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Abstract. The paper is devoted to generalizations of the Cencelj–Dranishnikov the-
orems relating extension properties of nilpotent CW complexes to their homology groups.
Here are the main results of the paper:

Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the

inclusion i of L into its infinite symmetric product SP (L). If X is a metrizable space such

that XτK(Hk(L), k) for all k ≥ 1, then XτK(πk(F ), k) and XτK(πk(L), k) for all k ≥ 2.

Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR.

Suppose L is a nilpotent CW complex. If XτSP (L), then XτL in the following cases:

(a) H1(L) is finitely generated.

(b) H1(L) is a torsion group.

1. Introduction. For basic facts on nilpotent groups see [17]. Localiza-
tion of nilpotent groups is discussed in [13].

Recall that XτL and L ∈ AE(X) are shortcuts to the statement: L is
an absolute extensor of X (see [7]). The following geometric result, repeat-
edly used in the paper, is a consequence of Theorem 1.9 in [9]: if F is the
homotopy fiber of L → K and XτF , then XτL is equivalent to XτK.

Given a metrizable space X and a connected CW complex L consider
the following conditions:

(1) XτL.
(2) XτK(πn(L), n) for all n ≥ 1.
(3) XτK(Hn(L), n) for all n ≥ 1.
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It is well-known that (1) implies (3) as proved by Dranishnikov [6] for
X compact and for arbitrary X in [11, Theorem 3.4]. The difficulty in gen-
eralizing results in cohomological dimension theory from compact spaces to
arbitrary metrizable spaces usually lies in the fact that the First Bockstein
Theorem does not hold for metric spaces.

By a Hurewicz–Serre Theorem in Extension Theory we mean any result
showing (3) implies (2). However, in practice we are really interested in
arriving at (1) (see [4]).

Here is the main problem we are interested in:

Problem 1.1. SupposeX is ametrizable space such thatXτK(Hn(L), n)
for all n ≥ 1. If L is nilpotent, does XτK(πn(L), n) hold for all n ≥ 1?

Even a specialized version of 1.1 is open:

Problem 1.2. Suppose L is a nilpotent CW complex. If X is a metriz-
able space such that XτK(Hk(L), k) for all k ≥ 1, does XτK(π1(L), 1)
hold?

Notice that it is not sufficient to assume XτK(H1(L), 1) in Problem 1.2.
Namely, take the group G from [18] whose abelianization is Q⊕Q and whose
commutator group is Z/p∞. Pick a compactum X so that dimQ(X) = 1 and
dimZ/p∞(X)=2. The complex L=K(G, 1) is nilpotent and XτK(H1(L), 1),
but XτL does not hold. Indeed, as π1(L) is not p̄-local and H1(L; Z/p∞) = 0,
Lemma 5.4 says H2(L; Z/p∞) 6= 0, which means H2(L)/Tor(H2(L)) is not
p-divisible. If XτL, then XτK(H2(L), 2) and dimZ(p)

(X) ≤ 2, and that, in
combination with dimQ(X) = 1, implies dimZ/p∞(X) ≤ 1, a contradiction.
See more in [2] about the First Bockstein Theorem for nilpotent groups.

However, if H1(L) is a torsion group, then the answer to Problem 1.2 is
positive.

Lemma 1.3. Suppose N is a nilpotent group. If XτK(Ab(N), 1) for

some metrizable space X and Ab(N) is a torsion group, then XτK(N, 1).

Proof. We use induction on the nilpotency class n of N . Let ΓnN = Γn.
Notice N/Γn is a nilpotent group of class n − 1 whose abelianization is an
image of Ab(N). Thus XτK(N/Γn, 1). The epimorphism

⊗n AbN → ΓnN = Γn

implies XτK(Γn, 1), so the fact that N is a central extension

1 → Γn → N → N/Γn → 1

concludes the proof.

For the sake of completeness let us show (2) is always stronger than (3).
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Proposition 1.4. Suppose X is a metrizable space and L is a connected

CW complex. If XτK(πn(L), n) for all n ≥ 1, then XτK(Hn(L), n) for all

n ≥ 1.

Proof. Let Ln be the CW complex obtained from L by killing all homo-
topy groups higher than n. Since Ln is obtained from L by attaching k-cells
for k > n+1, Hn(Ln) = Hn(L). Also, XτLn, because XτK(πi(Ln), i) holds
for all i and only finitely many homotopy groups of Ln are non-trivial (see
Theorem G of [10]). Therefore XτK(Hn(Ln), n).

Also, (1) is always stronger than (2) provided the issue of the fundamen-
tal group is avoided.

Proposition 1.5. Suppose X is a metrizable space and L is a con-

nected CW complex. If XτK(π1(L), 1) and XτL, then XτK(πn(L), n) for

all n ≥ 1.

Proof. Notice that the homotopy fiber of the covering projection L̃ → L
is K(π1(L), 1). Therefore XτL̃ and XτK(Hn(L̃), n) for all n. By Theorem

F of [10] (see also Theorem 4.2 of this paper) one has XτK(πn(L̃), n) =
K(πn(L), n) for all n ≥ 2.

Definition 1.6. X is called a Knoxville space if it is metrizable and for
any connected CW complex L the conditions XτK(πn(L), n) for all n ≥ 1
imply XτL.

Problem 1.7. Characterize Knoxville spaces.

It follows from Theorem G of [10] that any finite-dimensional X or any
X ∈ ANR is a Knoxville space. Also, it is easy to see that any countable
union of closed Knoxville subspaces is a Knoxville subspace.

2. Properties of the homotopy fiber of L → SP (L). Notice that
condition (3) of Section 1 is equivalent to XτSP (L) as SP (L) is the weak
product of K(Hn(L), n) for all n ≥ 1 according to the famous theorem of
Dold and Thom [5]. Since we are interested in deriving XτL, it makes sense
to ponder the stronger condition XτF , where F is the homotopy fiber of the
inclusion L → SP (L). That is the main idea of the whole paper and in this
section we concentrate on basic properties of F and its homotopy groups.

Proposition 2.1. Suppose L is a CW complex and F is the homotopy

fiber of the inclusion i of L into its infinite symmetric product SP (L). If L
is nilpotent , then F is nilpotent.

Proof. The homotopy sequence

· · · → πn(F )
j∗
→ πn(L)

i∗→ πn(SP (L))
∂
→ πn−1(F ) → · · ·
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of the fibration F
j
→ L

i
→ SP (L) is a sequence of π1(L)-modules [15, Propo-

sition 8bis.2]. For the action of π1(L) on πn(F ) which is described in the
proof of [15, Proposition 8bis.2] we have g · α = j∗(g) · α for α ∈ πn(F ) and
g ∈ π1(F ).

Let IF and IL be the augmentation ideals of the group rings Z[π1(F )]
and Z[π1(L)], respectively. Because L is a nilpotent, there is an integer c
such that (IL)cπn(L) = 0. Let η ∈ (IF )c and α ∈ πn(F ). Then j∗(ηα) =
j∗(η)j∗(α) = 0, because j∗(η) ∈ (IL)c. Thus there exists β ∈ πn+1(SP (L))
such that ∂β = ηα. Let g ∈ π1(F ). Then j∗(g) − 1 ∈ IL and

∂((j∗(g) − 1)β) = (j∗(g) − 1)∂β = (j∗(g) − 1)ηα = (g − 1)ηα.

The action of π1(L) on πn(SP (L)) is defined as lγ = i∗(l)γ for l ∈ π1(L)
and γ ∈ πn(SP (L)). Hence

(j∗(g) − 1)β = (i∗j∗(g) − 1)β = (1 − 1)β = 0,

therefore (g − 1)ηα = 0. This shows that (IF )c+1πn(F ) = 0, so the space F
is nilpotent.

Proposition 2.2. Suppose L is a nilpotent CW complex and F is the

homotopy fiber of the inclusion i of L into SP (L). If P is a set of primes

such that Hk(L) is a P-torsion group for all k ≤ n, where n ≥ 1 is given,
then πk(F ) is a P-torsion group for all 1 ≤ k ≤ n + 1.

Proof. Let P ′ be the complement of P in the set of all primes. Consider
the localization L(P ′) of L at P ′. Notice that L(P ′) is n-connected, so the
Hurewicz homomorphism φk : πk(L(P ′)) → Hk(L(P ′)) is an isomorphism
for k = n + 1 and an epimorphism for k = n + 2. Let us split the exact
sequence · · · → πk(F ) → πk(L) → Hk(L) → · · · into · · · → π2(F ) →
π2(L) → H2(L) → A → 0 and 1 → A → π1(F ) → B → 1, where B is the
commutator subgroup of π1(L). Localizing the first sequence at P ′ yields A
being a P-torsion group and πk(F ) being P-torsion for 2 ≤ k ≤ n+1. Since
B is P-torsion, the assertion follows.

Corollary 2.3. Suppose L is a nilpotent CW complex and F is the

homotopy fiber of the inclusion i of L into SP (L). If n > 1 is such that

Hk(L) is a torsion group for all k < n, then for any metrizable space X
the conditions XτK(Hk(L), k) for all k ≤ n imply XτK(πk(F ), k) for all

1 ≤ k ≤ n.

Proof. The case k = 1 is taken care of by Lemma 1.3. If the p-torsion of
πk(F ) is not trivial, then Proposition 2.2 implies that the p-torsion of Hm(L)
is not trivial for some m < k. Hence XτK(Z/p∞, m) and XτK(Z/p, m+1).
This implies XτK(G, k) for all G in the Bockstein basis of πk(F ), resulting
in XτK(πk(F ), k).
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3. Homotopy groups with coefficients. Given a countable Abelian
group G consider a pointed compactum Pn(G) whose integral cohomology
is concentrated in dimension n and equals G. The nth homotopy group
πn(L; G) of a pointed CW complex L is defined in [16] to be the set [Pn(G), L]
of pointed homotopy classes from Pn(G) to L. If Pn−1(G) exists (which is
always true if n > 2 or G is torsion free and n ≥ 2), then Pn(G) could
be taken as the suspension ΣPn−1(G) of Pn−1(G) with the resulting group
structure on πn(L, G).

If one puts D = P2(G) (or D = P1(G) if G is torsion-free), then
one can analyze homotopy groups of LD = Map(D, L) and realize that
πn(LD) = πn+2(L; G) (respectively, πn(LD) = πn+1(L; G)). Therefore, given
a Hurewicz fibration F → E → B, one concludes there is a long exact se-
quence · · · → πn(F ; G) → πn(E; G) → πn(G; G) → πn−1(F ; G) → · · · (see
[16] for the special case of G = Z/m) because FD → ED → BD is a Serre
fibration.

In the special case of G = Z/m one can pick the Moore space D =
M(Z/m, 1) for P2(G). In that case one has a Serre fibration (that follows from
theHomotopyExtensionTheorem) Map(S2, L) → Map(D, L) → Map(S1, L)
where S1 is the 1-skeleton of D and S2 = D/S1. The map Map(D, L) →
Map(S1, L) is simply restriction induced. Since the boundary homomor-
phism πn+1(B) → πn(F ) in that case amounts to multiplication by m from
πn+1(Map(S1, L)) = πn+2(L) to πn(Map(S2, L)) = πn+2(L), one concludes
the following (see [16] for another way of deriving an equivalent result):

Lemma 3.1. Let D = M(Z/m, 1) for some m ≥ 2. For each pointed CW

complex L and each n ≥ 0 one has a natural exact sequence

0 → πn+2(L) ⊗ Z/m → πn(LD) → πn+1(L) ∗ Z/m → 0,

where π1(L) ∗ Z/m is {x ∈ π1(L) | xm = 1}.

We are interested in homotopy groups with coefficients in Z/p∞, the di-
rect limit of Z/p → Z/p2 → · · · . Notice that one can construct P2(Z/p∞) as
the inverse limit of · · · → M(Z/pn+1, 1) → M(Z/pn, 1) → · · · → M(Z/p, 1)

which can be viewed as M(Ẑp, 1), the Moore space for the p-adic integers

Ẑp in terms of Steenrod homology. In that case Lemma 3.1 becomes

Lemma 3.2. Let p be prime. For each pointed CW complex L and each

n ≥ 0 one has a natural exact sequence

0 → πn+2(L) ⊗ Z/p∞ → πn+2(L; Z/p∞) → πn+1(L) ∗ Z/p∞ → 0,

where π1(L) ∗ Z/p∞ is {x ∈ π1(L) | xpk

= 1 for some k ≥ 1}.

As a consequence of Lemmas 3.1, 3.2, and the Dold–Thom Theorem [5]
(πn(SP (L) = Hn(L)), one can deduce that πn(SP (L); G) = Hn(L; G) for
all n and G = Z/p or G = Z/p∞.
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Proposition 3.3. Suppose L is a nilpotent CW complex whose funda-

mental group is p̄-local for some prime p. Let F be the homotopy fiber of the

inclusion i : L → SP (L). If Hk(L; Z/p) = 0 for k ≤ n, where n ≥ 1, then

πk(F ; Z/p) = 0 for 2 ≤ k ≤ n + 1 and πk(L; Z/p) = 0 for 2 ≤ k ≤ n.

Proof. Let L̃ be the universal cover of L and let π : L̃ → L be the
covering projection. Recall that every nilpotent CW complex L has the p-
completion Lp with the map L → Lp inducing isomorphisms of all homology
groups with coefficients in Z/p such that one has a natural exact sequence

0 → Ext(Z/p∞, πn(L)) → πn(Lp) → Hom(Z/p∞, πn−1(L)) → 0

for all n ≥ 1 (see [12, Theorem 3.7 on p. 416]). By Lemmas 5.2 and 5.3
one has Ext(Z/p∞, π1(L)) = Hom(Z/p∞, π1(L)) = 0, so the induced map
̂̃
Lp → L̂p is a homotopy equivalence. Therefore it induces isomorphism of
homology mod p and π induces isomorphism of homology mod p. However,
H2(L̃; Z/p) = π2(L̃; Z/p) = π2(L; Z/p) and π3(L) → H3(L̃) is an epimor-
phism resulting in π3(L; Z/p) → H3(L; Z/p) being an epimorphism. By ex-
actness of mod p groups of a fibration one gets π2(F ; Z/p) = 0. That proves
the assertion for n = 1.

If n > 1 then we apply the mod p Hurewicz Theorem of [16] to L̃

to conclude that πn+1(L̃; Z/p) → Hn+1(L̃; Z/p) is an isomorphism and

that πn+2(L̃; Z/p) → Hn+2(L̃; Z/p) is an epimorphism. Hence, πn+1(L; Z/p)
→ Hn+1(L; Z/p) is an isomorphism and πn+2(L; Z/p) → Hn+2(L; Z/p) is an
epimorphism. Thus πn+1(F ; Z/p) = 0.

Corollary 3.4. Suppose L is a nilpotent CW complex whose funda-

mental group is p̄-local for some prime p. Let F be the homotopy fiber of the

inclusion i : L → SP (L). If Hk(L; Z/p∞) = 0 for k ≤ n, where n ≥ 2, then

πk(L; Z/p∞) = πk(F ; Z/p∞) = 0 for 2 ≤ k ≤ n.

Proof. Case 1: n > 2. Notice Hk(L; Z/p) = 0 for k ≤ n − 1, resulting
in πk(F ; Z/p) = 0 for 2 ≤ k ≤ n. Hence πk(F ; Z/p∞) = 0 for 2 ≤ k ≤ n and
from an exact sequence we get πk(L, Z/p∞) = 0 for 2 ≤ k ≤ n.

Case 2: n = 2. Let L̃ be the universal cover of L and let π : L̃ → L

be the covering projection. Notice that the induced map
̂̃
Lp → L̂p is a

homotopy equivalence. Therefore it induces isomorphism of homology mod
p and π induces isomorphism of homology mod p. However, H2(L̃; Z/p∞) =

π2(L; Z/p∞) and π3(L)→H3(L̃) is an epimorphism resulting in π3(L; Z/p∞)
→ H3(L; Z/p∞) being an epimorphism. By exactness of mod p groups of a
fibration one gets π2(F ; Z/p∞) = π2(L; Z/p∞) = 0.

Proposition 3.5. Suppose L is a nilpotent CW complex , F is the ho-

motopy fiber of the inclusion i : L → SP (L) of L into its infinite symmetric
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product , and n ≥ 2. If Hk(L; Z(P)) = 0 for k ≤ n, then πk(F ; Z(P)) = 0 for

2 ≤ k ≤ n + 1 and πk(L; Z(P)) = 0 for 2 ≤ k ≤ n.

Proof. Let P ′ be the complement of P in the set of all primes. If
Hk(L; Z(P)) = 0 for k ≤ n, then H1(L) is a P ′-torsion group resulting
in π1(L) being a P ′-torsion group. Let L(P) be the P-localization of L. It is
n-connected, so by the classical Hurewicz Theorem πk(L(P)) → Hk(L(P))
is an isomorphism for k ≤ n + 1 and an epimorphism for k = n + 2.
That corresponds to πk(L; Z(P)) → Hk(L; Z(P)) being an isomorphism for
k ≤ n + 1 and an epimorphism for k = n + 2. In view of exactness of
· · · → πk(F ; Z(P)) → πk(L; Z(P)) → Hk(L; Z(P)) → · · · , the assertion fol-
lows.

4. Main results

Lemma 4.1. Suppose X is a metrizable space, G is an Abelian group,
and n ≥ 1. If dimG(X) > n, then one of the following conditions holds:

(a) dimQ(X) ≥ n + 1 and G is not a torsion group.

(b) There is a prime p such that G ⊗ Z/p∞ 6= 0 and dimQ(X) ≤ n,
dimZ/p∞(X) ≥ n.

(c) There is a prime p such that G is p-divisible, Torp(G) 6= 0, and

dimZ/p∞(X) ≥ n + 1.
(d) There is a prime p such that Torp(G) is not p-divisible and dimZ/p(X)

≥ n + 1.

Proof. Let dimG(X) = m. Suppose none of (a)–(d) holds. According
to part (b) of Theorem B of [10] one has m = dimG/Tor(G)(X) or m =
dimTor(G)(X). If dimTor(G)(X) ≥ n + 1, then, according to part (a) of The-
orem B of [10], there is a prime p such that either Tor(G) is p-divisible,
Torp(G) 6= 0, and dimTor(G)(X) = dimZ/p∞(X) (in which case (c) holds),
or Tor(G) is not p-divisible, Torp(G) 6= 0, and dimTor(G)(X) = dimZ/p(X)
(in which case (d) holds). Therefore m = dimG/Tor(G)(X) and dimTor(G)(X)
≤ n. In particular, G is not a torsion group, so dimQ(X) ≤ n as (a) fails to
hold.

Consider P = {p | G ⊗ Z/p∞ 6= 0}, the set of primes p such that
G/Tor(G) is not p-divisible. It is shown in [10] (part (f) of Theorem B) that
dimZ(P)

(X) ≥ dimG/Tor(G)(X), so dimZ(P)
(X) ≥ m. As (b) does not hold, it

follows that dimZ/p∞(X) ≤ n − 1 for all p ∈ P. From the exact sequence

0 → Z(P) → Q →
⊕
p∈P

Z/p∞ → 0

one concludes that the homotopy fiber of K(Z(P), m− 1) → K(Q, m− 1) is
K(

⊕
p∈P Z/p∞, m−2). Since m−2 ≥ n−1, XτK(

⊕
p∈P Z/p∞, m−2), which
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implies XτK(Z(P), m− 1) as XτK(Q, m− 1). Thus dimZ(P)
(X) ≤ m− 1, a

contradiction.

Theorem 4.2. Suppose L is a nilpotent CW complex and F is the homo-

topy fiber of the inclusion i of L into SP (L). If X is a metrizable space such

that XτK(Hk(L), k) for all k ≥ 1, then XτK(πk(F ), k) and XτK(πk(L), k)
for all k ≥ 2.

Proof. Suppose n ≥ 2 is the smallest k such that XτK(πk(F ), k) fails
(similar argument in case XτK(πk(L), k) fails). By Lemma 4.1 one of the
following cases holds for G = πn(F ):

(a) dimQ(X) ≥ n + 1 and G is not a torsion group.
(b) There is a prime p such that G ⊗ Z/p∞ 6= 0 and dimQ(X) ≤ n,

dimZ/p∞(X) ≥ n.
(c) There is a prime p such that G is p-divisible, Torp(G) 6= 0, and

dimZ/p∞(X) ≥ n + 1.
(d) There is a prime p such that Torp(G) is not p-divisible and dimZ/p(X)

≥ n + 1.

Case 1: dimQ(X) ≤ n − 1. Now only (b)–(d) are possible. Let p be
the prime from one of those cases. Notice Hk(L) is p̄-local for k ≤ n − 1
as otherwise dimZ/p∞(X) ≤ n − 1 and dimZ/p(X) ≤ n so none of (b)-(d)
would be valid. Another observation is Hn(L) ⊗ Z/p∞ = 0. Indeed, oth-
erwise Hn(L)/Tor(Hn(L)) is not p-divisible, in which case [10, part (d)
of Theorem B] implies dim

Ẑp
(X) ≤ n as dimHn(L)(X) ≤ n. Therefore

dimZ(p)
(X) ≤ n (see part (e) of Theorem B in [10]) and dimZ/p∞(X) ≤

max(dimQ(X), dimZ(p)
(X) − 1) ≤ n − 1, a contradiction.

π1(L) is p̄-local by Lemma 5.4 and G⊗Z/p∞ = 0 by Corollary 3.4. That
means (b) is not possible. If Hn(L) is not p-divisible, then dimZ/p(X) ≤ n
and neither (c) nor (d) would be possible. Thus Hk(L; Z/p) = 0 for k ≤ n, re-
sulting in G being p-divisible by Proposition 3.3. That means only (c) is pos-
sible. In addition, Torp(Hn(L)) = 0. Also Hn+1(L) ⊗ Z/p∞ = 0 (otherwise
dimZ(p)

(X) ≤ n+1 and dimZ/p∞(X) ≤ max(dimQ(X), dimZ(p)
(X)−1) ≤ n).

Thus Hk(L; Z/p∞) = 0 for k ≤ n+1. By Corollary 3.4, Torp(G) = 0, a con-
tradiction.

Case 2: dimQ(X) > n− 1. By Proposition 2.2 the group G is P-torsion
such that dimZ/p∞(X) ≤ n − 1 for all p ∈ P, which implies dimG(X) ≤ n,
a contradiction.

Corollary 4.3. Suppose L is a nilpotent CW complex such that πn(L)
= πn+1(L) = 0 for some n ≥ 1. If XτSP (L) for some metrizable space X,
then XτK(Hn+1(L), n).
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Proof. If n = 1, then Hn+1(L) = 0, so assume n ≥ 2. Notice that
πn(F ) = Hn+1(L), where F is the homotopy fiber of i : L → SP (L).

Lemma 4.4. Suppose L is a nilpotent CW complex and F is the homo-

topy fiber of the inclusion i of L into SP (L). If XτK(H1(L), 1) for some

metrizable space X and H1(L) is finitely generated , then XτK(π1(F ), 1).

Proof. If H1(L) is finitely generated and non-torsion, then X is at most
1-dimensional, in which case XτL for all connected CW complexes. There-
fore assume H1(L) is a torsion group and (see Proposition 2.2) there is
an exact sequence 1 → A → π1(F ) → B → 1 such that A and B are
P-torsion groups, where P = {p |Torp(H1(L)) 6= 0}. Notice H1(L) does not
contain Z/p∞ for any prime p, so XτK(A, 1) and XτK(B, 1), which implies
XτK(π1(F ), 1).

Theorem 4.5. Let X be a metrizable space such that dim(X) < ∞ or

X ∈ ANR. Suppose L is a nilpotent CW complex. If XτSP (L), then XτL
in the following cases:

(a) H1(L) is finitely generated.

(b) H1(L) is a torsion group.

Proof. (a) By Theorem 4.2 and Lemma 4.4 one concludes XτK(πn(F ), n)
for all n ≥ 1. Theorem G of [10] gives XτF , which implies XτL.

(b) By Theorem 4.2 and Lemma 1.3 one concludes XτK(πn(L), n) for
all n ≥ 1. Theorem G of [10] yields XτL.

5. Appendix

Lemma 5.1. Suppose N is a nilpotent group and p is a prime. Then

Ab(N) is p-divisible if and only if N is p-divisible.

Proof. If N is p-divisible clearly so is its abelianization. We will prove
the converse by induction on the nilpotency class n of N . Let ΓnN = Γn.
Notice N/Γn is a nilpotent group of class n − 1 whose abelianization is
p-divisible. Thus the group itself is p-divisible. The epimorphism

⊗n Ab(N) → ΓnN = Γn

implies Γn is p-divisible, so the fact that N is a central extension

1 → Γn → N → N/Γn → 1

concludes the proof.

Lemma 5.2. Suppose N is a nilpotent group and p is a prime. The fol-

lowing conditions are equivalent :

(a) Ext(Z/p∞, N) = 0,
(b) Ext(Z/p∞, N) is p-divisible,
(c) N is p-divisible.
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Proof. (a)⇒(b) is obvious. For (c)⇒(a) let N be p-divisible. Then so is
its abelianization and Proposition 3 of [3] implies Ext(Z/p∞, N) = 0.

(b)⇒(c). If N is not p-divisible, neither is its abelianization by Lem-
ma 5.1. Therefore, by Proposition 3 of [3], Ext(Zp∞ , Ab(N)) is not p-divi-
sible. Then the six-term exact sequence of Hom and Ext [1, p. 170] implies
that Ext(Z/p∞, N) is not p-divisible.

Lemma 5.3. Suppose G is a nilpotent group and p is a prime. The fol-

lowing conditions are equivalent :

(a) Hom(Z/p∞, G) = 0,
(b) Hom(Z/p∞, G) is p-divisible,
(c) Hom(Z/p∞, G) ⊗ Z/p∞ = 0,
(d) G does not contain Z/p∞.

Proof. Note that albeit Bousfield and Kan [1] defined Hom as a space,
they showed that it is also the set of the respective homomorphisms.

(a)⇒(b) and (b)⇒(c) are obvious.

(c)⇒(b). Notice the p-torsion of Hom(Z/p∞, G) is trivial. Indeed, if i :
Z/p∞ → G and ip = 1, then for any a ∈ Z/p∞ we find b ∈ Z/p∞ satisfying
bp = a. Now, i(a) = i(bp) = ip(b) = 1. If an Abelian group A has no p-torsion
and A ⊗ Z/p∞ = 0, then A is p-divisible.

(b)⇒(d). Suppose i : Z/p∞ → G is a monomorphism. Given a ∈ Z/p∞

find k ≥ 1 such that apk

= 1 and choose φ : Z/p∞ → G so that i = φpk

.

Now i(a) = φpk

(a) = (φ(a))pk

= φ(apk

) = φ(1) = 1, a contradiction.

(d)⇒(a). Given a non-trivial i : Z/p∞ → G its image is a direct sum of
copies of Z/p∞, a contradiction.

Lemma 5.4. Suppose L is a nilpotent CW complex and p is a prime. If

H1(L; Z/p∞) = H2(L; Z/p∞) = 0, then π1(L) is p̄-local.

Proof. In view of H2(L; Z/p∞) = 0, H1(L) has trivial p-torsion and
H1(L; Z/p∞) = 0 implies H1(L) is p-divisible. Hence so is π1(L) (see Lem-

ma 5.1). Consider the p-completion L̂p of L. As π1(L̂p) = Ext(Z/p∞, π1(L))

= 0 and H2(L̂p; Z/p∞) = H2(L; Z/p∞) = 0 one gets π2(L̂p) ⊗ Z/p∞ = 0 by
the Hurewicz Theorem. The exact sequence

0 → Ext(Z/p∞, π2(L)) → π2(L̂p) → Hom(Z/p∞, π1(L)) → 0

implies Hom(Z/p∞, π1(L)) ⊗ Z/p∞ = 0. By Lemma 5.3, π1(L) is p̄-local.
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