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Abstract. The paper is devoted to generalizations of the Cencelj—Dranishnikov the-
orems relating extension properties of nilpotent CW complexes to their homology groups.
Here are the main results of the paper:

THEOREM 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the

inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such
that XT7K(Hy (L), k) for allk > 1, then X7K (m,(F), k) and X7K (7 (L), k) for all k > 2.

THEOREM 0.2. Let X be a metrizable space such that dim(X) < oo or X € ANR.
Suppose L is a nilpotent CW complex. If X7SP(L), then XL in the following cases:

(a) Hi(L) is finitely generated.

(b) H1(L) is a torsion group.

1. Introduction. For basic facts on nilpotent groups see [17]. Localiza-
tion of nilpotent groups is discussed in [13].

Recall that X7L and L € AE(X) are shortcuts to the statement: L is
an absolute extensor of X (see [7]). The following geometric result, repeat-
edly used in the paper, is a consequence of Theorem 1.9 in [9]: if F is the
homotopy fiber of L — K and X7F, then X7L is equivalent to X7K.

Given a metrizable space X and a connected CW complex L consider
the following conditions:

(1) X7L.
(2) XT7K(mp(L),n) for all n > 1.
(3) XT7K(H,(L),n) for all n > 1.
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It is well-known that (1) implies (3) as proved by Dranishnikov [6] for
X compact and for arbitrary X in [11, Theorem 3.4]. The difficulty in gen-
eralizing results in cohomological dimension theory from compact spaces to
arbitrary metrizable spaces usually lies in the fact that the First Bockstein
Theorem does not hold for metric spaces.

By a Hurewicz—Serre Theorem in Extension Theory we mean any result
showing (3) implies (2). However, in practice we are really interested in
arriving at (1) (see [4]).

Here is the main problem we are interested in:

PROBLEM 1.1. Suppose X is ametrizable space such that X7 K (H, (L), n)
for all n > 1. If L is nilpotent, does X7K (m,(L),n) hold for all n > 17

Even a specialized version of 1.1 is open:

PROBLEM 1.2. Suppose L is a nilpotent CW complex. If X is a metriz-
able space such that X7K(Hy(L), k) for all k& > 1, does X7K(m1(L),1)
hold?

Notice that it is not sufficient to assume X7K(H;(L), 1) in Problem 1.2.
Namely, take the group G from [18] whose abelianization is Q®Q and whose
commutator group is Z/p™. Pick a compactum X so that dimg(X) = 1 and
dimg,/pec (X) =2. The complex L= K (G, 1) is nilpotent and X7K(Hy(L), 1),
but X 7L does not hold. Indeed, as 71 (L) is not p-local and Hy(L;Z/p™) = 0,
Lemma 5.4 says Ho(L;Z/p>°) # 0, which means Hy(L)/Tor(Hz(L)) is not
p-divisible. If X7L, then X7K(H>(L),2) and dimz , (X) < 2, and that, in
combination with dimg(X) = 1, implies dimg,,~(X) < 1, a contradiction.
See more in [2] about the First Bockstein Theorem for nilpotent groups.

However, if Hy(L) is a torsion group, then the answer to Problem 1.2 is
positive.

LEMMA 1.3. Suppose N is a nilpotent group. If XTK(Ab(N),1) for
some metrizable space X and Ab(N) is a torsion group, then XTK(N,1).

Proof. We use induction on the nilpotency class n of N. Let "N = I"".
Notice N/I'™ is a nilpotent group of class n — 1 whose abelianization is an
image of Ab(N). Thus X7K(N/I'™, 1). The epimorphism

®"AbN — "N = [
implies X7K (1™, 1), so the fact that IV is a central extension
l1-I"—>N-—>N/IT"—-1
concludes the proof. u

For the sake of completeness let us show (2) is always stronger than (3).
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PROPOSITION 1.4. Suppose X is a metrizable space and L is a connected
CW complex. If XT7K (7, (L),n) for alln > 1, then XT7K(H,(L),n) for all
n > 1.

Proof. Let L, be the CW complex obtained from L by killing all homo-
topy groups higher than n. Since L, is obtained from L by attaching k-cells
for k >n+1, H,(Ly,,) = H,(L). Also, X7L,, because X7K (m;(Ly,), ) holds
for all i and only finitely many homotopy groups of L,, are non-trivial (see
Theorem G of [10]). Therefore X7K (H,(Ly),n). n

Also, (1) is always stronger than (2) provided the issue of the fundamen-
tal group is avoided.

ProrPOSITION 1.5. Suppose X is a metrizable space and L is a con-
nected CW complex. If X7K(m1(L),1) and X7L, then X7K (m,(L),n) for
alln > 1.

Proof. Notice that the homotopy fiber of the covering projection L—L
is K(m1(L),1). Therefore X7L and X7K(H,(L),n) for all n. By Theorem
F of [10] (see also Theorem 4.2 of this paper) one has X7K (m,(L),n) =
K(mp(L),n) for alln > 2. =

DEFINITION 1.6. X is called a Knozville space if it is metrizable and for
any connected CW complex L the conditions X 7K (m,(L),n) for all n > 1
imply X7L.

PrROBLEM 1.7. Characterize Knoxville spaces.

It follows from Theorem G of [10] that any finite-dimensional X or any
X € ANR is a Knoxville space. Also, it is easy to see that any countable
union of closed Knoxville subspaces is a Knoxville subspace.

2. Properties of the homotopy fiber of L — SP(L). Notice that
condition (3) of Section 1 is equivalent to X7SP(L) as SP(L) is the weak
product of K(Hy,(L),n) for all n > 1 according to the famous theorem of
Dold and Thom [5]. Since we are interested in deriving X 7L, it makes sense
to ponder the stronger condition X 7F, where F' is the homotopy fiber of the
inclusion L — SP(L). That is the main idea of the whole paper and in this
section we concentrate on basic properties of F' and its homotopy groups.

PROPOSITION 2.1. Suppose L is a CW complex and F is the homotopy
fiber of the inclusion i of L into its infinite symmetric product SP(L). If L
18 nilpotent, then F' is nilpotent.

Proof. The homotopy sequence

= m(F) 5 (L) 5 w0 (SP(L)) 2 ey (F) — -+
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of the fibration F - L = SP(L) is a sequence of 71 (L)-modules [15, Propo-
sition 8P.2]. For the action of 71(L) on m,(F) which is described in the
proof of [15, Proposition 8"%.2] we have g - a = j.(g) - a for a € 7,(F) and
g c 7T1(F).

Let Ir and Iy, be the augmentation ideals of the group rings Z[m(F)]
and Z[m(L)], respectively. Because L is a nilpotent, there is an integer ¢
such that (Ip)¢m,(L) = 0. Let n € (Ip)¢ and a € 7, (F). Then j.(na) =
J«(n)j«(a) = 0, because j«(n) € (I1)°. Thus there exists § € mp+1(SP(L))
such that 06 = na. Let g € m1(F). Then j.(g) — 1 € I, and

A((J«(9) — 1)B) = (Jx(g9) = 1)IB = (ji(g9) — Lna = (g — 1)nov.
The action of 71(L) on 7, (SP(L)) is defined as Iy = i,(l)y for | € m (L)
and v € m,(SP(L)). Hence

(]*(g) - 1)/8 - (2*]*<g) - 1)ﬁ - (1 - 1)ﬁ =0,
therefore (g — 1)na = 0. This shows that (Iz)°*'7,(F) = 0, so the space F
is nilpotent. =

PROPOSITION 2.2. Suppose L is a nilpotent CW complex and F is the
homotopy fiber of the inclusion i of L into SP(L). If P is a set of primes
such that Hy(L) is a P-torsion group for all k < n, where n > 1 is given,
then m(F') is a P-torsion group for all 1 <k <n+ 1.

Proof. Let P’ be the complement of P in the set of all primes. Consider
the localization L(pry of L at P'. Notice that Lp: is n-connected, so the
Hurewicz homomorphism ¢y, : mx(L(py) — Hyp(L¢pry) is an isomorphism
for kK = n 4+ 1 and an epimorphism for £ = n + 2. Let us split the exact
sequence -+ — mi(F) — mp(L) — Hi(L) — --- into --- — mo(F) —
mo(L) — Hy(L) = A —0and 1 - A — m1(F) — B — 1, where B is the
commutator subgroup of 71(L). Localizing the first sequence at P’ yields A
being a P-torsion group and 7 (F') being P-torsion for 2 < k < n+ 1. Since
B is P-torsion, the assertion follows. m

COROLLARY 2.3. Suppose L is a nilpotent CW complex and F is the
homotopy fiber of the inclusion i of L into SP(L). If n > 1 is such that
Hy(L) is a torsion group for all k < n, then for any metrizable space X
the conditions XTK(Hy(L),k) for all k < n imply X7K (mp(F), k) for all
1<k <n.

Proof. The case k =1 is taken care of by Lemma 1.3. If the p-torsion of
7 (F') is not trivial, then Proposition 2.2 implies that the p-torsion of H,, (L)
is not trivial for some m < k. Hence X7K(Z/p>,m) and X7K(Z/p, m+1).
This implies X7K (G, k) for all G in the Bockstein basis of 7 (F), resulting
in X7K(mi(F),k). m
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3. Homotopy groups with coefficients. Given a countable Abelian
group G consider a pointed compactum P, (G) whose integral cohomology
is concentrated in dimension n and equals G. The nth homotopy group
7n(L; G) of a pointed CW complex L is defined in [16] to be the set [P, (G), L]
of pointed homotopy classes from P, (G) to L. If P,_1(G) exists (which is
always true if n > 2 or G is torsion free and n > 2), then P,(G) could
be taken as the suspension X' P,_1(G) of P,_1(G) with the resulting group
structure on m, (L, G).

If one puts D = P»(G) (or D = Pi(G) if G is torsion-free), then
one can analyze homotopy groups of L” = Map(D, L) and realize that
70 (LP) = mpio(L; G) (vespectively, 7, (LP) = mp41(L; G)). Therefore, given
a Hurewicz fibration FF — E — B, one concludes there is a long exact se-
quence - -+ — T (F;G) — 7 (E; G) — m(G;G) — mp_1(F;G) — -+ (see
[16] for the special case of G = Z/m) because FP — EP — BP is a Serre
fibration.

In the special case of G = Z/m one can pick the Moore space D =
M(Z/m, 1) for P»(G). In that case one has a Serre fibration (that follows from
the Homotopy Extension Theorem) Map(S?, L) — Map(D, L) — Map(S*, L)
where S! is the 1-skeleton of D and S? = D/S'. The map Map(D, L) —
Map(S?!, L) is simply restriction induced. Since the boundary homomor-
phism 7,41(B) — m,(F) in that case amounts to multiplication by m from
Tne1(Map(St, L)) = mua2(L) to m,(Map(S?, L)) = mn12(L), one concludes
the following (see [16] for another way of deriving an equivalent result):

LEMMA 3.1. Let D = M(Z/m, 1) for some m > 2. For each pointed CW
complex L and each n > 0 one has a natural eract sequence
0 — Tpio(L) @ Z/m — 7, (L) = 71 (L) % Z/m — 0,
where w1 (L) * Z/m is {z € m (L) | 2™ = 1}.
We are interested in homotopy groups with coefficients in Z/p*, the di-

rect limit of Z/p — Z/p?> — - --. Notice that one can construct Py(Z/p™) as
the inverse limit of --- — M(Z/p"t',1) — M(Z/p",1) — --- — M(Z/p,1)
which can be viewed as M (Ep, 1), the Moore space for the p-adic integers
Zp in terms of Steenrod homology. In that case Lemma 3.1 becomes

LEMMA 3.2. Let p be prime. For each pointed CW complex L and each
n > 0 one has a natural exact sequence

0 = Tnt2(L) @ Z/p™ — Tnya(L; Z/p%) — mnga (L) + Z/p™ — 0,
where m (L) % Z/p™ is {x € m (L) | 2*" =1 for some k > 1}.

As a consequence of Lemmas 3.1, 3.2, and the Dold-Thom Theorem [5]
(m(SP(L) = Hy(L)), one can deduce that m,(SP(L);G) = H,(L; G) for
allnand G=Z/p or G =7Z/p™.



118 M. Cencelj et al.

PROPOSITION 3.3. Suppose L is a nilpotent CW complex whose funda-
mental group is p-local for some prime p. Let F' be the homotopy fiber of the
inclusion i : L — SP(L). If H,(L;Z/p) = 0 for k < n, where n > 1, then
Te(F;Z)p) =0 for2 <k <n+1 and m(L; Z/p) =0 for 2 < k <n.

Proof. Let L be the universal cover of L and let 7 : L — L be the
covering projection. Recall that every nilpotent CW complex L has the p-
completion L, with the map L — L, inducing isomorphisms of all homology
groups with coefficients in Z/p such that one has a natural exact sequence

0 — Ext(Z/p>, 7 (L)) — mp(Lp) — Hom(Z/p™, mp—1(L)) — 0

for all n > 1 (see [12, Theorem 3.7 on p. 416]). By Lemmas 5.2 and 5.3
one has Ext(Z/p>°,m1 (L)) = Hom(Z/p>,71(L)) = 0, so the induced map

L, — Ep is a homotopy equivalence. Therefore it induces isomorphism of
homology mod p and 7 induces isomorphism of homology mod p. However,
Hy(L;Z/p) = mo(L;Z/p) = ma(L;Z/p) and m3(L) — Hs(L) is an epimor-
phism resulting in 73(L;Z/p) — H3(L;Z/p) being an epimorphism. By ex-
actness of mod p groups of a fibration one gets mo(F';Z/p) = 0. That proves
the assertion for n = 1.

If n > 1 then we apply the mod p Hurewicz Theorem of [16] to L
to conclude that mny1(L;Z/p) — Hpy1(L;Z/p) is an isomorphism and
that 7rn+2(z; Z/p) — o (L Z/p) is an epimorphism. Hence, m,4+1(L;Z/p)
— H,11(L;Z/p) is an isomorphism and 7,42(L; Z/p) — Hyt2(L;Z/p) is an
epimorphism. Thus 7, 11(F;Z/p) =0.

COROLLARY 3.4. Suppose L is a nilpotent CW complexr whose funda-
mental group is p-local for some prime p. Let F' be the homotopy fiber of the
inclusion i : L — SP(L). If Hi(L; Z/p™°) = 0 for k < n, where n > 2, then
(L Z)p>*°) = mp(F;Z/p™) =0 for 2 < k <n.

Proof. CASE 1: n > 2. Notice Hy(L;Z/p) = 0 for k < n — 1, resulting
in m,(F;Z/p) =0 for 2 < k < n. Hence m,(F;Z/p>*) =0 for 2 < k <n and
from an exact sequence we get 7 (L, Z/p>°) =0 for 2 < k < n.

CASE 2: n = 2. Let L be the universal cover of L and let m : L — L
be the covering projection. Notice that the induced map Ep — Ep is a
homotopy equivalence. Therefore it induces isomorphism of homology mod
p and 7 induces isomorphism of homology mod p. However, Ho(L;Z/p>) =
m2(L; Z,/p™) and 73(L) — H3(L) is an epimorphism resulting in m3(L; Z/p™)
— Hs3(L;Z/p™) being an epimorphism. By exactness of mod p groups of a
fibration one gets mo(F;Z/p>*°) = ma(L; Z/p>°) = 0. m

PROPOSITION 3.5. Suppose L is a nilpotent CW complex, F is the ho-
motopy fiber of the inclusion i : L — SP(L) of L into its infinite symmetric
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product, and n > 2. If Hy(L; Z¢p)) = 0 for k < n, then mx(F;Zpy) = 0 for
2<k<n+1 andﬂk(L;Z(p)) =0 for2<k<n.

Proof. Let P’ be the complement of P in the set of all primes. If
Hy(L;Z¢py) = 0 for k < n, then Hi(L) is a P'-torsion group resulting
in 71 (L) being a P’-torsion group. Let Lp) be the P-localization of L. It is
n-connected, so by the classical Hurewicz Theorem 74 (L(p)) — Hg(L(p))
is an isomorphism for ¥ < n + 1 and an epimorphism for £ = n + 2.
That corresponds to 7 (L; Z(p)) — Hy(L;Z(p)) being an isomorphism for
k < n+ 1 and an epimorphism for k = n + 2. In view of exactness of

- — m (F; Zepy) — me(L; Zpy) — Hi(L; Zpy) — -, the assertion fol-
lows. =

4. Main results

LEMMA 4.1. Suppose X is a metrizable space, G is an Abelian group,
and n > 1. If dimg(X) > n, then one of the following conditions holds:

(a) dimg(X) >n+1 and G is not a torsion group.

(b) There is a prime p such that G ® Z/p™ # 0 and dimg(X) < n
dimg, /e (X) > n.

(c) There is a prime p such that G is p-divisible, Tor,(G) # 0, and
dimg,/pee (X) > n + 1.

(d) There is a prime p such that Tor,(G) is not p-divisible and dimgz,,(X)
>n+1.

Proof. Let dimg(X) = m. Suppose none of (a)—(d) holds. According
to part (b) of Theorem B of [10] one has m = dimg ror@)(X) or m =
dimroy () (X)- If dimpypey(X) > n + 1, then, according to part (a) of The-
orem B of [10], there is a prime p such that either Tor(G) is p-divisible,
Tory(G) # 0, and dimpy ) (X) = dimg/p~(X) (in which case (c) holds),
or Tor(G) is not p-divisible, Tor,(G) # 0, and dim, ) (X) = dimg,,(X)
(in which case (d) holds). Therefore m = dimg,o(q)(X) and dimge(g) (X)
< n. In particular, G is not a torsion group, so dimg(X) < n as (a) fails to
hold.

Consider P = {p | G ® Z/p>® # 0}, the set of primes p such that
G/Tor(QG) is not p-divisible. It is shown in [10] (part (f) of Theorem B) that
dimg, ,, (X) > dimgTor(c)(X), so dimz, (X) > m. As (b) does not hold, it
follows that dimg pe(X) < n —1 for all p € P. From the exact sequence

0—Zpy—Q— @ Z/p>—0
peP
one concludes that the homotopy fiber of K(Zpy,m —1) — K(Q,m —1) is

K(BD,ep Z/p™,m=2). Sincem—2 > n—1, X7 K(D,ecp Z/p>, m—2), which
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implies X7K (Zp), m —1) as X7K(Q, m —1). Thus dimz,, (X) <m—1, a
contradiction. m

THEOREM 4.2. Suppose L is a nilpotent CW complex and F is the homo-
topy fiber of the inclusion i of L into SP(L). If X is a metrizable space such
that XTK (Hy (L), k) for allk > 1, then XT7K (m(F), k) and XTK (7 (L), k)
for all k > 2.

Proof. Suppose n > 2 is the smallest k such that X 7K (7 (F), k) fails
(similar argument in case X 7K (m(L), k) fails). By Lemma 4.1 one of the
following cases holds for G = m,(F):

(a) dimg(X) >n+1 and G is not a torsion group.

(b) There is a prime p such that G ® Z/p> # 0 and dimg(X) < n,
dimg /00 (X) > n.

(c) There is a prime p such that G is p-divisible, Tor,(G) # 0, and
dimg, /e (X) > n + 1.

(d) There is a prime p such that Tor,(G) is not p-divisible and dimg,,,(X)
>n+ 1.

Casi 1: dimg(X) < n — 1. Now only (b)-(d) are possible. Let p be
the prime from one of those cases. Notice Hy(L) is p-local for k < n —1
as otherwise dimgp(X) < n — 1 and dimg/,(X) < n so none of (b)-(d)
would be valid. Another observation is H, (L) ® Z/p> = 0. Indeed, oth-
erwise Hy(L)/Tor(Hy(L)) is not p-divisible, in which case [10, part (d)
of Theorem B| implies dimi,, (X) < n as dimg,()(X) < n. Therefore
dimz , (X) < n (see part (e) of Theorem B in [10]) and dimz,~(X) <
max(dimg(X), dimg,, (X) — 1) <n — 1, a contradiction.

m1(L) is p-local by Lemma 5.4 and G®Z/p> = 0 by Corollary 3.4. That
means (b) is not possible. If H,,(L) is not p-divisible, then dimgz,,(X) < n
and neither (c) nor (d) would be possible. Thus Hy(L;Z/p) = 0 for k < n, re-
sulting in G being p-divisible by Proposition 3.3. That means only (c) is pos-
sible. In addition, Tor,(H, (L)) = 0. Also Hy+1(L) ® Z/p> = 0 (otherwise
dimg, , (X) < n+1 and dimgy (X) < max(dimg(X), dimz, (X)—1) < n).
Thus Hy(L; Z/p>) = 0 for k < n+ 1. By Corollary 3.4, Tor,(G) = 0, a con-
tradiction.

CASE 2: dimg(X) > n—1. By Proposition 2.2 the group G is P-torsion
such that dimg/p~(X) < n —1 for all p € P, which implies dimg(X) < n,
a contradiction. m

COROLLARY 4.3. Suppose L is a nilpotent CW complex such that m, (L)
= Tpt1(L) = 0 for some n > 1. If XT7SP(L) for some metrizable space X,
then XTK(Hp+1(L),n).
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Proof. If n = 1, then H,41(L) = 0, so assume n > 2. Notice that
Tn(F) = Hp4+1(L), where F' is the homotopy fiber of i : L — SP(L). m

LEMMA 4.4. Suppose L is a nilpotent CW complex and F is the homo-
topy fiber of the inclusion i of L into SP(L). If XTK(H(L),1) for some
metrizable space X and Hy(L) is finitely generated, then X7TK (w1 (F),1).

Proof. If Hi(L) is finitely generated and non-torsion, then X is at most
1-dimensional, in which case X 7L for all connected CW complexes. There-
fore assume H;(L) is a torsion group and (see Proposition 2.2) there is
an exact sequence 1 — A — m(F) — B — 1 such that A and B are
P-torsion groups, where P = {p| Tor,(H;(L)) # 0}. Notice H;(L) does not
contain Z/p™ for any prime p, so X7K(A, 1) and X7K (B, 1), which implies
XT7K(mi(F),1). =

THEOREM 4.5. Let X be a metrizable space such that dim(X) < oo or
X € ANR. Suppose L is a nilpotent CW complex. If XTSP(L), then XTL
in the following cases:

(a) Hy(L) is finitely generated.

(b) Hi(L) is a torsion group.

Proof. (a) By Theorem 4.2 and Lemma 4.4 one concludes X 7K (m,(F'),n)
for all n > 1. Theorem G of [10] gives X7F, which implies X7L.

(b) By Theorem 4.2 and Lemma 1.3 one concludes X7K (m,(L),n) for
all n > 1. Theorem G of [10] yields X7L. =

5. Appendix
LEMMA 5.1. Suppose N is a nilpotent group and p is a prime. Then
Ab(N) is p-divisible if and only if N is p-divisible.
Proof. If N is p-divisible clearly so is its abelianization. We will prove
the converse by induction on the nilpotency class n of N. Let "N = I"™.
Notice N/I'™ is a nilpotent group of class n — 1 whose abelianization is
p-divisible. Thus the group itself is p-divisible. The epimorphism
QR"Ab(N) = I""N =1"

implies I'™ is p-divisible, so the fact that N is a central extension
l1-I"—-N->N/IT"—1

concludes the proof. =

LEMMA 5.2. Suppose N is a nilpotent group and p is a prime. The fol-
lowing conditions are equivalent:

(a) Ext(Z/p>,N) =0,

(b) Ext(Z/p*>°, N) is p-divisible,

(¢) N is p-divisible.
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Proof. (a)=(b) is obvious. For (¢)=(a) let N be p-divisible. Then so is
its abelianization and Proposition 3 of [3] implies Ext(Z/p>, N) = 0.

(b)=(c). If N is not p-divisible, neither is its abelianization by Lem-
ma 5.1. Therefore, by Proposition 3 of [3], Ext(Zye~, Ab(NN)) is not p-divi-
sible. Then the six-term exact sequence of Hom and Ext [1, p. 170] implies
that Ext(Z/p>, N) is not p-divisible. =

LEMMA 5.3. Suppose G is a nilpotent group and p is a prime. The fol-
lowing conditions are equivalent:

(a) Hom(Z/p™,G) =0,

(b) Hom(Z/p*>, G) is p-divisible,

(¢) Hom(Z/p>,G) @ Z/p> =0,

(d) G does not contain Z/p.

Proof. Note that albeit Bousfield and Kan [1] defined Hom as a space,
they showed that it is also the set of the respective homomorphisms.

(a)=-(b) and (b)=-(c) are obvious.

(¢c)=(b). Notice the p-torsion of Hom(Z/p>,G) is trivial. Indeed, if i :
Z/p>® — G and ¥ = 1, then for any a € Z/p> we find b € Z/p> satisfying
b? = a. Now, i(a) = i(bP) = iP(b) = 1. If an Abelian group A has no p-torsion
and A® Z/p> = 0, then A is p-divisible.

(b)=(d). Suppose i : Z/p> — G is a monomorphism. Given a € Z/p™>
find £ > 1 such that a?" = 1 and choose ¢ Z/p>® — G so that i = gﬁpk.
Now i(a) = o7 (a) = ((;S(a))plC = qﬁ(apk) = ¢(1) = 1, a contradiction.

(d)=(a). Given a non-trivial i : Z/p>* — G its image is a direct sum of
copies of Z/p>°, a contradiction. =

LEMMA 5.4. Suppose L is a nilpotent CW complex and p is a prime. If
Hy(L; Z/p™) = Ha(L; Z/p>) = 0, then m1(L) is p-local.

Proof. In view of Ho(L;Z/p>) = 0, H1(L) has trivial p-torsion and
Hy(L;Z/p>™) = 0 implies H;(L) is p-divisible. Hence so is m1(L) (see Lem-
ma 5.1). Consider the p-completion Ep of L. As m; (Ep) = Ext(Z/p>,m (L))
=0 and HQ(EP;Z/])OO) = Hy(L;Z/p>) = 0 one gets WQ(EP) ® Z/p™ = 0 by
the Hurewicz Theorem. The exact sequence

~

0 — Ext(Z/p™>, (L)) — m2(Ly) — Hom(Z/p™, m (L)) — 0
implies Hom(Z/p>,71(L)) ® Z/p> = 0. By Lemma 5.3, 71 (L) is p-local. =
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