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Abstract. We prove that, e.g., if 4 > cf(p) = Ro and p > 2%° and every stationary
family of countable subsets of ;1 reflects in some subset of i of cardinality N, then the
SCH for p* holds (moreover, for 4", any scale for " has a bad stationary set of cofinal-
ity Nq). This answers a question of Foreman and Todor¢evi¢ who get such a conclusion
from the simultaneous reflection of four stationary sets.

0. Introduction. In §1 we prove that the strong hypothesis (pp(u) = u*
for every singular p) and hence the SCH (singular cardinal hypothesis, that
is, \* < AT 4 2%) holds when for every A > ®; every stationary . C [A]N0
reflects in some A € [A]M.

This answers a question of Foreman and Todor¢evi¢ [FoTo] who proved
that the SCH holds for every A > Ry when any four stationary .#; C [A]M°,
[ =1,2,3,4, reflect simultaneously in some A € [)\]Nl. They were probably
motivated by Velickovié¢ [Ve92a] who used another reflection principle: for
every stationary o7 C [A|N there is A € [A]*! such that .7 N [A] contains
a closed unbounded subset, rather than just a stationary set.

The proof here is self-contained modulo two basic quotations from [Sh:g],
[Sh:f]; we continue [Sh:e], [Sh 755] in some respects. We prove more in §1. In
particular if ;4 > cf (1) = R and pp(u) > put then some &7 C [u]0 reflect
in no uncountable A € [uT]< (see more at the end).

We thank the referee and Shimoni Garti for quite a few helpful com-
ments.

For the reader’s convenience let us recall some basic definitions.
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0.1. DEFINITION. Assume 6 is regular uncountable (if § = o, [B]<7 =
[B]=?, we can use [B]=?; the main case is B = \).

(a) o C [B]<%is closed in [B]<? if for every {5 : 3 < a} C o/ where
0<a<fand f < P2 <a= x5 Cx, we have Uﬁ@ﬂ%’ e .

(b) & is unbounded in [B]<? if for any y € [B]<Y we can find z € o/
such that z O y.

(c) o is a club in [B]<Y if o7 C [B]<? and (a)+(b) hold for 7.

(d) o is stationary in [B]<Y, or is a stationary subset of [B]<Y, if &7 C
[B]<? and &/ N € # 0 for every club % of [B]<?

(e) Similarly for [B]< or [B]? or consider .# C [B]=Y as a subset of
[B]<‘9+.

2. REMARK. If B = 0 then &7 C [B]<Y is stationary iff & N0 is a
stationary subset of 6.

0.3. DEFINITION. Let &/ C [B1]<% and By € [B1]*. We say that o/
reflects in By when &/ N [Ba]<Y is a stationary subset of [Bg]<?

0.4. DEFINITION. Let k be a regular uncountable cardinal, and assume
4/ is a stationary subset of [B]<*. We define { . (i.e., the diamond principle
for @7) to be the following assertion: there exists a sequence (u, : a € &)
such that u, C a for any a € 7, and for every B’ C B the set {a € & :
B'Na = u,} is stationary in [B']<".

0.5. NOTATION.

(1) For regular A > & let S = {6 < X : cf(0) = k}.
(2) A(N) is the set of x with transitive closure of cardinality < A.
(3) <X denotes any well ordering of (\).

Let us recall the definition of the next ideal (see [Sh:E12]):

0.6. DEFINITION. For S C X\ we say that S € I[)\] if there is a club E in
A and a sequence (Cy, : a < A) such that:

(i) Co C « for every a < A,
ii) otp(Ch) < a,

(iii) B € Cq = Cg=pPNCh,
(iv) a €e ENS = a=sup(Cy).

0.7. CLAmM (by [Sh 420] or see [Sh:E12]).
(1) If kA are regular and A > kT, then there is a stationary S C S

such that S € I[\].
(2) In 0.6 we can add o € ENS = otp(Cy) = cf(a).

0.8. DEFINITION/OBSERVATION. Let & C [A]? be stationary and A\ >
o > 6 and suppose o has uncountable cofinality. Set prj, (<) := {sup(ano) :
a € o/}. Tt is a stationary subset of o; if 0 = A\ we may omit it in notation.
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0.9. DEFINITION. Let I be a set of ordinals and f; be a function with
domain R to the ordinals, for every i € I. We say that the sequence f =
(fi i € I)is free if we can find a sequence n = (n; : ¢ € I) of natural
numbers such that (i,j € I A1 < jAn,n; <n <w)= fi(n) < fjn).
We say that f is u-free when for every J € [I]<F the sequence f[J is
free.

0.10. REMARK. If we consider “(f, : a € S) for some stationary S C 6”
when 6 = cf(0) > Ry, then we can assume (without loss of generality) that
n; = n(x) for every i € S, as we can decrease S.

1. Reflection in [¢*]™ and the strong hypothesis
1.1. THE MAIN CLAIM. Assume

(A) X =puT and p > cf(u) = RNg and Ny < ps < X (e.g., ps = No, which
implies that below always 6 = Ny).

(B) XA = (\, :n <w) is an increasing sequence of reqular cardinals > Ny
with limit i and A = tcf([[,, <, Ans <jpa)-

(C) f={fa:a< ) is < va-increasing cofinal in (], ., Ans <jpa).

(D) The sequence f is p-free or at least for every cardinal 6 for which
Ny < 0 = cf(0) < ps the following is satisfied: if 0 < o < ps and
o C [o] is stationary (recall 0.2), and (§; : i < 0) is an increas-
ing continuous sequence of ordinals < X, then for some stationary
subfamily < of o/ (e is stationary in [o]° of course), if we let
Ry = prjg(e#i) (see 0.8), then (fs, : i € Ry) is free (see 0.9). By
0.10 we can assume that i € Ry = n; = n(x) so (fs,(n) : i € Ry) is
strictly increasing for every n € [n(x),w).

Then some stationary o/ C [A]N0 does not reflect in any A € [\]™' or even
in any uncountable A € [N\|<F+ (see Definition 0.3).

1.2. REMARK. (0) From the main claim the result on SCH should be
clear from pcf theory (by translating between the pp, cov and cardinal arith-
metic) but we shall give details (i.e. quotes).

(1) Clause (D) from Claim 1.1 is related to “the good set of f, gd(f),
contains S) modulo the club filter”. But (D) is stronger.

Note that gd(f) = {6 < A : Ry < cf(6) < p and for some increasing
sequence (q; : i < cf(d)) of ordinals with limit § and a sequence n = (n; :
i < cf(0)) of natural numbers we have (i < j < cf(6) An; <n<wAn; <n
<w) = fa,;(n) < fo;(n)} (so (U{fa;(n) 1 i < cf(0) and n > n;} :n < w) is
a < jpa-eub of f[d).

If we use another ideal, J say, on § < u, then n; is replaced by s; € J.
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(2) Recall that by using the silly square ([Sh:g, II, 1.5A, p. 51]), if cf(u)
< 6 < p, Jis an ideal on 6 (e.g. § = Vg, J = J°9) and pp,(u) > X =
cf(A\) > u, then we can find a sequence (\; : i < ) of regulars < u such that
po=Tlimy(X; : i < 6) and tcf ([[,.9 Xi, <s) = A, and some f = (fo : 0 < A)
exemplifying it satisfies gd(f) = {§ < A : § < cf(d) < p}; moreover f
is uT-free, which here means that for every u C A of cardinality < u we
can find (sy : @ € w) such that s, € J, and for a < ( from u we have
e €0\ (saUsg) = fale) < fg(e). This is stronger than the demand in
clause (D).

(3) Also recall that if x is supercompact, u > k > 6 = cf(p) and (\; :
i < ) is an increasing sequence of regulars with limit p, and (f, : @ < )
exemplifies A = put = tef([[,-p Nis < Jgd), then for unboundedly many x’ €

k N Reg \ 6% the set S,i‘, \ gd(f) is stationary. This is preserved by e.g.
Levy(Ry, < k).

(4) For part of the proof (mainly Subclaim 1.5) we can weaken clause
(D) of the assumption, e.g. at the end demand “= f5,(n) # fs5;(n)” only.
The weakest version of clause (D) which suffices there is: for any club C of
0 the set | J{Rang(f,) : @ € C'} has cardinality 6.

Before proving 1.1 we draw some conclusions.

1.3. CONCLUSION.
(1) Assume p > 280, Then p™° = u* provided that

(A),U« > cf(,u) = NOa
(B), every stationary o C [N reflects in some A € [pt]R1,

(2) Assume p > pie > No. We can replace (B),, by

(B) . every stationary o/ C [uF]* reflects in some uncountable

Proof. (1) Clearly if Xy < u/ < p1 then (B),s holds. Now if p is a coun-
terexample, without loss of generality it is a minimal counterexample, and
then by [Sh:g, IX, §1] we have pp(u) > uT; hence there is a sequence (\) :
n < w) of regular cardinals with limit 4 such that p™ = tef([], ., A% /J5Y)
(see [Sh:g]; more in [Sh:E12] or [Sh 430, 6.5]; e.g. using “no hole for pp” and
the pef theorem). Let f0 = (f9 : a < p*) witness this. Hence by [Sh:g,
I1, 1.5A, p. 51] there is an f as required in 1.1, even a p*-free one, and
also the other assumptions there hold, so we can conclude that there exists
@/ C [ut]R0 which does not reflect in any A € [uT]*, getting a contradiction
to (B),.

(2) The same proof. m; 3
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1.4. CONCLUSION.

(1) If for every A > Ry, every stationary o/ C [N reflects in some
A€ [\™, then

(a) the strong hypothesis (see [Sh 410], [Sh 420], [Sh:E12]) holds, i.e.
for every singular u, pp(u) = pt, and moreover cf([,u]d(“), Q)
= ut (which follows),

(b) the SCH holds.

(2) Let 0 > Ro. We can restrict ourselves to X > 0 and A € [N"
(getting the strong hypothesis and SCH above 0).

Proof. (1) As in 1.3, by 1.1 we have u > cf(u) = Rg = pp(p) = pt,
which implies clause (a) (i.e. by [Sh:g, VIIL, §1], u > cf(u) = pp(p) = p™).
Hence inductively by [Sh:g, IX, 1.8, p. 369], [Sh 430, 1.1] we have k < p =
cf ([u]", Q) is wif cf(u) > k and is pt if p > K > cf (u). This is a consequence
of the strong hypothesis. The SCH follows.

(2) The same proof. m; 4

Proof of 1.1. Let M* be an algebra with universe A and countably many

functions, e.g. all those definable in (J(A\"), €, <}, f) and mapping A to
A or just the functions a — fo(n), o — a+ 1.

1.5. SUBCLAIM. There are S,S*, D such that:

()1 S = (Se 1 € < wy) is a sequence of pairwise disjoint stationary
subsets of SQO,

(x)2 (1) S* C S{}l = {6 < X :cf(d) = N1} is stationary and belongs to
I[Al,

(ii) of § € S* then there is an increasing continuous sequence (v :
e < wy) of ordinals with limit § such that for some sequence
¢ = (¢ : € € R) of ordinals < wy, the set R C wy is stationary,
e€R=a. €5, and ¢ is with no repetitions,

(*)3 (1) D= <(D1,5,D275) e < u)1>,
(ii) Dy is a filter on w containing the filter of cobounded subsets
of w,
(iii) if R1 C wy is unbounded and A € (\{D1. : € € Ry} then for
some € € Ry we have A # () mod D>,
(iv) for each e < wy for some A we have A € D1 & w\ A € Dy..

1.6. REMARK. (1) For 1.5 we can assume (A), (B), (C) of 1.1 and weaken
clause (D): because (in the proof below) necessarily for any stationary S* C
Sﬁ‘l which belongs to I[\], we can restrict the demand in (D) of 1.1 for any
(0; : i < 0) with limit in S*. See more in [Sh 775].
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(2) In Subclaim 1.5 we can demand (. = € in (x)3(ii). See the proof.
(3) If we like to demand that each D;. is an ultrafilter (or just have
“A € Dy .” in the end of (x)3(iii) of 1.5), use [Sh:E3].

Proof of Subclaim 1.5. How do we choose S, S*, D?

Let (A; : ¢ < w1) be a sequence of infinite pairwise almost disjoint subsets
of w. Let D1; = {A Cw: A;\ Ais finite} and Dy; = {A Cw: A;\ Ais
finite for all but finitely many j < w1}, so Dy ; does not depend on i. Clearly
<<D1’i, Dgﬂ') 1 < w1> satisfies (*)3

Recall that by 0.7 and the fact that A > N, > Ny, there is a stationary
S* C Sﬁ‘l from I[\], and so every stationary S’ C S* has the same properties
(i.e. is a stationary subset of A which belongs to I[\] and is included in S{}l ).

Let N < (A2((2M)71), €, <*) be of cardinality p such that g+1 C N and
{\, 11, f} belongs to N. Let C* = N{C : C € N is a club of A}, so clearly
C* is a club of \. For each h € *(w;) we can try S" = <S§L : vy < wp) where
SS” ={d < A:cf(d) = Vg and h(d) = v}, so it is enough to show that for
some h € N, the sequence S” is as required. As ||[N|| < A, for this it is
enough to show that for every ¢ € S{}l N C* (or just for every § € S* N C*,
or just for stationarily many § € S*NC*) the demand holds for S” for some
h € (Mwy))NN. That is, S” satisfies (*); and ()2 (ii) of Subclaim 1.5. Given
any 0 € S’Ql NC* let (e : € < w1) be an increasing continuous sequence of
ordinals with limit 0, without loss of generality ¢ < w; = cf(a:) = Rp, and
by assumption (D) of 1.1 for some (1) stationary R C w; and n = n(x) < w,
the sequence (fo_ (n) : € € R) is strictly increasing; let its limit be 5*. So
B* < p and cf(8*) =Xy but p+ 1 C N, hence 5* € N.

Note that

®q for every ' < B* the set {a € ngo : fa(n(x)) € [, 5%)} is a station-
ary subset of .

[Why? Assume that 3 < * and that the set S’ = {a € S{}O : fa(n(x)) €
[3,3%)} is not a stationary subset of \. As 3*+1C N and f € N, clearly
S’ € N, hence there is a club C’ of )\ disjoint from S’ which belongs to V.
Clearly acc(C”) too is a club of A\ which belongs to N, hence C* C acc(C”),
hence § € acc(C’). So § = sup(C' N J), so C"'NJ is a club of 4. Recall that
{ae : € € R} is a stationary subset of § of order type N;.

Now by the choice of 3%, for some £(x) € R we have 3’ < fa_,, (n(*)),
hence € € R\ e(x) = fa.(n(x)) € [F,5%), so ¢ has a stationary subset
included in S’, hence disjoint from C’, a contradiction.

(*) Note that if we just require that (fa.(n) : e € R) is without repetitions, then for
some stationary subset R’ of R the sequence (fa..(n): e € R’) is increasing.
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We also have

®q for every ' < [* there is " € (8,*) such that {a € sz‘o :
fa(n(x)) € [3,0")} is a stationary subset of \.

[Why? Follows from ®; as 8; < A.]
As 3* € N we can find an increasing continuous sequence (8¢ : { < wy) €
N of ordinals with limit 8*. So by ®9 we have

®3 for every & < wy for some & € (&1, wq) the set {a € SQO s fa(n(x)) €
(B¢, s Be,)} is stationary.

Hence for some unbounded subset © of w; we have

®4 for every £ € u the set {« € ngo : fa(n(x)) € [Be, Betr1)} is a station-
ary subset of .

If 2% < 4 then u = wy, recalling we demand (B¢ : £ < wq) € N.

We define h : A — wy by h(a) = ¢ iff we have ¢ = otp({fs (n(*)) :
£ €ul N fa(n(x))) and/or £ = 0& fo(n(x)) > B*.

Clearly h € N is as required. So S = S” as required exists. But maybe
2%t > 1: then after ®3 we continue as follows. Let C = (C5 : § € S§f> be
such that Cj is a club of § of order type w; which guesses clubs, i.e. for every
club C of N3 for stationarily many ¢ € ng we have C5 C C (exists by [Sh:g,
I11]). Without loss of generality C € N.

Now let 6, € acc(C*) have cofinality N3. Some increasing continuous
sequence (a : € < Ng) with a. € acc(C*) has limit d,. Now for each ¢ € ng
we could choose above § = a., hence for some n. < w we have (V3 < «.)
(3" < a)[B < B A (T € SR )(B' < fy(ne) < B"]. So for some ny < w
the set S’ := {e¢ < N3 : cf(e) = Ny and n. = n,} is a stationary subset of
S¥2. Tt follows that (Ve < N3)(3¢ < N3)e < ¢ A (Ftaty € 3 )(a¢ < fy(n)
< gl

Let (. be the minimal ¢ as required above, so C' = {£ < N3 : if ¢ < { then
(. < & and ¢ is a limit ordinal} is a club of 3. Hence for some e(x) € ng
we have C¢(,) C C. Let u := {f : ( € C.} so clearly (5 : ¢ € u) belongs
to N, and define h as above for u = wq. w5

1.7. REMARK. Why can’t we, in the proof of 1.5, after ®3, instead of
assuming 2%t <y, use “as N < (J(2*)7), €, <*) without loss of generality
u=w’"?

The set u chosen above depends on 4, so if 2% < p still w € N, but
otherwise the “without loss of generality u € N” does not seem to be
justified.

Continuation of the proof of 1.1. Let S := |J{Se : ¢ < wi}. For ¢ < wy
and § € S; let
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odf ={a:ae [0 is M*-closed, sup(a) = 6, otp(a) < € and
(VDl’En)(a N A, C fs(n)) and (VD“n)(a N\, ¢_ fs(n)},
=[5 6e8.}, o= [ e <w}

So
o C Ao,

As the case u, = No was the original question and its proof is simpler, we
first prove it.

1.8. SUBCLAIM. &/ does not reflect in any A € [\,

Proof. So assume A € [\, let (a; : i < wp) be an increasing continuous
sequence of countable subsets of A with union A, and let R = {i < w; :
a; € &/}, and assume toward a contradiction that R is a stationary subset
of wy. As every a € & is M*-closed, necessarily A is M*-closed and so
without loss of generality each a; is M*-closed.

For each i € R, as a; € <7, by the definition of &/ we can find ¢; < wy
and §; € S, such that a; € &, i", hence by the definition of %i’ we have
otp(a;) < e;. But as A = |J{a; : i < wi} with a; countable increasing with
i and |A| = Ry, clearly for some club E of w; the sequence (otp(a;) : i € E)
is strictly increasing, hence ¢ € E = otp(i N E) < otp(a;), so without loss
of generality i € £ = i <otp(a;) and i < j € E = ¢; < j < otp(ay).

Now j € ENR = j < otp(aj) < ¢, 50 (g5 : © € ENR) is strictly
increasing; but (S; : € < wy) are pairwise disjoint and d; € Se, so (J; : @ €
E N R) is without repetitions; but §; = sup(a;) and for ¢ < j from RN E we
have a; C aj, which implies that ¢; = sup(a;) < sup(a;) = d;, so necessarily
(0; : i € RN E) is strictly increasing.

As sup(a;) = 0; for i € RN E, clearly sup(A) = J{d; : i € EN R}. Let
Bi = Min(A \ §;) for i < wy; it is well defined as (9 : j € RN E) is strictly
increasing. Thinning out E, without loss of generality we have

®1i<j€EﬂR:>ﬁi<5j&ﬁi€aj.

Note that, by the choice of M*,

® e ENRANi<jeENR)= picaj=>N\,(fsn)€ay)

= /\n(fﬁz(n) +1e€ aj)-
As (9; : i € ENR) is (strictly) increasing continuous and RNE is a stationary
subset of wy, clearly by clause (D) of the assumption of 1.1 we can find a
stationary Ry C EN R and n(x) such that (i € Ry Aj € RiAi < jAn(x) <
n<w) = f3,(n) < fs,(n).

Now if i € Ry, let j(i) := Min(R1 \ (i +1)), so fs, <jva fg, <jpa fo,,, 50
for some m; < w we have n € [m;,w) = f5,(n) < f5,(n) < fs;, (n). Clearly
for some stationary Ry C Ry we have i,j € Ry = m; = m; = m(x), so
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possibly increasing n(x) without loss of generality n(x) > m(x); so we have
(with Chg € [, An defined by Ch,(n) = sup(a N A,) for any a € [u]<*0):

®3 for i < j from Ry we have j(i) < j and

(@) folln(*),w) < falln(x),w),
(B) fng[n(*),w) < f5j(i)r[n(*) w) < féjr[n(*)7w)7
(7) falln(*),w) < Chy,[[n(*),w), by ®s.

Now by the definition of «7', as a; € @/5' C &/°* we have

n<w

®4 if ¢ € Ry then

(a) Chai §D1,si f&m
(8) fs; <D, Chq,.

Let f* € [[,<uAn be f*(n) = U{fs,(n) : i € R} if n > n(x) and zero
otherwise. As fs,(n) € a;) for i € Ry, by ®3(v) clearly n > n(x) =
f*(n) < sup{Chg,(n) : i € Ra} = sup(ANA\,) = Cha(n) and by ®3(3)
we have n > n(x) = cf(f*(n)) = Ry. Let By := {n < w : n > n(x) and
f*(n) =sup(ANA,)} and By := [n(*),w)\ Bil. Asa € A=a+1c A
we have n € By = AN\, C f*(n) = sup(4 N A,). Also by a previous
sentence f*[[n(x),w) < Chal[n(x),w), so clearly n € By = AN\, € f*(n)
As (a; : i € Ryp) is increasing with union A, clearly there is i(x) € Ry such
that n € By = a;) N Ay Z f*(n),soasi € Ro&ka€a; = a+1c¢ca we
have i(x) < i € Rg = Chy,[Bs > f5,1B2, hence by clause ®4(a) we have
i € Ry \i(¥) = By =0 mod Dy, = By € Dy,. Also by ®3 and the choice
of f* and By, for each n € B; for some club F,, of w; we have: € E,N Ry =
sup(a; N Ay) = sup{fs;(n) : j € RaNi} =sup{fs;(n):j € RaNi} C fs,(n),
hence R3 = RoN({Ex, \ i(%) : n € By} is a stationary subset of wi. Son €
Bi&i € Rz = a;N A\, C f5,(n), hence i € R3 = Ch,, [B1 < f5,]Bi, hence
by ®4(0) we have i € R3 = By = () mod Da,, hence i € R3 = By € Ds,.

By the choice of (D14, D2;) : i < wi) in 1.5, as By U By is a cofinite
subset of w, and By N By = ) (by the choice of By, Ba, clearly) and R3 C wy
is stationary, we get a contradiction (see (x)s3(iii) of 1.5). m1.g

1.9. SUBCLAIM. &7 is a stationary subset of [AJN0

REMARK. See [RuSh 117], [Sh:f, XI, 3.5, p. 546], [Sh:f, XV, 2.6].

We give a proof relying only on [Sh:f, XI, 3.5, p. 546]. In fact, also if we
are interested in Chy = (sup(§ N N) : Ry < 6§ € N NReg), N < (H(x), €),
we have full control, e.g., if S = (Sy : Ry < 0 € RegNy), Sy C Sgo stationary,
we can demand Ny <0 =cf(d) N0 € N = Chy(f) € Sp and control the
order of f N and Chy[a.

sup(NN
Proof of Subclaim 1.9. Let M™** be an expansion of M* by countably
many functions; without loss of generality M** has Skolem functions.
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Recall that S* C S{}l is from 1.5, so it belongs to I[)\], and let @ = (a,, :
a < ) witness it (see 0.6, 0.7), so otp(an) < wy and § € aq = ag = fNaa,
and omitting a non-stationary subset of S* we have § € S* = otp(as) =
w1 & 0 = sup(ays).

Let

T* = {n:nis a finite sequence of ordinals,
n(2n) < XA and n(2n+ 1) < A\, }.

Let A, = X if Ig(n) is even and A, = A, if Ig(n) = 2n + 1, and let I, be
the non-stationary ideal on X, for n € T*, so (T*,I) is well defined where
I:=(IL,:neT".

For n € T*, let M,, be the M**-closure of {n(l) : I <lg(n)} so each M,
is countable and n<v € T* = M, C M, and for n € lim(T™*) = {n € “A:
nin € T* for every n < w} let M, = J{My» : n < w}. It is enough to prove
that M, € o for some n € lim(T™), more exactly |M,| € </; recall M, C
M** < M, < M** as M** has Skolem functions. Let M = (M, : n € T™).
Then we can find a subtree T" C T* such that

X (T*,I) < (T,1I) and for some £* < w; we have n € lim(T)
otp(M,) = * (recalling (T*,I) < (T,I) means T C T*,(Vn € T*)
(VI <lg(n)(nll € T*), <> e T* and (Vn € T)({a < Xy : 7 () €
T*} # 0 mod I, i.e. is stationary)).

Why? As lim(7T%*) = J{B: : ¢ < w1} (see Ky below), and by K; below,
each B is a Borel subset of lim(7™*), and note that X says that (Je < w1)
3AT)[(T*,1) < (T,I) N lim(T) C B.). For the existence of such ¢ see, e.g.,
[Sh:f, X1, 3.5, p. 546]; the reader may ask to justify the sets being Borel, so
let u, be the universe of M,, a countable set of ordinals.

So we use

Xy for any € < wy the set B, = {n € lim(T") : otp(u,) = €} is a Borel
set.

[Why? Without loss of generality u, # () and let (ay, : n < w) enumerate
the members of u, and for ny,n0 < w and m1,m2 < w let By, npmyms =
{77 S lim(T*) DOning,my < amn%mz}.

Clearly

X2 By, ng,mi,me is an open subset of lim(7),

X3 there is an L, . sentence . in the vocabulary consisting of
{Pnimamimael © M1,n2,m1,my < w} such that: the p’s are propo-
sitional variables (i.e. O-place predicates) and if (apm @ n,m < W)
is a sequence of ordinals and Py, n,.m;,m, 18 assigned the truth value
of oy my < Qngm, then v = otp{ay, m : n,m < w} iff 9. is assigned
the truth value true.]
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Xy lim(T*) = U{BE e < wl}.

[Why? As otp(M,, N A) < ||M,||" = R;. Together X should be clear.]

Note that for every n € T* of length 2n 4+ 2 we have n < v e T* = 1, is
A -complete. As we can shrink T further by [Sh:f, XI, 3.5, p. 346], without
loss of generality

® for every n < w and n € T N 22X for some a = oy, < A, we have:
if n<av € lim(T) then o, = sup(A, N M,).
[Why? As above applied to each T/ = {p € “”X:n"p € T} ]

Let x = (2%)" and let Ni < B = (H#(x),€,<}) for a < X be in-
creasing continuous, [Ng|l = p, @ C N3, (Nj @ 8 < a) € Ny and
(T,I,M,a, f, M\, u) € N2 (clearly possible) and E = {§ < A : Nf N\ = 4}
is a club of A, hence we can find 6(x) € S* N E, so0 as(,) is well defined. Let
N* = (Nj : a < \). Let Cs(,) be the closure of ag(,) as a subset of () in
the order topology and let (ap : & < wy) list Cs(x) In increasing order, so it
is increasing continuous.

We define N, by induction on £ < wy by:

(*¥)o N is the Skolem hull in B of
{ac: ¢ <ebU{(Ne: €< ), N C: ¢ <eyU{(T,L, M,a, f, A\, )}
Let
(*)1 9= € [[,,c, An be defined by g-(n) = sup(N- N Ay).
Clearly
(¥)2 (a) (Ne:(<e)e Nji,) and even € N for every & € e+ 1,w1),
(b) Cs(x) N (e + 1) and aq, belong to N¢ for £ € [e + 1,wy) for €
non-limit.
[Why? For clause (a), (N¢ : ¢ <€) appears in the set whose Skolem hull is
N¢. For clause (b) because a € Njo and @ € a5 = aa = ag() N« and
Cs(+) N (ae + 1) = the closure of aa, , N (ae +1).]
Let e = {e < w; : € is a limit ordinal and N: Nw; = €}. So

()3 (a) e is a club of wy,
(b) if ¢ € e then sup(N: N A) = ac = N;_NA, N. € N;_ and
e<(¢<w = N.€ N,

hence
(¥)s if e +2 < ( € ethen ge,gey1 € Neyo < N

Now f is increasing and cofinal in [] An, hence

n<w

(¥)5 if € < € e then g- <jpa fo, and fo. <jva gc.
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Also clearly
(¥)s if € < ¢ € e then g. < g¢.

For n < w and € < wy let N, 41 be the Skolem hull inside B of N, U A,
and let N. g = N.. Clearly

(¥)7 if n <m <w and € < wy then g.(m) = sup(Ne,n N Ap).

Recall that €* is the order type of M, N A for every n € lim(T"). Choose
e € acc(e) such that € > €* and a. € S¢ for some ¢ € [e,w;) (possible by
Subclaim 1.5, particularly clause (x)2(ii)) and choose € € eNe for k < w
such that e < exy1 < e = U{e : | < w}. We also choose ny by induction
on k < w such that

(¥)s (a) ny < ng <w for I <k,
(b) gEk+1r[nk7w) < fagr[nkaw)'

[Why is this choice possible? By (*)s.]

We stipulate n_1 = 0.

Let By € Dy ¢ be such that By = w\ By € Dy (exists by clause (x)3(iv)
of Subclaim 1.5).

Now we choose 7, by induction on n < w such that

O (a) ny, € T and lg(n,) = n,
(b) m < n = Ny <My,
(c) if n € [ng_1,nk) then 1oy, Nant1 € Ney s
) if n € [ng_1,n) then 72,11(2n) = Min{a < A : 19" (@) € T and
a> o, if k> 0},
(e) if n € [ng_1,n) and n € By then no,42(2n 4+ 1) = Min{a < A, :
Men+1 (o) € T,
(f) if n € [ng—1,nk) and n € By then nap42(2n + 1) = Min{a < A\, :
Ment1 (@) € T and a > fo.(n)}.

No problem to carry the induction.

[Clearly if n,, is well defined then 7,,11(n) is well defined (by clause (d), (e)
or (f) according to the case); hence 7,11 € TN 1\ is well defined by why
clause (c) holds, i.e. assume n € [ng_1, nk); Why non, N2n4+1 € Ne?

CASE 1: If n = 0, then 12, = <> € N, ,, trivially.

CASE 2: 12y, is O.K., hence € Neyo and we show 7ap+1 € Neyo-
[Why? Because Ng, ,, < B, if k = 0 as 72,42(2) is defined from 7, and T,
both of which belong to N, ,,. If K > 0 we have to check that also a., , €
N¢, n, which holds by (x)o.]

CASE 3: 241 is O.K. so € N¢, , and we have to show 72,42 € Ney ny1-
(As m2p42(n) < Ay € Ngy 41 this should be clear.)]
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Let n = U{nn : n < w}. Clearly n € lim(T'), hence u := |M,| € [A\]** and
M, C M**, hence it is enough to prove that u € <.
Now

®1 sup(u) < a.
[Why? As 7, belongs to the Skolem hull of N. U € N;_, hence
M,, € N. CN;_,and N NA=a.asa. € E.]

®2 sup(u) > a., for every n < w.
[By clause (d) of [.]

®3 sup(u) = ae.
[Why? By ®1 + ®2.]

@4 o € S¢c and ( > e > e* = otp(u).
[Why? By the choice of €]

®5 If n >ng,m >0and n € By then un A, C f,_(n).
[Why? By the choice of n2,42(2n + 1), i.e., let k be such that n €
[Mk—1,Mk), 8O N2nt1 € Ne, n by clause (c), and by clause (e) of [ we
have n2,42(2n 4+ 1) € Ay, N N, », hence by ® above, as n € im(7")
we have ay2n42) = M. = sup(uNAy), and as M € Ng, n we
have oy, .o € Neyony 0 sUp(u N Ay) = apy,in < SUP(Ney n N Ap) but
the latter is equal to sup(NVe, N A\y) by (*)7, which is equal to g., (n),
which is < f,_(n) by (*)s, as required.]

®6 If n>ny and n € By then uN A, € fo.(n).
[Why? By the choice of n2,42(2n +1).]

So we are done. m g

This (i.e., 1.8+1.9) is enough to prove 1.1 in the case p. = Rg. In general
we should replace 1.8 by the following claim.

1.10. CLA. The family o7 does not reflect in any uncountable A €
AR

Proof. Assume A is a counterexample. Trivially

®p A is M*-closed.
For a € o/ let (6(a),e(a)) be such that a € ,52{5‘5((;)), hence d(a) = sup(a) €
Se(a) and otp(a) < e(a). Let &/~ = &/ N[A]™ and I' = {6(a) : a € &/~ }.
Of course, I' # (). Assume that 6, € I" for n < w so let §, = d(ay,) where
an € o, then necessarily d, € Sc(,,). As A is uncountable we can find a
countable b such that a, C b C A and e(ay,) < otp(b) for every n < w,
and as &/~ C [A]N is stationary we can find ¢ such that b C ¢ € &/ ~; so
E(C) > Otp(C) > Otp(b) > E(Gn)&dn € Sa(an)&é(an) = 5n < Sup(an) <
sup(c) = 6(c) for each n < w. So if §(a,) = 0, = I(c) and n < w then
necessarily e(a,) = €(c), a contradiction, so d, # d(c); hence d(c) > d(ay)
and, of course, d(c) € I'son < w = 6, < 6(c) € I'. As §, for n < w
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were any members of I', clearly I' has no last element. Let 6* = sup([).
Similarly cf(6*) = Ng is impossible, so clearly cf(6*) > Ng. Let 8 = cf(6*) so
0 < |A| < py and 6 is a regular uncountable cardinal.

Asa € of = sup(a) = 6 and &/~ C [A]™ is stationary, clearly A C §* =
sup(A) = sup(I"). Let (d; : i < 0) be increasing continuous with limit %,
and if §; € S; then we let ¢; = <.

Fori < 6 let B; = Min(A\ ¢;),80 0; < 3; < 6, i€ Aand i < j <0 =
Bi <Bj.Buti< =6 <6 = (3j)(i<j<OAP <d;) so for some club
Ey of § we have i < j € Ey = (; < 0; < [3;; as we can replace (6; : ¢ < )
by (d; : ¢ € Ep), without loss of generality (; < d;41, hence (5; : i < 0) is
strictly increasing.

Let A% := {B; :i < 0},let H : [A]Y — 0 be defined by H(b) = sup{i+1:
B; € b} and let J := {R C 6: the family {b€ &/~ : H(b) e R} = {be &/ :
sup({i < 6 : B; € b}) € R} is not a stationary subset of [4]¥}. Clearly

®1 J is an Ni-complete ideal on 6 extending the non-stationary ideal
and 6 ¢ J by the definition of the ideal,
®y if B € Jt (ie., B € 2(0)\ J) then {a € &/~ : H(a) € B} is a
stationary subset of [A]®o.
By clause (D) of the assumption of 1.1, for some stationary R; € J* and
n; < w for i € Ry we have

®3 if i < j are from Ry and n > n;,n; (but n < w) then fg,(n) < fg,(n).
Recall that

®4i<j€R1:>,3i<5j.

Now if i € Ry, let j(i) = Min(R1 \ (i + 1)), so f5, <jpa f, <jpa [fs3
hence for some m; < w we have n € [m;,w) = f5,(n) < fg,(n) < f5,, (n).
Clearly for some n(*) satisfying A,y > 6 and Ry C Ry from J* we have
i € Ry = nj,m; < n(x), so
®5 for i < j in R we have

(@) f&”n(*)vw) < fs [n<*)7w)7

(ﬁ) fng[n(*),w) < f5jr[n(*)7w)'
Let f* € [],,<,, An be defined by f*(n) = U{fs,(n) : i € Rz} if n > n(x) and
zero otherwise. Clearly f*(n) <sup(AN\,) for n < w.

Let &' ={a € o/~ :sup{i € Ry : 5; € a} =sup{i: ; € a}, H(b) € Ry
and sup(ANA,) > f*(n) = ani, € f*(n)}. As Ry € J* clearly &/’ is a
stationary subset of [A]®o.

Let Ry ={i € Ry : i =sup(iNRy)} so Ry C Ry, R\ R3 is a non-statio-
nary subset of 6 (hence belongs to J) and a € &/’ = sup(a) € {J; : i € R3}.
Let «/* be the set of all a € [A]®0 such that
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(a) Bmin(r,) € @ and a is M*-closed,

(b) ifi € Ro& j =Min(Ry \ (i + 1)) then [a € §; = a € §;] and
n € [n(x),w)&an, € f5,(n) = ani,\ fs,(n) # 0,

(c) ifi <O&n € [n(x),w) then (%)(ﬁzgyea)

()i <j< 9&ﬁy € a) = (37)(fa(n ) <7 €an f*(n)),
(d) if ANX, € f*(n) then an A, € f*(n
but (Vv € a)(y + 1 € a) hence sup(a ﬂ An) > f*(n)}.

Clearly @7* is a club of [A] (recall that A is M*-closed). But if a € &/*N.a/’,
then for some limit ordinal ¢ € R3 C 6 we have a C sup(a) = ¢; and

n € [n(x),w) = sup(an f*(n)) = sup(a N U{fs;(n) : j € Ra}). Let
Bi={n:n(x)<n<wand AN\, C f*(n) =sup(ANA,)}.
By ={n:n(x) <n<wand f*(n) <sup(ANA\,)}.
Clearly By, By are disjoint with union [n(x),w) recallinga € A= a+1€ A
by ®o.
By the definition of <7/, for every a € &' N &/*, we have
®g n € By = Cha(n) > f*(n) > f(g(a)(n),
®7 n € By = Cha(n) = U{fﬁg (n) g€ Ro N (5(0,)} < f(g(a)(n).
But this contradicts the observation below.

1.11. OBSERVATION. If B C w, then for some ¢ < w1 we have: if a € &/
is M*-closed and {n < w : sup(a N Ap) < foup(a)(n)} = B mod JY9, then
otp(a) < e

Proof. Read the definition of &/ (and «/¢, #/f) and Subclaim 1.5, par-
ticularly (*)3 m 11, W] 10, W ]

REMARK. Clearly 1.11 shows that we have much freedom in the choice
of ’s.

We can get somewhat more, as in [Sh:e]:

1.12. CLAamM. In Claim 1.1 we can add to the conclusion

(x) 7 satisfies the diamond, i.e. oy .

Proof. In 1.5 we can add

(%)4 {2n+1'n<w}:@moleaforl<2and6<w1

This is easy: replace D;. by Dj_ = {A Cw :{n:2n € A} € D;.}. We
can fix a countable Vocabulary T and for ¢ < wy choose a function Fy from
P (w) onto {N : N is a 7-model with universe (} such that F(A) = F¢(B)
if A= B mod finite.

CASE 1: > 2%, For a € & let 84,64 be such that a € szi“, let
Ay = {n :sup(a N Agpt1) < f5,(2n+ 1)}, and let N, be the 7-model with
universe a such that the one-to-one order preserving function from ¢ onto a
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is an isomorphism from F;(4,) onto N. Note that in the proof of “o/ C [A]*0
is stationary”, i.e. of 1.9, given a 7-model M with universe A without loss
of generality \g > 2%° and so we can demand that the isomorphism type
of M, is the same for all n € lim(T") and, of course, M € M,. Hence the
isomorphism type of M [u, is the same for all n € lim(7T") where u, is the
universe of M,. Now in the choice for By we can add the demand that
Fe«({n : 2n + 1 € By}) is isomorphic to M [u, for every n € lim(T"). Now
check.

CASE 2: p < 2%, Similarly let {2n +1 : n < w} be the disjoint union of
(B :n < w), with each B} infinite. We use A, N B}, to code a model with
universe C (, for some ( < wi, by a function F,,. We then let N, be the
model with universe a such that the order preserving function from a onto a
countable ordinal ¢ is an isomorphism from N, onto | J{F,(4.,NB}) : n < w}
when the union is a 7-model with universe (.

Now we cannot demand that all M, n € lim(7"), have the same isomor-
phism type but only the same order type. The rest should be clear. m; 19

We can also generalize
1.13. CLam. We can weaken the assumption of 1.1 as follows:

(a) A =cf(X) > p instead X = pt (still necessarily p. < ),

(b) replace J24 by an ideal J on w containing the finite subsets, A, =
cf(Ap) > Ny, p = limy(\, : n < w) but not necessarily n < w =
An < Apt1 and add P (w)/J is infinite (hence uncountable).

Proof. In 1.5 in (x)3 we choose (A; : ¢ < w1), a sequence of subsets of w
such that (A;/J : € < wq) are pairwise distinct. This implies some changes
and waiving A, < A,11 requires some changes in 1.9, in particular for each
n using (B, : a € S§g> with Bs = {n € im(7T*) : anN A\, C a} and the
partition theorem [Sh:f, XI, 3.7, p. 549]. my 13
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