), where
Φ(σ) = (σ(gξ))ξ<ω1, and σ(gξ) is the integral with respect to a signed Radon
measure σ. Define f : B → Σ(Rω1) by f(r(σ)) = Φ(σ). Then f is an
affine embedding of B into Σ(Rω1), so B is Corson compact. Note that
f(B) contains the space L from Theorem 4.2 so neither f(B) nor B has
property (M).
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