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Abstract. We prove that, e.g., if µ > cf(µ) = ℵ0 and µ > 2ℵ0 and every stationary
family of countable subsets of µ+ reflects in some subset of µ+ of cardinality ℵ1, then the
SCH for µ+ holds (moreover, for µ+, any scale for µ+ has a bad stationary set of cofinal-
ity ℵ1). This answers a question of Foreman and Todorčević who get such a conclusion
from the simultaneous reflection of four stationary sets.

0. Introduction. In §1 we prove that the strong hypothesis (pp(µ) = µ+

for every singular µ) and hence the SCH (singular cardinal hypothesis, that
is, λκ ≤ λ+ + 2κ) holds when for every λ ≥ ℵ1 every stationary S ⊆ [λ]ℵ0

reflects in some A ∈ [λ]ℵ1 .

This answers a question of Foreman and Todorčević [FoTo] who proved
that the SCH holds for every λ ≥ ℵ1 when any four stationary Sl ⊆ [λ]ℵ0 ,
l = 1, 2, 3, 4, reflect simultaneously in some A ∈ [λ]ℵ1 . They were probably
motivated by Veličković [Ve92a] who used another reflection principle: for
every stationary A ⊆ [λ]ℵ0 there is A ∈ [λ]ℵ1 such that A ∩ [A]ℵ0 contains
a closed unbounded subset, rather than just a stationary set.

The proof here is self-contained modulo two basic quotations from [Sh:g],
[Sh:f]; we continue [Sh:e], [Sh 755] in some respects. We prove more in §1. In
particular if µ > cf(µ) = ℵ0 and pp(µ) > µ+ then some A ⊆ [µ+]ℵ0 reflect
in no uncountable A ∈ [µ+]≤µ (see more at the end).

We thank the referee and Shimoni Garti for quite a few helpful com-
ments.

For the reader’s convenience let us recall some basic definitions.
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0.1. Definition. Assume θ is regular uncountable (if θ = σ+, [B]<σ =
[B]≤θ, we can use [B]≤θ; the main case is B = λ).

(a) A ⊆ [B]<θ is closed in [B]<θ if for every {xβ : β < α} ⊆ A where
0 < α < θ and β1 < β2 < α⇒ xβ1 ⊆ xβ2 , we have

⋃
β<α xβ ∈ A .

(b) A is unbounded in [B]<θ if for any y ∈ [B]<θ we can find x ∈ A

such that x ⊇ y.
(c) A is a club in [B]<θ if A ⊆ [B]<θ and (a)+(b) hold for A .
(d) A is stationary in [B]<θ, or is a stationary subset of [B]<θ, if A ⊆

[B]<θ and A ∩ C 6= ∅ for every club C of [B]<θ.
(e) Similarly for [B]≤θ or [B]θ or consider S ⊆ [B]≤θ as a subset of

[B]<θ+
.

0.2. Remark. If B = θ then A ⊆ [B]<θ is stationary iff A ∩ θ is a
stationary subset of θ.

0.3. Definition. Let A ⊆ [B1]
<θ and B2 ∈ [B1]

µ. We say that A

reflects in B2 when A ∩ [B2]
<θ is a stationary subset of [B2]

<θ.

0.4. Definition. Let κ be a regular uncountable cardinal, and assume
A is a stationary subset of [B]<κ. We define ♦A (i.e., the diamond principle
for A ) to be the following assertion: there exists a sequence 〈ua : a ∈ A 〉
such that ua ⊆ a for any a ∈ A , and for every B′ ⊆ B the set {a ∈ A :
B′ ∩ a = ua} is stationary in [B′]<κ.

0.5. Notation.

(1) For regular λ > κ let Sλ
κ = {δ < λ : cf(δ) = κ}.

(2) H (λ) is the set of x with transitive closure of cardinality < λ.
(3) <∗

λ denotes any well ordering of H (λ).

Let us recall the definition of the next ideal (see [Sh:E12]):

0.6. Definition. For S ⊆ λ we say that S ∈ Ǐ[λ] if there is a club E in
λ and a sequence 〈Cα : α < λ〉 such that:

(i) Cα ⊆ α for every α < λ,
(ii) otp(Cα) < α,
(iii) β ∈ Cα ⇒ Cβ = β ∩ Cα,
(iv) α ∈ E ∩ S ⇒ α = sup(Cα).

0.7. Claim (by [Sh 420] or see [Sh:E12]).

(1) If κ, λ are regular and λ > κ+, then there is a stationary S ⊆ Sλ
κ

such that S ∈ Ǐ[λ].
(2) In 0.6 we can add α ∈ E ∩ S ⇒ otp(Cα) = cf(α).

0.8. Definition/Observation. Let A ⊆ [λ]θ be stationary and λ ≥
σ > θ and suppose σ has uncountable cofinality. Set prjσ(A ) := {sup(a∩σ) :
a ∈ A }. It is a stationary subset of σ; if σ = λ we may omit it in notation.
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0.9. Definition. Let I be a set of ordinals and fi be a function with
domain ℵ0 to the ordinals, for every i ∈ I. We say that the sequence f̄ =
〈fi : i ∈ I〉 is free if we can find a sequence n̄ = 〈ni : i ∈ I〉 of natural
numbers such that (i, j ∈ I ∧ i < j ∧ ni, nj ≤ n < ω) ⇒ fi(n) < fj(n).
We say that f̄ is µ-free when for every J ∈ [I]<µ the sequence f̄↾J is
free.

0.10. Remark. If we consider “〈fα : α ∈ S〉 for some stationary S ⊆ θ”
when θ = cf(θ) > ℵ0, then we can assume (without loss of generality) that
ni = n(∗) for every i ∈ S, as we can decrease S.

1. Reflection in [µ+]ℵ0 and the strong hypothesis

1.1. The Main Claim. Assume

(A) λ = µ+ and µ > cf(µ) = ℵ0 and ℵ2 ≤ µ∗ ≤ λ (e.g., µ∗ = ℵ2, which
implies that below always θ = ℵ1).

(B) λ̄ = 〈λn : n < ω〉 is an increasing sequence of regular cardinals > ℵ1

with limit µ and λ = tcf(
∏

n<ω λn, <Jbd
ω

).

(C) f̄ = 〈fα : α < λ〉 is <Jbd
ω

-increasing cofinal in (
∏

n<ω λn, <Jbd
ω

).

(D) The sequence f̄ is µ∗-free or at least for every cardinal θ for which
ℵ1 ≤ θ = cf(θ) < µ∗ the following is satisfied : if θ ≤ σ < µ∗ and
A ⊆ [σ]ℵ0 is stationary (recall 0.2), and 〈δi : i < θ〉 is an increas-
ing continuous sequence of ordinals < λ, then for some stationary
subfamily A1 of A (A1 is stationary in [σ]ℵ0 of course), if we let
R1 = prjθ(A1) (see 0.8), then 〈fδi

: i ∈ R1〉 is free (see 0.9). By
0.10 we can assume that i ∈ R1 ⇒ ni = n(∗) so 〈fδi

(n) : i ∈ R1〉 is
strictly increasing for every n ∈ [n(∗), ω).

Then some stationary A ⊆ [λ]ℵ0 does not reflect in any A ∈ [λ]ℵ1 or even
in any uncountable A ∈ [λ]<µ∗ (see Definition 0.3).

1.2. Remark. (0) From the main claim the result on SCH should be
clear from pcf theory (by translating between the pp, cov and cardinal arith-
metic) but we shall give details (i.e. quotes).

(1) Clause (D) from Claim 1.1 is related to “the good set of f̄ , gd(f̄),
contains Sλ

θ modulo the club filter”. But (D) is stronger.

Note that gd(f̄) = {δ < λ : ℵ0 < cf(δ) < µ and for some increasing
sequence 〈αi : i < cf(δ)〉 of ordinals with limit δ and a sequence n̄ = 〈ni :
i < cf(δ)〉 of natural numbers we have (i < j < cf(δ) ∧ ni ≤ n < ω ∧ nj ≤ n
< ω) ⇒ fαi

(n) < fαj
(n)} (so 〈

⋃
{fαi

(n) : i < cf(δ) and n ≥ ni} : n < ω〉 is
a <Jbd

ω
-eub of f̄↾δ).

If we use another ideal, J say, on δ < µ, then ni is replaced by si ∈ J .
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(2) Recall that by using the silly square ([Sh:g, II, 1.5A, p. 51]), if cf(µ)
≤ θ < µ, J is an ideal on θ (e.g. θ = ℵ0, J = Jbd

ω ) and ppJ(µ) > λ =
cf(λ) > µ, then we can find a sequence 〈λi : i < θ〉 of regulars < µ such that
µ = limJ〈λi : i < θ〉 and tcf (

∏
i<θ λi, <J) = λ, and some f̄ = 〈fα : α < λ〉

exemplifying it satisfies gd(f̄) = {δ < λ : θ < cf(δ) < µ}; moreover f̄
is µ+-free, which here means that for every u ⊆ λ of cardinality ≤ µ we
can find 〈sα : α ∈ u〉 such that sα ∈ J , and for α < β from u we have
ε ∈ θ \ (sα ∪ sβ) ⇒ fα(ε) < fβ(ε). This is stronger than the demand in
clause (D).

(3) Also recall that if κ is supercompact, µ > κ > θ = cf(µ) and 〈λi :
i < θ〉 is an increasing sequence of regulars with limit µ, and 〈fα : α < λ〉
exemplifies λ = µ+ = tcf(

∏
i<θ λi, <Jbd

θ
), then for unboundedly many κ′ ∈

κ ∩ Reg \ θ+ the set Sλ
κ′ \ gd(f̄) is stationary. This is preserved by e.g.

Levy(ℵ1, < κ).

(4) For part of the proof (mainly Subclaim 1.5) we can weaken clause
(D) of the assumption, e.g. at the end demand “⇒ fδi

(n) 6= fδj
(n)” only.

The weakest version of clause (D) which suffices there is: for any club C of
θ the set

⋃
{Rang(fα) : α ∈ C} has cardinality θ.

Before proving 1.1 we draw some conclusions.

1.3. Conclusion.

(1) Assume µ > 2ℵ0 . Then µℵ0 = µ+ provided that

(A)µ µ > cf(µ) = ℵ0,
(B)µ every stationary A ⊆ [µ+]ℵ0 reflects in some A ∈ [µ+]ℵ1 .

(2) Assume µ ≥ µ∗ ≥ ℵ2. We can replace (B)µ by

(B)µ,µ∗
every stationary A ⊆ [µ+]ℵ0 reflects in some uncountable
A ∈ [µ+]<µ∗.

Proof. (1) Clearly if ℵ1 ≤ µ′ ≤ µ then (B)µ′ holds. Now if µ is a coun-
terexample, without loss of generality it is a minimal counterexample, and
then by [Sh:g, IX, §1] we have pp(µ) > µ+; hence there is a sequence 〈λ0

n :
n < ω〉 of regular cardinals with limit µ such that µ++ = tcf(

∏
n<ω λ

0
n/J

bd
ω )

(see [Sh:g]; more in [Sh:E12] or [Sh 430, 6.5]; e.g. using “no hole for pp” and
the pcf theorem). Let f̄0 = 〈f0

α : α < µ++〉 witness this. Hence by [Sh:g,
II, 1.5A, p. 51] there is an f̄ as required in 1.1, even a µ+-free one, and
also the other assumptions there hold, so we can conclude that there exists
A ⊆ [µ+]ℵ0 which does not reflect in any A ∈ [µ+]ℵ1 , getting a contradiction
to (B)µ.

(2) The same proof. 1.3
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1.4. Conclusion.

(1) If for every λ > ℵ1, every stationary A ⊆ [λ]ℵ0 reflects in some
A ∈ [λ]ℵ1 , then

(a) the strong hypothesis (see [Sh 410], [Sh 420], [Sh:E12]) holds, i.e.
for every singular µ, pp(µ) = µ+, and moreover cf([µ]cf(µ),⊆)
= µ+ (which follows),

(b) the SCH holds.

(2) Let θ ≥ ℵ0. We can restrict ourselves to λ > θ+ and A ∈ [λ]θ
+

(getting the strong hypothesis and SCH above θ).

Proof. (1) As in 1.3, by 1.1 we have µ > cf(µ) = ℵ0 ⇒ pp(µ) = µ+,
which implies clause (a) (i.e. by [Sh:g, VIII, §1], µ > cf(µ) ⇒ pp(µ) = µ+).
Hence inductively by [Sh:g, IX, 1.8, p. 369], [Sh 430, 1.1] we have κ < µ ⇒
cf([µ]κ,⊆) is µ if cf(µ) > κ and is µ+ if µ > κ ≥ cf(µ). This is a consequence
of the strong hypothesis. The SCH follows.

(2) The same proof. 1.4

Proof of 1.1. Let M∗ be an algebra with universe λ and countably many
functions, e.g. all those definable in (H (λ+),∈, <∗

λ+ , f̄) and mapping λ to
λ or just the functions α 7→ fα(n), α 7→ α+ 1.

1.5. Subclaim. There are S̄, S∗, D̄ such that :

(∗)1 S̄ = 〈Sε : ε < ω1〉 is a sequence of pairwise disjoint stationary
subsets of Sλ

ℵ0
,

(∗)2 (i) S∗ ⊆ Sλ
ℵ1

= {δ < λ : cf(δ) = ℵ1} is stationary and belongs to

Ǐ[λ],

(ii) if δ ∈ S∗ then there is an increasing continuous sequence 〈αε :
ε < ω1〉 of ordinals with limit δ such that for some sequence
ζ̄ = 〈ζε : ε ∈ R〉 of ordinals < ω1, the set R ⊆ ω1 is stationary ,
ε ∈ R⇒ αε ∈ Sζε

, and ζ̄ is with no repetitions,

(∗)3 (i) D̄ = 〈(D1,ε, D2,ε) : ε < ω1〉,

(ii) Dl,ε is a filter on ω containing the filter of cobounded subsets
of ω,

(iii) if R1 ⊆ ω1 is unbounded and A ∈
⋂
{D1,ε : ε ∈ R1} then for

some ε ∈ R1 we have A 6= ∅ mod D2,ε,
(iv) for each ε < ω1 for some A we have A ∈ D1,ε &ω \A ∈ D2,ε.

1.6. Remark. (1) For 1.5 we can assume (A), (B), (C) of 1.1 and weaken
clause (D): because (in the proof below) necessarily for any stationary S∗ ⊆
Sλ
ℵ1

which belongs to Ǐ[λ], we can restrict the demand in (D) of 1.1 for any
〈δi : i < θ〉 with limit in S∗. See more in [Sh 775].
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(2) In Subclaim 1.5 we can demand ζε = ε in (∗)2(ii). See the proof.

(3) If we like to demand that each Dl,ε is an ultrafilter (or just have
“A ∈ D2,ε” in the end of (∗)3(iii) of 1.5), use [Sh:E3].

Proof of Subclaim 1.5. How do we choose S̄, S∗, D̄?

Let 〈Ai : i ≤ ω1〉 be a sequence of infinite pairwise almost disjoint subsets
of ω. Let D1,i = {A ⊆ ω : Ai \ A is finite} and D2,i = {A ⊆ ω : Aj \ A is
finite for all but finitely many j < ω1}, so D2,i does not depend on i. Clearly
〈(D1,i, D2,i) : i < ω1〉 satisfies (∗)3.

Recall that by 0.7 and the fact that λ > ℵω > ℵ2, there is a stationary
S∗ ⊆ Sλ

ℵ1
from Ǐ[λ], and so every stationary S′ ⊆ S∗ has the same properties

(i.e. is a stationary subset of λ which belongs to Ǐ[λ] and is included in Sλ
ℵ1

).

Let N ≺ (H ((2λ)+),∈, <∗) be of cardinality µ such that µ+1 ⊆ N and
{λ̄, µ, f̄} belongs to N . Let C∗ =

⋂
{C : C ∈ N is a club of λ}, so clearly

C∗ is a club of λ. For each h ∈ λ(ω1) we can try S̄h = 〈Sh
γ : γ < ω1〉 where

Sh
γ = {δ < λ : cf(δ) = ℵ0 and h(δ) = γ}, so it is enough to show that for

some h ∈ N , the sequence S̄h is as required. As ‖N‖ < λ, for this it is
enough to show that for every δ ∈ Sλ

ℵ1
∩ C∗ (or just for every δ ∈ S∗ ∩ C∗,

or just for stationarily many δ ∈ S∗∩C∗) the demand holds for S̄h for some

h ∈ (λ(ω1))∩N . That is, Sh̄ satisfies (∗)1 and (∗)2(ii) of Subclaim 1.5. Given
any δ ∈ Sλ

ℵ1
∩ C∗ let 〈αε : ε < ω1〉 be an increasing continuous sequence of

ordinals with limit δ, without loss of generality ε < ω1 ⇒ cf(αε) = ℵ0, and
by assumption (D) of 1.1 for some (1) stationary R ⊆ ω1 and n = n(∗) < ω,
the sequence 〈fαε(n) : ε ∈ R〉 is strictly increasing; let its limit be β∗. So
β∗ ≤ µ and cf(β∗) = ℵ1 but µ+ 1 ⊆ N , hence β∗ ∈ N .

Note that

⊗1 for every β′ < β∗ the set {α ∈ Sλ
ℵ0

: fα(n(∗)) ∈ [β′, β∗)} is a station-
ary subset of λ.

[Why? Assume that β′ < β∗ and that the set S′ = {α ∈ Sλ
ℵ0

: fα(n(∗)) ∈

[β′, β∗)} is not a stationary subset of λ. As β∗ + 1 ⊆ N and f̄ ∈ N , clearly
S′ ∈ N , hence there is a club C ′ of λ disjoint from S′ which belongs to N .
Clearly acc(C ′) too is a club of λ which belongs to N , hence C∗ ⊆ acc(C ′),
hence δ ∈ acc(C ′). So δ = sup(C ′ ∩ δ), so C ′ ∩ δ is a club of δ. Recall that
{αε : ε ∈ R} is a stationary subset of δ of order type ℵ1.

Now by the choice of β∗, for some ε(∗) ∈ R we have β′ ≤ fαε(∗)
(n(∗)),

hence ε ∈ R \ ε(∗) ⇒ fαε(n(∗)) ∈ [β′, β∗), so δ has a stationary subset
included in S′, hence disjoint from C ′, a contradiction.]

(1) Note that if we just require that 〈fαε
(n) : ε ∈ R〉 is without repetitions, then for

some stationary subset R′ of R the sequence 〈fαε
(n) : ε ∈ R′〉 is increasing.
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We also have

⊗2 for every β′ < β∗ there is β′′ ∈ (β′, β∗) such that {α ∈ Sλ
ℵ0

:
fα(n(∗)) ∈ [β′, β′′)} is a stationary subset of λ.

[Why? Follows from ⊗1 as ℵ1 < λ.]

As β∗ ∈ N we can find an increasing continuous sequence 〈βξ : ξ < ω1〉 ∈
N of ordinals with limit β∗. So by ⊗2 we have

⊗3 for every ξ1 < ω1 for some ξ2 ∈ (ξ1, ω1) the set {α ∈ Sλ
ℵ0

: fα(n(∗)) ∈
[βξ1 , βξ2)} is stationary.

Hence for some unbounded subset u of ω1 we have

⊗4 for every ξ ∈ u the set {α ∈ Sλ
ℵ0

: fα(n(∗)) ∈ [βξ, βξ+1)} is a station-
ary subset of λ.

If 2ℵ1 ≤ µ then u = ω1, recalling we demand 〈βξ : ξ < ω1〉 ∈ N .

We define h : λ → ω1 by h(α) = ζ iff we have ζ = otp({fβξ
(n(∗)) :

ξ ∈ u} ∩ fα(n(∗))) and/or ξ = 0& fα(n(∗)) ≥ β∗.

Clearly h ∈ N is as required. So S̄ = S̄h as required exists. But maybe
2ℵ1 > µ; then after ⊗3 we continue as follows. Let C̄ = 〈Cδ : δ ∈ Sℵ3

ℵ1
〉 be

such that Cδ is a club of δ of order type ω1 which guesses clubs, i.e. for every
club C of ℵ3 for stationarily many δ ∈ Sℵ3

ℵ1
we have Cδ ⊆ C (exists by [Sh:g,

III]). Without loss of generality C̄ ∈ N .

Now let δ∗ ∈ acc(C∗) have cofinality ℵ3. Some increasing continuous
sequence 〈αε : ε < ℵ3〉 with αε ∈ acc(C∗) has limit δ∗. Now for each ε ∈ Sℵ3

ℵ1

we could choose above δ = αε, hence for some nε < ω we have (∀β′ < αε)
(∃β′′ < αε)[β

′ < β′′ ∧ (∃statγ ∈ Sλ
ℵ0

)(β′ ≤ fγ(nε) < β′′]. So for some n∗ < ω
the set S′ := {ε < ℵ3 : cf(ε) = ℵ1 and nε = n∗} is a stationary subset of
Sℵ3
ℵ1

. It follows that (∀ε < ℵ3)(∃ζ < ℵ3)[ε < ζ ∧ (∃statγ ∈ Sλ
ℵ0

)(αζ ≤ fγ(n∗)
< αζ+1)].

Let ζε be the minimal ζ as required above, so C = {ξ < ℵ3 : if ε < ξ then
ζε < ξ and ξ is a limit ordinal} is a club of ℵ3. Hence for some ε(∗) ∈ Sℵ3

ℵ1

we have Cε(∗) ⊆ C. Let u := {βζ : ζ ∈ Cε(∗)} so clearly 〈βζ : ζ ∈ u〉 belongs
to N , and define h as above for u = ω1. 1.5

1.7. Remark. Why can’t we, in the proof of 1.5, after ⊗3, instead of
assuming 2ℵ1 ≤ µ, use “as N ≺ (H (2λ)+),∈, <∗) without loss of generality
u = ω1”?

The set u chosen above depends on δ, so if 2ℵ1 ≤ µ still u ∈ N , but
otherwise the “without loss of generality u ∈ N” does not seem to be
justified.

Continuation of the proof of 1.1. Let S :=
⋃
{Sε : ε < ω1}. For ε < ω1

and δ ∈ Sε let
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A
ε
δ = {a : a ∈ [δ]ℵ0 is M∗-closed, sup(a) = δ, otp(a) ≤ ε and

(∀D1,εn)(a ∩ λn ⊆ fδ(n)) and (∀D2,εn)(a ∩ λn * fδ(n))},

A
ε =

⋃
{A ε

δ : δ ∈ Sε}, A =
⋃

{A ε : ε < ω1}.

So

A ⊆ [λ]ℵ0 .

As the case µ∗ = ℵ2 was the original question and its proof is simpler, we
first prove it.

1.8. Subclaim. A does not reflect in any A ∈ [λ]ℵ1.

Proof. So assume A ∈ [λ]ℵ1 , let 〈ai : i < ω1〉 be an increasing continuous
sequence of countable subsets of A with union A, and let R = {i < ω1 :
ai ∈ A }, and assume toward a contradiction that R is a stationary subset
of ω1. As every a ∈ A is M∗-closed, necessarily A is M∗-closed and so
without loss of generality each ai is M∗-closed.

For each i ∈ R, as ai ∈ A , by the definition of A we can find εi < ω1

and δi ∈ Sεi
such that ai ∈ A

εi

δi
, hence by the definition of A

εi

δi
we have

otp(ai) ≤ εi. But as A =
⋃
{ai : i < ω1} with ai countable increasing with

i and |A| = ℵ1, clearly for some club E of ω1 the sequence 〈otp(ai) : i ∈ E〉
is strictly increasing, hence i ∈ E ⇒ otp(i ∩ E) ≤ otp(ai), so without loss
of generality i ∈ E ⇒ i ≤ otp(ai) and i < j ∈ E ⇒ εi < j ≤ otp(aj).

Now j ∈ E ∩ R ⇒ j ≤ otp(aj) ≤ εj , so 〈εi : i ∈ E ∩ R〉 is strictly
increasing; but 〈Sε : ε < ω1〉 are pairwise disjoint and δi ∈ Sεi

so 〈δi : i ∈
E ∩R〉 is without repetitions; but δi = sup(ai) and for i < j from R∩E we
have ai ⊆ aj , which implies that δi = sup(ai) ≤ sup(aj) = δj , so necessarily
〈δi : i ∈ R ∩ E〉 is strictly increasing.

As sup(ai) = δi for i ∈ R ∩ E, clearly sup(A) =
⋃
{δi : i ∈ E ∩ R}. Let

βi = Min(A \ δi) for i < ω1; it is well defined as 〈δj : j ∈ R ∩ E〉 is strictly
increasing. Thinning out E, without loss of generality we have

⊛1 i < j ∈ E ∩R⇒ βi < δj &βi ∈ aj .

Note that, by the choice of M∗,

⊛2 (i ∈ E ∩R ∧ i < j ∈ E ∩R) ⇒ βi ∈ aj ⇒
∧

n(fβi
(n) ∈ aj)

⇒
∧

n(fβi
(n) + 1 ∈ aj).

As 〈δi : i ∈ E∩R〉 is (strictly) increasing continuous and R∩E is a stationary
subset of ω1, clearly by clause (D) of the assumption of 1.1 we can find a
stationary R1 ⊆ E ∩R and n(∗) such that (i ∈ R1 ∧ j ∈ R1 ∧ i < j ∧n(∗) ≤
n < ω) ⇒ fδi

(n) < fδj
(n).

Now if i ∈ R1, let j(i) := Min(R1 \ (i+ 1)), so fδi
≤Jbd

ω
fβi

<Jbd
ω
fδj(i) , so

for some mi < ω we have n ∈ [mi, ω) ⇒ fδi
(n) ≤ fβi

(n) < fδj(i)(n). Clearly

for some stationary R2 ⊆ R1 we have i, j ∈ R2 ⇒ mi = mj = m(∗), so
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possibly increasing n(∗) without loss of generality n(∗) ≥ m(∗); so we have
(with Cha ∈

∏
n<ω λn defined by Cha(n) = sup(a ∩ λn) for any a ∈ [µ]<λ0):

⊛3 for i < j from R2 we have j(i) ≤ j and

(α) fδi
↾[n(∗), ω) ≤ fβi

↾[n(∗), ω),
(β) fβi

↾[n(∗), ω) < fδj(i)↾[n(∗), ω) ≤ fδj
↾[n(∗), ω),

(γ) fβi
↾[n(∗), ω) < Chaj

↾[n(∗), ω), by ⊛2.

Now by the definition of A
εi

δi
, as ai ∈ A

εi

δi
⊆ A εi we have

⊛4 if i ∈ R2 then

(α) Chai
≤D1,εi

fδi
,

(β) fδi
<D2,εi

Chai
.

Let f∗ ∈
∏

n<ω λn be f∗(n) =
⋃
{fβi

(n) : i ∈ R2} if n ≥ n(∗) and zero
otherwise. As fβi

(n) ∈ aj(i) for i ∈ R2, by ⊛3(γ) clearly n ≥ n(∗) ⇒
f∗(n) ≤ sup{Chai

(n) : i ∈ R2} = sup(A ∩ λn) = ChA(n) and by ⊛3(β)
we have n ≥ n(∗) ⇒ cf(f∗(n)) = ℵ1. Let B1 := {n < ω : n ≥ n(∗) and
f∗(n) = sup(A ∩ λn)} and B2 := [n(∗), ω) \ B1. As α ∈ A ⇒ α + 1 ∈ A
we have n ∈ B1 ⇒ A ∩ λn ⊆ f∗(n) = sup(A ∩ λn). Also by a previous
sentence f∗↾[n(∗), ω) ≤ ChA↾[n(∗), ω), so clearly n ∈ B2 ⇒ A ∩ λn * f∗(n).
As 〈ai : i ∈ R2〉 is increasing with union A, clearly there is i(∗) ∈ R2 such
that n ∈ B2 ⇒ ai(∗) ∩ λn * f∗(n), so as i ∈ R2 &α ∈ ai ⇒ α + 1 ∈ ai we
have i(∗) ≤ i ∈ R2 ⇒ Chai

↾B2 > fδi
↾B2, hence by clause ⊛4(α) we have

i ∈ R2 \ i(∗) ⇒ B2 = ∅ mod D1,εi
⇒ B1 ∈ D1,εi

. Also by ⊛3 and the choice
of f∗ and B1, for each n ∈ B1 for some club En of ω1 we have i ∈ En∩R2 ⇒
sup(ai ∩ λn) = sup{fβj

(n) : j ∈ R2 ∩ i} = sup{fδj
(n) : j ∈ R2 ∩ i} ⊆ fδi

(n),
hence R3 = R2 ∩

⋂
{En \ i(∗) : n ∈ B1} is a stationary subset of ω1. So n ∈

B1 & i ∈ R3 ⇒ ai ∩ λn ⊆ fδi
(n), hence i ∈ R3 ⇒ Chai

↾B1 ≤ fδi
↾B1, hence

by ⊛4(β) we have i ∈ R3 ⇒ B1 = ∅ mod D2,εi
, hence i ∈ R3 ⇒ B2 ∈ D2,εi

.

By the choice of 〈(D1,i, D2,i) : i < ω1〉 in 1.5, as B1 ∪ B2 is a cofinite
subset of ω, and B1 ∩B2 = ∅ (by the choice of B1, B2, clearly) and R3 ⊆ ω1

is stationary, we get a contradiction (see (∗)3(iii) of 1.5). 1.8

1.9. Subclaim. A is a stationary subset of [λ]ℵ0.

Remark. See [RuSh 117], [Sh:f, XI, 3.5, p. 546], [Sh:f, XV, 2.6].

We give a proof relying only on [Sh:f, XI, 3.5, p. 546]. In fact, also if we
are interested in ChN = 〈sup(θ ∩N) : ℵ0 < θ ∈ N ∩ Reg〉, N ≺ (H (χ),∈),
we have full control, e.g., if S̄ = 〈Sθ : ℵ1 ≤ θ ∈ Reg∩χ〉, Sθ ⊆ Sθ

ℵ0
stationary,

we can demand ℵ1 ≤ θ = cf(θ) ∧ θ ∈ N ⇒ ChN (θ) ∈ Sθ and control the

order of fa,λ

sup(N∩λ) and ChN↾a.

Proof of Subclaim 1.9. Let M∗∗ be an expansion of M∗ by countably
many functions; without loss of generality M∗∗ has Skolem functions.
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Recall that S∗ ⊆ Sλ
ℵ1

is from 1.5, so it belongs to Ǐ[λ], and let ā = 〈aα :
α < λ〉 witness it (see 0.6, 0.7), so otp(aα) ≤ ω1 and β ∈ aα ⇒ aβ = β ∩ aα,
and omitting a non-stationary subset of S∗ we have δ ∈ S∗ ⇒ otp(aδ) =
ω1 & δ = sup(aδ).

Let

T ∗ = {η : η is a finite sequence of ordinals,

η(2n) < λ and η(2n+ 1) < λn}.

Let λη = λ if lg(η) is even and λη = λn if lg(η) = 2n + 1, and let Iη be
the non-stationary ideal on λη for η ∈ T ∗, so (T ∗, Ī) is well defined where
Ī := 〈Iη : η ∈ T ∗〉.

For η ∈ T ∗, let Mη be the M∗∗-closure of {η(l) : l < lg(η)} so each Mη

is countable and η ⊳ ν ∈ T ∗ ⇒ Mη ⊆ Mν , and for η ∈ lim(T ∗) = {η ∈ ωλ :
η↾n ∈ T ∗ for every n < ω} let Mη =

⋃
{Mη↾n : n < ω}. It is enough to prove

that Mη ∈ A for some η ∈ lim(T ∗), more exactly |Mη| ∈ A ; recall Mη ⊆
M∗∗ ⇔ Mη ≺ M∗∗ as M∗∗ has Skolem functions. Let M̄ = 〈Mη : η ∈ T ∗〉.
Then we can find a subtree T ⊆ T ∗ such that

⊠ (T ∗, Ī) ≤ (T, Ī) and for some ε∗ < ω1 we have η ∈ lim(T ) ⇒
otp(Mη) = ε∗ (recalling (T ∗, Ī) ≤ (T, Ī) means T ⊆ T ∗, (∀η ∈ T ∗)
(∀l < lg(η))(η↾l ∈ T ∗), <> ∈ T ∗ and (∀η ∈ T )({α < λη : ηˆ〈α〉 ∈
T ∗} 6= ∅ mod Iη, i.e. is stationary)).

Why? As lim(T ∗) =
⋃
{Bε : ε < ω1} (see ⊠4 below), and by ⊠1 below,

each Bε is a Borel subset of lim(T ∗), and note that ⊠ says that (∃ε < ω1)
(∃T )[(T ∗, Ī) ≤ (T, Ī) ∩ lim(T ) ⊆ Bε). For the existence of such ε see, e.g.,
[Sh:f, XI, 3.5, p. 546]; the reader may ask to justify the sets being Borel, so
let uη be the universe of Mη, a countable set of ordinals.

So we use

⊠1 for any ε < ω1 the set Bε = {η ∈ lim(T ) : otp(uη) = ε} is a Borel
set.

[Why? Without loss of generality uη 6= ∅ and let 〈αη,n : n < ω〉 enumerate
the members of uη and for n1, n2 < ω and m1,m2 < ω let Bn1,n2,m1,m2 :=
{η ∈ lim(T ∗) : αη↾n1,m1 < αη↾n2,m2}.

Clearly

⊠2 Bn1,n2,m1,m2 is an open subset of lim(T ∗),
⊠3 there is an Lω1,ω sentence ψε in the vocabulary consisting of

{pn1,n2,m1,m2,l : n1, n2,m1,m2 < ω} such that: the p’s are propo-
sitional variables (i.e. 0-place predicates) and if 〈αn,m : n,m < ω〉
is a sequence of ordinals and pn1,n2,m1,m2 is assigned the truth value
of αn1,m1 < αn2,m2 then γ = otp{αn,m : n,m < ω} iff ψε is assigned
the truth value true.]
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⊠4 lim(T ∗) =
⋃
{Bε : ε < ω1}.

[Why? As otp(Mη ∩ λ) < ‖Mη‖
+ = ℵ1. Together ⊠ should be clear.]

Note that for every η ∈ T ∗ of length 2n+ 2 we have η E ν ∈ T ∗ ⇒ Iν is
λ+

n -complete. As we can shrink T further by [Sh:f, XI, 3.5, p. 346], without
loss of generality

⊗ for every n < ω and η ∈ T ∩ 2n+2λ for some α = αη < λn we have:
if η ⊳ ν ∈ lim(T ) then αη = sup(λn ∩Mν).

[Why? As above applied to each T ′ = {̺ ∈ ω>λ : ηˆ̺ ∈ T}.]
Let χ = (2λ)+ and let N∗

α ≺ B = (H (χ),∈, <∗
χ) for α < λ be in-

creasing continuous, ‖N∗
α‖ = µ, α ⊆ N∗

α, 〈N∗
β : β ≤ α〉 ∈ N∗

α+1 and

(T, Ī, M̄ , ā, f̄ , λ̄, µ) ∈ N∗
α (clearly possible) and E = {δ < λ : N∗

δ ∩ λ = δ}
is a club of λ, hence we can find δ(∗) ∈ S∗ ∩ E, so aδ(∗) is well defined. Let

N̄∗ = 〈N∗
α : α < λ〉. Let Cδ(∗) be the closure of aδ(∗) as a subset of δ(∗) in

the order topology and let 〈αε : ε < ω1〉 list Cδ(∗) in increasing order, so it
is increasing continuous.

We define Nε by induction on ε < ω1 by:

(∗)0 Nε is the Skolem hull in B of

{αζ : ζ < ε} ∪ {〈Nξ : ξ < ζ〉, N̄∗↾ζ : ζ < ε} ∪ {(T, Ī, M̄ , ā, f̄ , λ̄, µ)}.

Let

(∗)1 gε ∈
∏

n<ω λn be defined by gε(n) = sup(Nε ∩ λn).

Clearly

(∗)2 (a) 〈Nζ : ζ ≤ ε〉 ∈ N∗
δ(∗) and even ∈ Nξ for every ξ ∈ [ε+ 1, ω1),

(b) Cδ(∗) ∩ (αε + 1) and aαε belong to Nξ for ξ ∈ [ε + 1, ω1) for ε
non-limit.

[Why? For clause (a), 〈Nζ : ζ ≤ ε〉 appears in the set whose Skolem hull is
Nξ. For clause (b) because ā ∈ N∗

δ(∗) and α ∈ aδ(∗) ⇒ aα = aδ(∗) ∩ α and

Cδ(∗) ∩ (αε + 1) = the closure of aαε+1 ∩ (αε + 1).]

Let e = {ε < ω1 : ε is a limit ordinal and Nε ∩ ω1 = ε}. So

(∗)3 (a) e is a club of ω1,
(b) if ε ∈ e then sup(Nε ∩ λ) = αε = N∗

αε
∩ λ, Nε ⊆ N∗

αε
and

ε < ζ < ω1 ⇒ Nε ∈ Nζ ,

hence

(∗)4 if ε+ 2 < ζ ∈ e then gε, gε+1 ∈ Nε+2 ≺ Nζ .

Now f̄ is increasing and cofinal in
∏

n<ω λn, hence

(∗)5 if ε < ζ ∈ e then gε <Jbd
ω
fαζ

and fαε <Jbd
ω
gζ .
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Also clearly

(∗)6 if ε < ζ ∈ e then gε < gζ .

For n < ω and ε < ω1 let Nε,n+1 be the Skolem hull inside B of Nε ∪ λn

and let Nε,0 = Nε. Clearly

(∗)7 if n ≤ m < ω and ε < ω1 then gε(m) = sup(Nε,n ∩ λm).

Recall that ε∗ is the order type of Mη ∩ λ for every η ∈ lim(T ). Choose
ε ∈ acc(e) such that ε > ε∗ and αε ∈ Sζ for some ζ ∈ [ε, ω1) (possible by
Subclaim 1.5, particularly clause (∗)2(ii)) and choose εk ∈ e ∩ ε for k < ω
such that εk < εk+1 < ε =

⋃
{εl : l < ω}. We also choose nk by induction

on k < ω such that

(∗)8 (a) nl < nk < ω for l < k,
(b) gεk+1

↾[nk, ω) < fαε↾[nk, ω).

[Why is this choice possible? By (∗)5.]
We stipulate n−1 = 0.

Let B1 ∈ D1,ζ be such that B2 = ω \B1 ∈ D2,ζ (exists by clause (∗)3(iv)
of Subclaim 1.5).

Now we choose ηn by induction on n < ω such that

⊡ (a) ηn ∈ T and lg(ηn) = n,

(b) m < n⇒ ηm ⊳ ηn,
(c) if n ∈ [nk−1, nk) then η2n, η2n+1 ∈ Nεk,n,
(d) if n ∈ [nk−1, nk) then η2n+1(2n) = Min{α < λ : η2nˆ〈α〉 ∈ T and

α ≥ αεk−1
if k > 0},

(e) if n ∈ [nk−1, nk) and n ∈ B1 then η2n+2(2n+ 1) = Min{α < λn :
η2n+1ˆ〈α〉 ∈ T},

(f) if n ∈ [nk−1, nk) and n ∈ B2 then η2n+2(2n+ 1) = Min{α < λn :
η2n+1ˆ〈α〉 ∈ T and α > fαε(n)}.

No problem to carry the induction.
[Clearly if ηn is well defined then ηn+1(n) is well defined (by clause (d), (e)
or (f) according to the case); hence ηn+1 ∈ T ∩ n+1λ is well defined by why
clause (c) holds, i.e. assume n ∈ [nk−1, nk); why η2n, η2n+1 ∈ Nεk,n

?

Case 1: If n = 0, then η2n = <> ∈ Nεk,n trivially.

Case 2: η2n is O.K., hence ∈ Nεk,n
and we show η2n+1 ∈ Nεk,n

.
[Why? Because Nεk,n ≺ B, if k = 0 as η2n+2(2) is defined from η2n and T ,
both of which belong to Nεk,n. If k > 0 we have to check that also αεk−1

∈
Nεk,n, which holds by (∗)0.]

Case 3: η2n+1 is O.K. so ∈ Nεk,n and we have to show η2n+2 ∈ Nεk,n+1.

(As η2n+2(n) < λn ⊆ Nεk,n+1 this should be clear.)]
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Let η =
⋃
{ηn : n < ω}. Clearly η ∈ lim(T ), hence u := |Mη| ∈ [λ]ℵ0 and

Mη ⊆M∗∗, hence it is enough to prove that u ∈ A .
Now

⊛1 sup(u) ≤ αε.
[Why? As ηn belongs to the Skolem hull of Nε ∪ µ ⊆ N∗

αε
, hence

Mηn ⊆ Nε ⊆ N∗
αε

, and N∗
αε

∩ λ = αε as αε ∈ E.]
⊛2 sup(u) ≥ αεn for every n < ω.

[By clause (d) of ⊡.]
⊛3 sup(u) = αε.

[Why? By ⊛1 + ⊛2.]
⊛4 αε ∈ Sζ and ζ ≥ ε > ε∗ = otp(u).

[Why? By the choice of ε.]
⊛5 If n ≥ n0, n > 0 and n ∈ B1 then u ∩ λn ⊆ fαε(n).

[Why? By the choice of η2n+2(2n + 1), i.e., let k be such that n ∈
[nk−1, nk), so η2n+1 ∈ Nεk,n by clause (c), and by clause (e) of ⊡ we
have η2n+2(2n + 1) ∈ λn ∩ Nεk,n, hence by ⊗ above, as η ∈ lim(T )
we have αη↾(2n+2) = αη2n+2 = sup(u ∩ λn), and as M̄ ∈ Nεk,n we
have αη2n+2 ∈ Nεk,n, so sup(u ∩ λn) = αη2n+2 < sup(Nεk,n ∩ λn) but
the latter is equal to sup(Nεk

∩λn) by (∗)7, which is equal to gεk
(n),

which is < fαε(n) by (∗)8, as required.]
⊛6 If n ≥ n1 and n ∈ B2 then u ∩ λn * fαε(n).

[Why? By the choice of η2n+2(2n+ 1).]

So we are done. 1.9

This (i.e., 1.8+1.9) is enough to prove 1.1 in the case µ∗ = ℵ2. In general
we should replace 1.8 by the following claim.

1.10. Claim. The family A does not reflect in any uncountable A ∈
[λ]<µ∗.

Proof. Assume A is a counterexample. Trivially

⊛0 A is M∗-closed.

For a ∈ A let (δ(a), ε(a)) be such that a ∈ A
ε(a)
δ(a) , hence δ(a) = sup(a) ∈

Sε(a) and otp(a) ≤ ε(a). Let A − = A ∩ [A]ℵ0 and Γ = {δ(a) : a ∈ A −}.
Of course, Γ 6= ∅. Assume that δn ∈ Γ for n < ω so let δn = δ(an) where
an ∈ A , then necessarily δn ∈ Sε(an). As A is uncountable we can find a
countable b such that an ⊆ b ⊆ A and ε(an) < otp(b) for every n < ω,
and as A − ⊆ [A]ℵ0 is stationary we can find c such that b ⊆ c ∈ A −; so
ε(c) ≥ otp(c) ≥ otp(b) > ε(an) & δn ∈ Sε(an) & δ(an) = δn < sup(an) ≤
sup(c) = δ(c) for each n < ω. So if δ(an) = δn = δ(c) and n < ω then
necessarily ε(an) = ε(c), a contradiction, so δn 6= δ(c); hence δ(c) > δ(an)
and, of course, δ(c) ∈ Γ so n < ω ⇒ δn < δ(c) ∈ Γ . As δn for n < ω
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were any members of Γ , clearly Γ has no last element. Let δ∗ = sup(Γ ).
Similarly cf(δ∗) = ℵ0 is impossible, so clearly cf(δ∗) > ℵ0. Let θ = cf(δ∗) so
θ ≤ |A| < µ∗ and θ is a regular uncountable cardinal.

As a ∈ A ε
δ ⇒ sup(a) = δ and A − ⊆ [A]ℵ0 is stationary, clearly A ⊆ δ∗ =

sup(A) = sup(Γ ). Let 〈δi : i < θ〉 be increasing continuous with limit δ∗,
and if δi ∈ Sε then we let εi = ε.

For i < θ let βi = Min(A \ δi), so δi ≤ βi < δ∗, βi ∈ A and i < j < θ ⇒
βi ≤ βj . But i < θ ⇒ βi < δ∗ ⇒ (∃j)(i < j < θ ∧ βi < δj) so for some club
E0 of θ we have i < j ∈ E0 ⇒ βi < δj ≤ βj ; as we can replace 〈δi : i < θ〉
by 〈δi : i ∈ E0〉, without loss of generality βi < δi+1, hence 〈βi : i < θ〉 is
strictly increasing.

Let A0 := {βi : i < θ}, let H : [A]ℵ0 → θ be defined by H(b) = sup{i+1 :
βi ∈ b} and let J := {R ⊆ θ: the family {b ∈ A − : H(b) ∈ R} = {b ∈ A − :
sup({i < θ : βi ∈ b}) ∈ R} is not a stationary subset of [A]ℵ0}. Clearly

⊛1 J is an ℵ1-complete ideal on θ extending the non-stationary ideal
and θ /∈ J by the definition of the ideal,

⊛2 if B ∈ J+ (i.e., B ∈ P(θ) \ J) then {a ∈ A − : H(a) ∈ B} is a
stationary subset of [A]ℵ0 .

By clause (D) of the assumption of 1.1, for some stationary R1 ∈ J+ and
ni < ω for i ∈ R1 we have

⊛3 if i < j are from R1 and n ≥ ni, nj (but n < ω) then fβi
(n) < fβj

(n).

Recall that

⊛4 i < j ∈ R1 ⇒ βi < δj .

Now if i ∈ R1, let j(i) = Min(R1 \ (i + 1)), so fδi
≤Jbd

ω
fβi

<Jbd
ω

fδj(i) ;

hence for some mi < ω we have n ∈ [mi, ω) ⇒ fδi
(n) ≤ fβi

(n) < fδj(i)(n).

Clearly for some n(∗) satisfying λn(∗) > θ and R2 ⊆ R1 from J+ we have
i ∈ R2 ⇒ ni,mi ≤ n(∗), so

⊛5 for i < j in R2 we have

(α) fδi
↾[n(∗), ω) ≤ fβi

[n(∗), ω),
(β) fβi

↾[n(∗), ω) < fδj
↾[n(∗), ω).

Let f∗ ∈
∏

n<ω λn be defined by f∗(n) =
⋃
{fδi

(n) : i ∈ R2} if n ≥ n(∗) and
zero otherwise. Clearly f∗(n) ≤ sup(A ∩ λn) for n < ω.

Let A ′ = {a ∈ A − : sup{i ∈ R2 : βi ∈ a} = sup{i : βi ∈ a}, H(b) ∈ R2

and sup(A ∩ λn) > f∗(n) ⇒ a ∩ λn * f∗(n)}. As R2 ∈ J+ clearly A ′ is a
stationary subset of [A]ℵ0 .

Let R3 = {i ∈ R2 : i = sup(i∩R2)} so R3 ⊆ R2, R2 \R3 is a non-statio-
nary subset of θ (hence belongs to J) and a ∈ A ′ ⇒ sup(a) ∈ {δi : i ∈ R3}.
Let A ∗ be the set of all a ∈ [A]ℵ0 such that
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(a) βmin(R2) ∈ a and a is M∗-closed,
(b) if i ∈ R2 & j = Min(R2 \ (i+ 1)) then [a * δi ⇒ a * δj ] and

n ∈ [n(∗), ω) & a ∩ λn * fδi
(n) ⇒ a ∩ λn \ fδj

(n) 6= ∅,
(c) if i < θ&n ∈ [n(∗), ω) then (∃γ)(βi ≤ γ ∈ a) ≡

(∃j)(i < j < θ&βj ∈ a) ≡ (∃γ)(fβi
(n) ≤ γ ∈ a ∩ f∗(n)),

(d) if A ∩ λn * f∗(n) then a ∩ λn * f∗(n)
but (∀γ ∈ a)(γ + 1 ∈ a) hence sup(a ∩ λn) > f∗(n)}.

Clearly A ∗ is a club of [A]ℵ0 (recall that A isM∗-closed). But if a ∈ A ∗∩A ′,
then for some limit ordinal i ∈ R3 ⊆ θ we have a ⊆ sup(a) = δi and
n ∈ [n(∗), ω) ⇒ sup(a ∩ f∗(n)) = sup(a ∩

⋃
{fδj

(n) : j ∈ R2}). Let

B1 = {n : n(∗) ≤ n < ω and A ∩ λn ⊆ f∗(n) = sup(A ∩ λn)}.

B2 = {n : n(∗) ≤ n < ω and f∗(n) < sup(A ∩ λn)}.

Clearly B1, B2 are disjoint with union [n(∗), ω) recalling α ∈ A⇒ α+1 ∈ A
by ⊛0.

By the definition of A ′, for every a ∈ A ′ ∩ A ∗, we have

⊛6 n ∈ B2 ⇒ Cha(n) ≥ f∗(n) > fδ(a)(n),
⊛7 n ∈ B1 ⇒ Cha(n) =

⋃
{fβε

(n) : ε ∈ R2 ∩ δ(a)} ≤ fδ(a)(n).

But this contradicts the observation below.

1.11. Observation. If B ⊆ ω, then for some ε < ω1 we have: if a ∈ A

is M∗-closed and {n < ω : sup(a ∩ λn) ≤ fsup(a)(n)} = B modJbd
ω , then

otp(a) < ε.

Proof. Read the definition of A (and A ε,A ε
δ ) and Subclaim 1.5, par-

ticularly (∗)3. 1.11, 1.10, 1.1

Remark. Clearly 1.11 shows that we have much freedom in the choice
of A ε

δ ’s.

We can get somewhat more, as in [Sh:e]:

1.12. Claim. In Claim 1.1 we can add to the conclusion

(∗) A satisfies the diamond , i.e. ♦A .

Proof. In 1.5 we can add

(∗)4 {2n+ 1 : n < ω} = ∅ mod Dl,ε for l < 2 and ε < ω1.

This is easy: replace Dl,ε by D′
l,ε = {A ⊆ ω : {n : 2n ∈ A} ∈ Dl,ε}. We

can fix a countable vocabulary τ and for ζ < ω1 choose a function Fζ from
P(ω) onto {N : N is a τ -model with universe ζ} such that Fζ(A) = Fζ(B)
if A = B mod finite.

Case 1: µ > 2ℵ0 . For a ∈ A let δa, εa be such that a ∈ A
εa

δa
, let

Aa = {n : sup(a ∩ λ2n+1) < fδa
(2n + 1)}, and let Na be the τ -model with

universe a such that the one-to-one order preserving function from ζ onto a
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is an isomorphism from Fζ(Aa) onto N . Note that in the proof of “A ⊆ [λ]ℵ0

is stationary”, i.e. of 1.9, given a τ -model M with universe λ without loss
of generality λ0 > 2ℵ0 and so we can demand that the isomorphism type
of Mη is the same for all η ∈ lim(T ) and, of course, M ∈ Mη. Hence the
isomorphism type of M↾uη is the same for all η ∈ lim(T ) where uη is the
universe of Mη. Now in the choice for B1 we can add the demand that
Fε∗({n : 2n + 1 ∈ B1}) is isomorphic to M↾uη for every η ∈ lim(T ). Now
check.

Case 2: µ ≤ 2ℵ0 . Similarly let {2n+ 1 : n < ω} be the disjoint union of
〈B∗

n : n < ω〉, with each B∗
n infinite. We use Aa ∩ B∗

n to code a model with
universe ⊆ ζ, for some ζ < ω1, by a function Fn. We then let Na be the
model with universe a such that the order preserving function from a onto a
countable ordinal ζ is an isomorphism fromNa onto

⋃
{Fn(Aa∩B

∗
n) : n < ω}

when the union is a τ -model with universe ζ.
Now we cannot demand that all Mη, η ∈ lim(T ), have the same isomor-

phism type but only the same order type. The rest should be clear. 1.12

We can also generalize

1.13. Claim. We can weaken the assumption of 1.1 as follows:

(a) λ = cf(λ) > µ instead λ = µ+ (still necessarily µ∗ ≤ µ),
(b) replace Jbd

ω by an ideal J on ω containing the finite subsets, λn =
cf(λn) > ℵ1, µ = limJ〈λn : n < ω〉 but not necessarily n < ω ⇒
λn < λn+1 and add P(ω)/J is infinite (hence uncountable).

Proof. In 1.5 in (∗)3 we choose 〈Aε : ε < ω1〉, a sequence of subsets of ω
such that 〈Aε/J : ε < ω1〉 are pairwise distinct. This implies some changes
and waiving λn < λn+1 requires some changes in 1.9, in particular for each
n using 〈Bα : α ∈ Sλn

ℵ0
〉 with Bδ = {η ∈ lim(T ∗) : a ∩ λn ⊆ α} and the

partition theorem [Sh:f, XI, 3.7, p. 549]. 1.13
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