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Dimensions of the Julia sets of rational maps

with the backward contraction property

by

Huaibin Li and Weixiao Shen (Hefei)

Abstract. Consider a rational map f on the Riemann sphere of degree at least 2
which has no parabolic periodic points. Assuming that f has Rivera-Letelier’s backward
contraction property with an arbitrarily large constant, we show that the upper box
dimension of the Julia set J(f) is equal to its hyperbolic dimension, by investigating
the properties of conformal measures on the Julia set.

1. Introduction. Let f : C → C be a rational map of degree d ≥ 2 on
the Riemann sphere. We are interested in the fractal properties of the Julia
set J(f). It is well known that in the case that f is hyperbolic, all possible
dimensions coincide. In [4], this result was generalized to all rational maps
which satisfy a summability condition. See [11] for more historical remarks
and advances in this direction.

The summability condition and the stronger Collet–Eckmann condition
can be considered as non-uniform hyperbolicity conditions. As shown by
J. Rivera-Letelier [9], they imply a backward contraction condition (see the
definition below) which was first introduced therein.

In the following, all the distances, diameters and norms of derivatives
are measured using the spherical metric and B(z, r) denotes a ball of ra-
dius r centered at z. Let Crit(f) denote the set of critical points of f and
let

Crit′(f) = Crit(f) ∩ J(f).

For every c ∈ Crit(f) and δ > 0 we denote by B̃(c, δ) the connected compo-
nent of f−1(B(f(c), δ)) that contains c.
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Definition 1. Given a constant r > 1, we say that f has the backward

contraction property with constant r (f ∈ BC(r) for short) if there exists
δ0 > 0 such that for every c ∈ Crit′(f), every 0 < δ ≤ δ0, every integer

n ≥ 1 and every component W of f−n(B̃(c, rδ)), we have

dist(W, CV(f)) ≤ δ ⇒ diam(W ) < δ,

where CV(f) = f(Crit(f)). If f ∈ BC(r) for every r > 1, we will say that
f ∈ BC(∞).

We call a compact forward invariant subset X of C hyperbolic if there
exist C > 0 and λ > 1 such that for every n ≥ 1 and every z ∈ X,

|Dfn(z)| ≥ Cλn.

Clearly, a hyperbolic set is contained in the Julia set.
For a compact set X ⊂ C, let HD(X) denote its Hausdorff dimension.

The hyperbolic dimension HDhyp(f) of f is the supremum of the Hausdorff
dimensions of hyperbolic subsets of J(f), i.e.

HDhyp(f) = sup{HD(X) : X is a hyperbolic subset of J(f)}.
Clearly, HDhyp(f) ≤ HD(J(f)).

The main goal of this paper is to prove the following theorem.

Main Theorem. Let f : C → C be a rational map of degree at least 2
without parabolic periodic points. If f ∈ BC(∞), then the upper box dimen-

sion BD(J(f)) of the Julia set is equal to the hyperbolic dimension of f :

BD(J(f)) = HD(J(f)) = HDhyp(f).

For the definition of the upper and lower box dimensions and the Haus-
dorff dimension, see [3]. Let us mention the following well-known inequality:
HD(X) ≤ BD(X) ≤ BD(X).

The proof of the Main Theorem is based on analyzing the regularity of
conformal measures. Recall that a probability measure µ on J(f) is said
to be t-conformal for f if for every Borel set A ⊂ J(f) such that f |A is
injective, we have

µ(f(A)) =
\
A

|f ′|t dµ.

The number t is called the exponent of the conformal measure. The minimum

exponent, denoted by δ∗(f), is the infimum of the exponents of conformal
measures on the Julia set J(f):

δ∗(f) = inf{t : there is a t-conformal measure on J(f)}.
Conformal measures were introduced in holomorphic dynamics by Sul-

livan [10], who proved the existence of at least one such measure on J(f).
Denker, Urbański and Przytycki (see [2, 8]) proved that for any rational map
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f of degree at least 2, the hyperbolic dimension is equal to the minimum
exponent, i.e.

δ∗(f) = HDhyp(f) ≤ HD(J(f)).

The crucial step in obtaining the Main Theorem is to prove the following
theorem.

Theorem 1. Let f be a rational map of degree d ≥ 2 which satisfies

BC(∞). Assume that

(∗) any forward invariant compact subset of J(f) containing no critical

points is hyperbolic.

Let µ be a t-conformal measure on J(f). Then for any α > 0, there exists

ε0 > 0 such that for any ε ≤ ε0 and any z ∈ J(f), we have

µ(B(z, ε))

εt
≥ εα.

It is not clear if the condition (∗) holds for all rational maps without
parabolic periodic points and satisfying the BC(∞) condition. Nevertheless,
as Proposition 8.1 in [9] shows, it holds if J(f) 6= C. In the remaining case,
the main theorem reduces to the statement that HDhyp(f) = 2.

Remark 1. Assume furthermore that J(f) 6= C. Then by Theorem B of
[9], J(f) has zero area. By Corollary 8.3 of [9], f has neither Siegel disks nor
Hermann rings. So by Fact 8.1 and Lemma 8.2 of [4], BD(J(f)) = δcr(f),
where δcr(f) is the Poincaré exponent. Therefore, in this case, we obtain the
following equalities:

BD(J(f)) = BD(J(f)) = HD(J(f)) = HDhyp(f) = δ∗(f) = δcr(f).

2. Background

2.1. Koebe distortion. We shall use the following version of the Koebe
distortion theorem that appeared in [7].

Koebe Principle. There exists r(f) > 0, depending on f , and for each

ε ∈ (0, 1) there exists a constant K(ε) > 1 such that the following property

holds. Let x ∈ J(f), n ≥ 0 and r ∈ (0, r(f)). Suppose that fn : W →
B(x, r) is a conformal map. Then for every z1, z2 ∈ W with fn(z1), f

n(z2) ∈
B(x, εr), we have

|(fn)′(z1)|
|(fn)′(z2)|

≤ K(ε).

Moreover , K(ε) → 1 as ε → 0.

2.2. Backward contracting rational maps. We collect a few results about
rational maps satisfying the backward contraction property. These results
were proved in [9].
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Lemma 1 ([9, Theorem B]). Let f be a rational map of degree at least 2.
Then there is a constant r > 1, only depending on the degree of f, such that

if f satisfies BC(r), then the following properties hold :

1. If J(f) 6= C, then J(f) has zero Lebesgue measure.

2. If J(f) = C, then there is a set of full Lebesgue measure of points in

C whose forward orbit accumulates on a critical point of f.

An open set V is called nice if fn(∂V ) ∩ V = ∅ for all n ≥ 0. A puzzle

neighborhood V of Crit′(f) is a nice open set V =
⋃

c∈Crit′(f) Vc, where Vc’s
are pairwise disjoint Jordan disks.

Lemma 2 ([9, Lemma 6.2]). Let f : C → C be a rational map of degree

two or more such that f ∈ BC(∞). Then there exists ε0 > 0 such that for

every ε ∈ (0, ε0], there exists a puzzle neighborhood V =
⋃

c∈Crit′(f) Vc of

Crit′(f) with

B̃(c, ε) ⊂ Vc ⊂ B̃(c, 2ε).

Lemma 3 ([9, Proposition 8.1]). Let f be a rational map of degree two

or more such that f ∈ BC(∞) and the set

{z ∈ C : ω(z) ∩ Crit′(f) = ∅}
has positive Lebesgue measure. If K ⊂ J(f) is a compact and forward invari-

ant set which contains neither critical points nor parabolic periodic points,
then K is a hyperbolic set.

3. Some preparation. In what follows, let f : C → C be a rational
map of degree d ≥ 2 without parabolic points such that f ∈ BC(∞). Let
ℓmax be the maximum of the orders of the critical points.

Given a nice set V, we will say a connected set U is a critical pull back

of V if there exists n ≥ 1 such that U is a connected component of f−n(V )
and U ∩ Crit(f) 6= ∅.

For a nice set V, we define

D(V ) = {z ∈ C : ∃k ≥ 0 such that fk(z) ∈ V }.
Each connected component of D(V ) is called a landing domain of V ; for any
z ∈ D(V ), the smallest integer k ≥ 0 with fk(z) ∈ V is called the landing

time of z into V.

Proposition 2. For any β ∈ (0, 1/ℓmax), there exists C(β) > 0 such

that for every c ∈ Crit′(f), n ∈ N and ε sufficiently small , if W is a com-

ponent of f−n(B̃(c, ε)), then

diam(W ) ≤ C(β)εβ.
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Proof. Fix a large number r > 1. By Lemma 2, for each k ≥ 0, there
exists a puzzle neighborhood Ṽk of Crit′(f) such that

B̃(c, ε0/rk) ⊂ Ṽk(c) ⊂ B̃(c, 2ε0/rk),

where ε0 > 0 is a small number. By choosing ε0 smaller if necessary, we
may assume that any critical pull back of Ṽk−1 is contained in Ṽk, since f
satisfies BC(2r). Moreover, we can find a periodic orbit X with at least two
points outside V0. Clearly, D(V0) ∩ X = ∅.

It suffices to prove that for any β ∈ (0, 1/ℓmax) there exists C > 0 such

that for any landing domain U of some Ṽn, we have

diam(U) ≤ Cr−nβ.

Fix z ∈ D(Ṽn). For each k = 0, 1, . . . , n, let sk be the landing time of

z into Ṽk and let Uk be the landing domain of Ṽk which contains z. Then
Uk ⊂ Uk−1. Let U ′

k−1 be the component of (f sk)−1(Ṽk−1) containing z. Then

Uk ⊂ U ′
k−1 ⊂ Uk−1.

Claim. f sk : U ′
k−1 → Ṽk−1 is conformal.

Indeed, otherwise there exists 0 ≤ s < sk such that W = f s(U ′
k−1)

contains a critical point c′. But as we noted above, this would imply that
W ⊂ Ṽk, which contradicts the fact that sk is the landing time of z into Ṽk.

Thus,

mod(Uk−1 \ Uk) ≥ mod(U ′
k−1 \ Uk) ≥ inf

c∈Crit′(f)
mod(Ṽk−1(c) \ Ṽk(c)).

For any r ≥ 4, there exists L(r) > 1 such that for every c ∈ Crit′(f), we
have

mod(Ṽk−1(c) \ Ṽk(c)) ≥
1

L(r)ℓmax
log r.

Moreover, L(r) → 1 as r → ∞.

Hence, by the Grötzsch inequality (see for example [5, Corollary B.5])
we have

mod(U0 \ Un) ≥
n∑

k=1

mod(Uk−1 \ Uk) ≥
n∑

k=1

inf
c

mod(Ṽk−1(c) \ Ṽk(c))

≥ 1

L(r)ℓmax
n log r.

Since U0 ∩ X = ∅, the diameter of C \ U0 is bounded away from zero. It
follows that diam(Un) ≤ Cr−n/L(r)ℓmax, where C is a constant. The proof is
complete.
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Lemma 4. If the set {z ∈ C : ω(z)∩Crit′(f) = ∅} has positive Lebesgue

measure, then for any δ > 0 there exists η > 0 such that if W is a connected

set intersecting the Julia set , and diam(fn(W )) < η for some n ≥ 0, then

diam(W ) < δ.

Proof. By Proposition 2, there exists a neighborhood V0 of Crit′(f) such
that any pull back of V0 has diameter smaller than any given number δ > 0.
Let V ⋐ V0 be another neighborhood of Crit′(f).

Define

K(V ) = {z ∈ J(f) : fm(z) /∈ V, m = 0, 1, 2, . . .}.
By Lemma 3, K(V ) is a hyperbolic set of f . So there exists m0 such that
for any z ∈ K(V ) we have

(1) |(fm0)′(z)| > 2.

In particular, for any z ∈ K(V ), fm0 is univalent in a neighborhood of z.
By continuity, there exists η0 ∈ (0, diam(C)) such that for each z0 ∈ K(V ),
fm0 |B(z0, 3η0) is univalent and the above inequality holds for all z ∈
B(z0, 3η0). Let

U = {z ∈ C : d(z, K(V )) < η0/2}.
Then if A is a connected subset of C which intersects U , then

(2) diam(fm0(A)) ≥ min(2 diam(A), η0).

To see this, take z0 ∈ U with B(z0, η0/2) ∩ A 6= ∅. If A ⊂ B(z0, η0), then
diam(fm0(A)) ≥ 2 diam(A), and otherwise diam(fm0(A)) ≥ η0.

Claim. There exists N such that for every z ∈ J(f) \ U, there exists

n(z) ≤ N such that fn(z)(z) ∈ V.

Indeed, {f−j(V )}∞j=0 is an open covering of the compact set J(f) \U , so
there exists N such that

N⋃

j=0

f−j(V ) ⊃ J(f) \ U.

The claim is proved.

Now let z ∈ J(f) and W ∋ z be a connected set with diam(fn(W )) < η0.

Case 1: fk(W ) ⊂ U for all k = 0, 1, . . . , n − 1. Write n = qm0 + r,
0 ≤ r < m0. By (2), we obtain

diam(f r(W )) ≤ diam(fn(W ))/2q.

It follows that diam(W ) < δ provided that diam(fn(W )) is small enough.

Case 2: There exists a largest k ≤ n − 1 such that fk(W ) 6⊂ U . As
in Case 1, diam(fk+1(W )) is small, hence diam(fk(W )) is small. By the
claim above, there exists s ≤ N such that fk+s(W ) ∩ V 6= ∅. Provided that
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diam(fn(W )) is small enough, diam(fk+s(W )) < d(∂V, ∂V0), which implies
that fk+s(W ) ⊂ V0, hence diam(W ) < δ.

Given an open set Ω ⊂ C and z ∈ Ω, let

IR(Ω, z) = inf
w∈∂Ω

d(z, w) and OR(Ω, z) = sup
w∈∂Ω

d(z, w).

Proposition 3. Let f be a rational map of degree d ≥ 2. For any η ∈
(0, diam(C)/2) and ε ∈ (0, η) and for any z ∈ J(f), there exist n0 ∈ N∪{0}
and η′ such that :

• Cη ≤ η′ ≤ η, where C = C(f) is a constant ;
• letting Wn0

be the pull-back of B(fn0(z), η′) under fn0 to z, we have

IR(Wn0
, z) = ε.

Proof. We consider the pull-back Ŵn of the disk B(fn(z), η) along orb(z)
to z. Then

IR(Ŵn, z) → 0 as n → ∞,

for otherwise there would be a ball B centered at z such that diam(fn(B))
≤ 2η, which would imply that z ∈ B ⊂ C \ J(f).

Thus there exists a positive n0 ∈ N such that

IR(Ŵn0
, z) ≥ ε but IR(Ŵn0+1, z) < ε.

Now let W ′ be the component of f−1(B(fn0+1(z), η)) containing fn0(z).
Then W ′ 6⊃ B(fn0(z), η). It follows that η := IR(W ′, fn0(z)) ≤ η. Clearly,
η ≥ Cη, where C = (max |f ′|)−1.

Let Ω(t) be the component of f−n0(B(fn0(z), t)) containing z and con-
sider the map h(t) = IR(Ω(t), z). Since h(t) is continuous and h(η) ≥ ε,
h(η) < ε, there exists η′ ∈ (η, η] such that h(η′) = ε. This completes the
proof.

Proposition 4. Let f be a rational map. There exists C > 0 such that

for every z ∈ C and every small neighborhood U of z,

OR(U, z)

IR(U, z)
≤ C

OR(f(U), f(z))

IR(f(U), f(z))
.

Proof. By the Koebe principle, it suffices to consider U contained in a
small neighborhood of a critical point of f . Since near a critical point, f
behaves like a polynomial z 7→ zk, the proposition follows easily.

4. Proof of Theorem 1. In this section, we prove Theorem 1. We shall
use the following notion introduced in [1].

Definition 2. A sequence {Gk}n
k=0 of connected open sets is called a

quasi-chain if f(Gk) ⊃ Gk+1 for each 0 ≤ k < n. The order of the quasi-chain
is the number of k ∈ {0, 1, . . . , n− 1} such that Gk contains a critical point.
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We shall also need the following lemma related to Lemma 1.3 of [6].

Lemma 5. Let f : C → C be a rational map of the Riemann sphere of

degree at least two and let µ be a t-conformal measure on J(f). Then there

exists a constant C > 0 (depending on f) such that if V is a connected open

set and U is a component of f−1(V ), then

µ(U)

diam(U)t
≥ C

µ(V )

diam(V )t
.

Proof. By Lemma 1.3 in [6], we have

diam(V )

diam(U)
≥ C sup{|f ′(z)| : z ∈ U}.

By the t-covariance of µ, the lemma follows easily.

In the following,

B̃(δ) =
⋃

c∈Crit′(f)

B̃(c, δ).

Proof of Theorem 1. Fix α ∈ (0, 1). Let r > 4ℓmax be a constant to
be determined. Since f satisfies BC(r), there exists δ0 such that for any

δ ∈ (0, δ0), if U is a critical pull back of B̃(rδ) then U ⊂ B̃(δ).
By Lemma 4, there exists η > 0 such that any pull back of a ball of

radius 2η has diameter less than δ0. By Proposition 3, for any ε < η there
exist η′ ≍ η (η′ ≤ η) and n such that the component W of f−n(B(fn(z), η′))
which contains z satisfies

IR(W, z) = ε1+α/2t.

Let Wk = fk(W ), k = 0, 1, . . . , n.
We shall prove that there exist constants C ∈ (0, 1) and θ > 0 depending

only on f such that

µ(W )

diam(W )t
≥ Cεθγ ,(3)

OR(W, z)

IR(W, z)
≤ (Cεθγ)−1,(4)

where γ = 2ℓmax/(log r − ℓmax log 4).
Choosing r large enough, we have θγ ≤ α/3. Provided that ε > 0 is

small enough, we have Cεθγ ≥ εα/2. Thus (4) implies OR(W, z) ≤ ε, so
µ(B(z, ε)) ≥ µ(W ); together with inequality (3) we have

µ(B(z, ε)) ≥ µ(W ) ≥ εt+α,

as we wished.
If fn|W extends to a conformal map onto B(fn(z), 2η) then the inequal-

ities follow easily from the Koebe principle and the t-covariance of µ.
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In order to deal with the general case, we define a quasi-chain {Ŵk}n
k=0

by the following rules: (i) Ŵn = B(fn(z), 2η); (ii) once Ŵk+1 ∋ fk+1(z) is

defined, let Ŵ ′
k be the connected component of f−1(Ŵk+1) which contains

fk(z); (iii) if Ŵ ′
k contains no critical point, then Ŵk = Ŵ ′

k, otherwise

Ŵk = B(fk(z), 2 diam(Ŵ ′
k)).

Let m be the order the quasi-chain {Ŵk}n
k=0. Let n0 = n and let n1 >

· · · > nm be all integers in {0, 1, . . . , n−1} such that Ŵni
contains a critical

point.

Claim. There exists a constant C0 depending on f such that

(5) m ≤ C0 + 2ℓmax log(1/ε)/log r1,

where r1 = r/4ℓmax.

In fact, Ŵn1
⊂ B̃(δ0). By the BC(r) property, we deduce that Ŵ ′

n2
⊂

B̃(δ0/r), so that Ŵn2
⊂ B̃(4ℓmaxδ0/r) ⊂ B̃(δ0). Repeating the procedure, we

obtain

Ŵnm
⊂ B̃(δ0/rm−1

1 ).

By Proposition 2, for any β ∈ (0, 1/ℓmax), there exists C(β) > 0 such that

diam(W ) ≤ C(β)(δ0/rm−1
1 )β.

Since diam(W ) ≥ IR(W ) = ε1+α/2t ≥ ε1+α, we obtain (5).

For each 1 ≤ i ≤ m, fni−1−ni−1 : Wni+1 → Wni−1
extends to a conformal

map onto Ŵni−1
. Since mod(Ŵni−1

\Wni−1
) is bounded away from zero, the

Koebe principle and the t-covariance of µ give us

µ(Wni+1)

diam(Wni+1)t
≥ C1

µ(Wni−1
)

diam(Wni−1
)t

,(6)

OR(Wni+1, f
ni+1(z))

IR(Wni+1, fni+1(z))
≤ 1

C1

OR(Wni−1
, fni−1(z))

IR(Wni−1
, fni−1(z))

,(7)

where C1 ∈ (0, 1) is a universal constant. Similarly, we have

µ(W )

diam(W )t
≥ C1

µ(Wnm
)

diam(Wnm
)t

,(8)

OR(W, z)

IR(W, z)
≤ 1

C1

OR(Wnm
, fnm(z))

IR(Wnm
, fnm(z))

.(9)

By Lemma 5, we have

(10)
µ(Wni

)

diam(Wni
)t

≥ C2
µ(Wni+1)

diam(Wni+1)t
,



174 H. B. Li and W. X. Shen

where C2 ∈ (0, 1) is a universal constant. By Proposition 4, we have

(11)
OR(Wni

, fni(z))

IR(Wni
, fni(z))

≤ 1

C2

OR(Wni+1, f
ni+1(z))

IR(Wni+1, fni+1(z))
.

Combining the estimates (6), (10) and (8), we obtain

(12)
µ(W )

diam(W )t
≥ Cm+1

1 Cm
2

µ(B(fn(z), η′))

(2η′)t
.

Since infw∈J(f) µ(B(w, η′)) > 0, it follows that

(13)
µ(W )

diam(W )t
≥ C(C1C2)

m,

where C is a constant.

Combining the estimates (7), (9) and (11), we obtain

(14)
OR(W, z)

IR(W, z)
≤ (Cm+1

1 Cm
2 )−1.

If we let θ = − log(C1C2) and redefine the constant C, then (13) and
(14) give us (3) and (4) respectively. This completes the proof.

5. Proof of the Main Theorem

Proof of the Main Theorem in the case J(f) 6= C. The following argu-
ment is similar to the proof of the well-known Frostman’s lemma (see [8]).
Since δ∗(f) = HDhyp(J(f)), it suffices to prove that BD(J(f)) ≤ δ∗(f) + α
for any α > 0.

Let µ be a δ∗(f)-conformal measure of f . By Lemma 3, f satisfies the
assumption (∗), so that we can apply Theorem 1. Let N(ε) be the minimal
number of open balls with radius ε needed to cover J(f). For any ε > 0
small, J(f) can be covered by a family {Bi}n

i=1 of open balls of radius ε with
intersection multiplicity 4. For each i, Theorem 1 gives us µ(Bi) ≥ εδ∗(f)+α,
provided that ε is small enough. Thus

4 ≥
n∑

i=1

µ(Bi) ≥ nεδ∗(f)+α ≥ N(ε)εδ∗(f)+α,

which implies that

BD(J(f)) = lim sup
ε→0

log N(ε)

log(1/ε)
≤ δ∗(f) + α.

In the case J(f) = C, we do not know whether the condition (∗) holds.
However, we are still able to obtain enough control on the conformal mea-
sures to conclude the proof.

Proposition 5. If J(f) = C, then δ∗(f) = 2.
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Proof. Arguing by contradiction, assume that f has a t-conformal mea-
sure with t < 2.

Let r > 1 be a large constant. Since f has the BC(r) property, there exists
an arbitrarily small ε > 0 and a puzzle neighborhood V =

⋃
c∈Crit′(f) Vc of

Crit′(f) such that for each c ∈ Crit′(f),

B̃(c, ε) ⊂ Vc ⊂ B̃(c, 2ε).

Let Wc be the union of all return domains of V which are not contained
in B̃(c, ε/

√
r). Let g :

⋃
c Wc → V denote the first return map into V under

iteration of f . By the BC(r) property, for each component U of g−n(V ),
gn : U → V is a conformal map which extends to a conformal map onto
B̃(c,

√
rε) for some c ∈ Crit′(f). In fact, this follows from the following

observation: if U is a component of Wc with g(U) = Vc′ and g|U = f s|U ,

then there exists a topological disk Û ⊂ B̃(c,
√

r ε) such that f s : Û →
B̃(c′,

√
r ε). By the Koebe principle, it follows that for each component U

of g−n(V ), gn|U has small distortion provided that r is large enough.

Let Wn
c be the collection of all components of g−n(V ) which are con-

tained in Vc and let Wn
c be the union of these components. By Lemma 1,

almost every point returns to V under iteration of f , thus,

area(W 1
c )

area(Vc)
≥ 1 − B̃(c, ε/

√
r)

B̃(c, ε)
≥ 1 − σ(r),

where σ(r) → 0 as r → ∞. Note that for each component U of W 1
c ,

area(U) ≤ area(Vc)/2. Therefore, provided that r was chosen large enough,
we have ∑

U∈W1
c

area(U)t/2 ≥ λ area(Vc)
t/2,

where λ = 21−t/2 > 1.

For each U ∈ Wn
c , since gn|U has small distortion and gn maps an

element of Wn+1
c onto an element of W1

c , it follows that
∑

W∈W
n+1
c , W⊂U

area(W )t/2 ≥ λ1 area(U)t/2,

where λ1 ∈ (1, λ). Therefore,
∑

U∈Wn
c

area(U)t/2 ≥ λn
1 area(Vc)

t/2.

By the Koebe principle and the t-covariance of µ, for each U ∈ Wn
c , n =

0, 1, . . . , we know that µ(U)/ area(U)t/2 is comparable to µ(Vc)/ area(Vc)
t/2,
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where Vc = gn(U). Thus,
∑

U∈Wn
c

µ(U) ≥ Cλn
1 .

Letting n → ∞ implies µ(J(f)) = ∞, a contradiction.

Proof of the Main Theorem in the case J(f) = C. By the previous
proposition, δ∗(f) = 2. Hence

δ∗(f) = HDhyp(f) = 2 = BD(J(f)).
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[8] F. Przytycki and M. Urbański, Fractals in the Plane—the Ergodic Theory Methods,

http://www.math.unt.edu/˜urbanski/.
[9] J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth

condition, Ergodic Theory Dynam. Systems 27 (2007), 595–636.
[10] D. Sullivan, Conformal dynamical system, in: Geometric Dynamics, Lecture Notes

in Math. 1007, Springer, 1983, 725–752.
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