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Polyhedra with finite fundamental group
dominate finitely many different homotopy types

by

Danuta Kołodziejczyk (Warszawa)

Abstract. In 1968 K. Borsuk asked: Does every polyhedron dominate only finitely
many different shapes? In this question the notion of shape can be replaced by the notion of
homotopy type. We showed earlier that the answer to the Borsuk question is no. However,
in a previous paper we proved that every simply connected polyhedron dominates only
finitely many different homotopy types (equivalently, shapes). Here we prove that the
same is true for polyhedra with finite fundamental group.

Introduction. By a polyhedron we mean, as usual, a finite one. In this
paper, all polyhedra and CW -complexes are assumed to be connected (for
convenience). The exposition of basic notions and results of shape theory
can be found in [DS], [MS] or [B3].

In 1968, at the Topological Conference in Herceg-Novi, K. Borsuk asked:

Does every polyhedron dominate only finitely many different shapes? (see
also [B2], and [B1], where an equivalent question was stated for FANRs).

Let us note that this question is equivalent to the following:

Does every polyhedron dominate only finitely many different homotopy
types?

Indeed, each space homotopy dominated by a polyhedron has the homo-
topy type of a CW -complex, not necessarily finite (J. H. C. Whitehead; see
also [Wa]). Moreover, as a consequence of the known results of shape theory
(see [HaHe], [DS, Theorem 2.2.6]), there is a 1-1 functorial correspondence
between the shapes of compacta shape dominated by a given polyhedron
and the homotopy types of CW -complexes homotopy dominated by it (in
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both pointed and unpointed cases). Furthermore, in both pointed and un-
pointed cases the answer to the Borsuk question is the same (see [HaHe],
[D, Theorem 5.1]).

From the earlier result of [Ma] one can deduce that each polyhedron
dominates only a countable number of different shapes (see also [Ho], [MP]).

We showed ([K3]) that, generally, the answer to the Borsuk question
is no: there exist polyhedra (even of dimension 2) homotopy dominating
infinitely many polyhedra of different homotopy types (see also [K4]). In
[K1] we proved that this phenomenon is not rare: for every non-abelian
poly-Z-group G, there exists a polyhedron P with π1(P ) ∼= G dominating
infinitely many polyhedra of different homotopy types. It should be noted
that, by the classical results of shape theory, every 1-dimensional polyhedron
dominates only finitely many different shapes (see [B3, Theorem 7.1, p. 221],
and [Tr]).

On the other hand, in [K2], applying the results of localization theory
in the homotopy category of CW -complexes, we proved that every sim-
ply connected polyhedron dominates only finitely many different homotopy
types (or equivalently, shapes).

Here we prove, in another way, that every polyhedron with finite funda-
mental group dominates only finitely many different homotopy types (the
method of [K2] does not apply in this case).

We will consider here dominations of a polyhedron in the category of
CW -complexes and homotopy classes of cellular maps between them, and
also the pointed version of the question.

Main results. Let Mn(K) denote the set of all matrices n × n over a
field K.

Definition 1. By an idempotent in a category C we mean a morphism
k such that k ◦ k = k in C.

The lemma below, due to M. S. Putcha, can be deduced from the Hilbert
Basis Theorem (for this theorem, see for example [Pu1, Ch. 2]).

Lemma ([Pu2, Lemma 1.6, p. 459]). Let E be an infinite set of idempo-
tents inMn(K) of rank r, where K is a given algebraically closed field. Then
there exist two idempotents E,F ∈ E such that E 6= F and rank(EF ) =
rank(FE) = r.

As an immediate corollary we obtain (cf. [Pu2, Theorem 1.7] and [Re,
Proposition 2.2]):

Corollary. Let K be an algebraically closed field. Then any given sub-
set E of idempotents in Mn(K) of rank r is partitioned into finitely many
classes such that E and F belong to the same class if and only if there exists
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a finite set of idempotents E0 = E,E1, . . . , Em = F , where Ej ∈ E for each
j = 0, . . . ,m, and rank(Ej−1Ej) = rank(EjEj−1) = r for j = 1, . . . ,m .

Remark. Since every field has an algebraic closure, in this corollary the
assumption that K is algebraically closed can be omitted.

For a polyhedron P , let X ≤ P denote that X is homotopy dominated
by P . Writing this we will have in mind a fixed domination dX : P → X of
P over X, and a fixed inverse map uX : X → P (i.e. dXuX ' idX).

It is easily seen that the map kX = uXdX : P → P is an idempotent
in the homotopy category of CW -complexes and homotopy classes of maps
between them.

Recall that Z/p denotes the integers modulo p ∈ P, where P is the set of
all primes.

Definition 2. (i) A map f : X → Y between CW -complexes X and
Y is said to be a homology equivalence if it induces an isomorphism of the
integral homology groups, Hi(f) : Hi(X;Z) → Hi(Y ;Z), for all i ∈ N (cf.
[WhG, pp. 181–182]).

(ii) Similarly, f will be called a Q-homology equivalence if it induces an
isomorphism of the homology groups with coefficients Q, Hi,Q(f) : Hi(X;Q)
→ Hi(Y ;Q), for all i ∈ N.

(iii) Given a prime p ∈ P, f will be said to be a Z/p-homology equivalence
if it induces an isomorphism of the homology groups with coefficients Z/p,
Hi,p(f) : Hi(X;Z/p)→ Hi(Y ;Z/p), for all i ∈ N.

From now on “dominated” will always mean “homotopy dominated”.
Let us prove the following

Lemma 1. Let W be a subclass of the class of all CW -complexes dom-
inated by a polyhedron P . Then W can be partitioned into finitely many
classes such that if X and Y belong to the same class, then there exists
a finite sequence {Xj}mj=0, where X0 = X, Xm = Y , Xj ∈ W, such that
the map gXY = dY kXm−1kXm−2 . . . kX2kX1uX : X → Y is a Q-homology
equivalence.

Proof. For every i ∈ N, consider

Hi(P ;Q) ∼= Hi(P )⊗Q ∼= Q⊕Q⊕ . . .⊕Q︸ ︷︷ ︸
li

,

an li-dimensional vector space over Q, where li = βi(P ).
Any homomorphism of Hi(P ;Q) can be represented by some matrix in

Mli(Q), and there is a 1-1 correspondence between idempotent homomor-
phisms of Hi(P ;Q) and idempotent matrices in Mli(Q).

Given X ∈ W, let Mi(X) ∈ Mli(Q) be the matrix of the homomorphism
Hi,Q(kX) : Hi(P ;Q)→ Hi(P ;Q) induced by the idempotent kX : P → P .
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Consider the Q-vector space V =
⊕n

i=1 Hi(P ;Q), where n = dimP .
Denote by M(X) ∈ Ml(Q), where l =

∑n
i=1 li, the matrix of the homo-

morphism kX∗ =
⊕n

i=1 Hi,Q(kX) : V → V . Then M(X) is composed of the
matrices Mi(X) as follows:

M(X) =



M1(X) zeroes

. . .
zeroes Mn(X)


 .

Since all the matrices Mi(X) are idempotent, so also is M(X). Moreover,
r(X) =

∑n
i=1 ri(X), where r(X) = rankM(X) and ri(X) = rankMi(X)

for i = 1, . . . , n.
To prove the lemma, in the first step we partition W into finitely many

classes by putting two CW -complexes in the same class if the collections
(r1(X), . . . , rn(X)) are the same.

Fix any class W ′ of this partition. Let E be the class of all matrices
M(X) ∈ Ml(Q) for X ∈ W ′ (clearly of a fixed rank r =

∑n
i=1 ri(X)).

Apply the Corollary to divide E into finitely many classes such that if M(X)
and M(Y ) belong to the same class, then there exists a finite sequence
{Mj}mj=0, where m ≥ 1, of matrices in E with M0 = M(X), Mm = M(Y ),
rankMj−1 = rankMj = rank(Mj−1Mj) = rank(MjMj−1) = r, for each
j = 1, . . . ,m.

This generates a partition of W ′ into finitely many classes such that X
and Y belong to the same class if and only if M(X) and M(Y ) belong to
the same class of the partition of E as above.

Thus, for X and Y in the same class, there exists a sequence {Xj}mj=0,
where m ≥ 1, of CW -complexes Xj ∈ W ′ such that X0 = X, Xm = Y , and

rankM(Xj−1) = rankM(Xj) = rankM(Xj−1)M(Xj)

= rankM(Xj)M(Xj−1)

for j = 1, . . . ,m. It follows that

rankMi(Xj−1) = rankMi(Xj) = rankMi(Xj−1)Mi(Xj)(∗)
= rankMi(Xj)Mi(Xj−1)

for each i = 1, . . . , n and j = 1, . . . ,m.
To see this, note that r(Xj) =

∑n
i=1 ri(Xj), and for any two matrices A

and B we have rankAB ≤ rankA and rankAB ≤ rankB.
We claim that the map gXY = dY kXm−1kXm−2 . . . kX2kX1uX : X → Y

is a Q-homology equivalence.
Indeed, by the well-known facts from linear algebra, the condition (∗)

implies that Hi,Q(kXj )| imHi,Q(kXj−1) is an isomorphism onto imHi,Q(kXj )
for 1 ≤ j ≤ m.



Polyhedra with finite fundamental group 5

Clearly uX : X → P induces an isomorphism Hi,Q(uX) of Hi(X;Q) onto
imHi,Q(uX) = imHi,Q(kX).

Moreover, Hi,Q(kY )| imHi,Q(kXm−1) is an isomorphism onto

imHi,Q(kY ) = imHi,Q(uY ),

and Hi,Q(uY ) is an isomorphism of Hi(Y ;Q) onto imHi,Q(uY ), hence
Hi,Q(dY )| imHi,Q(kXm−1) is an isomorphism onto Hi(Y,Q). This completes
the proof of the claim and of the lemma.

Definition 3 (cf. [HMR, Definition 1.3, p. 5]). Let P′ ⊆ P be a subset
of primes and P′′ ⊆ P the complementary subset of primes. If an integer n
is a product of primes belonging to P′′, we write n ∈ P′′.

We say that a homomorphism g : G → K of finitely generated abelian
groups is

(i) P′-injective if ker g consists of P′′-torsion elements;
(ii) P′-surjective if, given any y ∈ K, there exists an integer n ∈ P′′

such that yn ∈ im g;
(iii) a P′-isomorphism if it is both P′-injective and P′-surjective.

We will apply this definition to P′ = {p}; then P′-isomorphism will be
called p-isomorphism.

Lemma 2. Let X and Y be CW -complexes with finitely generated inte-
gral homology groups and let f : X → Y be a Q-homology equivalence. Then
f is also a Z/p-homology equivalence for all p ∈ S, where S = {p ∈ P |
p divides no torsion coefficient of the groups Hi(X;Z) and Hi(Y ;Z) for
i = 1, 2, . . .}.

Proof. Let Mf ' Y be the mapping cylinder of f . Since f : X → Y is
a Q-homology equivalence, we have Hi(Mf ,X;Q) = 0 for all i ∈ N. By the
Universal Coefficient Theorem,Hi(Mf ,X;Q) ∼= Hi(Mf ,X;Z)⊗Q, therefore
Hi(Mf ,X;Z) is a finite abelian group for all i ∈ N.

We will use the following assertion:

(∗) Let f : X → Y , where X and Y are CW -complexes with all integral
homology groups finitely generated. If for a prime p ∈ P, Hi(f) :
Hi(X;Z) → Hi(Y ;Z) is a p-isomorphism for all i ∈ N, then f is a
Z/p-homology equivalence.

This is a consequence of the Universal Coefficient Theorem and a part of
[HMR, Proposition 1.8] which states that for two abelian groups A and B, a
p-isomorphism Φ : A→ B induces isomorphisms Φ⊗ Z/p and Tor(Φ,Z/p).

Let p ∈ S. Using the exact sequence

. . .→ Hi(X;Z)→ Hi(Mf ;Z)→ Hi(Mf ,X;Z)

→ Hi−1(X;Z)→ Hi−1(Mf ;Z)→ . . .
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one can check that f induces a p-isomorphism Hi(f) : Hi(X;Z)→ Hi(Y ;Z)
for all i ∈ N. By (∗), this completes the proof.

Lemma 3. Let X and Y be CW -complexes with finitely generated inte-
gral homology groups and let f : X → Y be a Q-homology equivalence and
Z/p-homology equivalence for each p ∈ P. Then f is a homology equivalence.

Proof. By the argument as in the proof of Lemma 2, Hi(Mf ,X;Z) is a
finite abelian group for all i ∈ N. The Universal Coefficient Theorem states
that, for each p ∈ P and i ∈ N,

Hi(Mf ,X;Z/p) ∼= (Hi(Mf ,X;Z)⊗ Z/p)⊕ Tor(Z/p;Hi−1(Mf ,X;Z)).

Since f : X → Y is a Z/p-homology equivalence for all p ∈ P, we have
Hi(Mf ,X;Z/p) = 0 for each i ∈ N and p ∈ P. Therefore all Hi(Mf ,X;Z)
= 0. Indeed, Hi(Mf ,X;Z) ⊗ Z/p 6= 0 for each prime p ∈ P dividing some
torsion coefficient of Hi(Mf ,X;Z). This finishes the proof.

Lemma 4. Let P be a polyhedron. Any subclass W of the class of all
CW -complexes dominated by P can be partitioned into finitely many classes
such that if X and Y belong to the same class, then there exists a finite
sequence {Xj}mj=0, where X0 = X, Xm = Y , Xj ∈ W, such that the map
gXY = dY kXm−1kXm−2 . . . kX2kX1uX : X → Y is a homology equivalence.

Proof. Let T = {p ∈ P | there exists i ∈ N such that p divides some
torsion coefficient of Hi(P ;Z)}.

In the first step we divide the collection of CW -complexesW into finitely
many classes such that if X and Y belong to the same class then the map
fXY = dY uX : X → Y is a Z/p-homology equivalence for all p ∈ T .

To do this, observe that all the groups Hi(P ;Z/p) are finite, hence, for
each i ∈ N and p ∈ P, there are only finitely many possible images of
Hi,p(uX) in Hi(P ;Z/p). Thus, let X and Y belong to the same subclassW ′
of W if and only if imHi,p(uX) = imHi,p(uY ) in Hi(P ;Z/p) for all i ∈ N
and all p ∈ T .

In the second step we apply Lemma 1 to each classW ′ as follows: we di-
vide it into finitely many new classes such that ifX and Y belong to the same
class then there exists a finite sequence {Xj}mj=0, m ≥ 1, where X0 = X,
Xm = Y ,Xj ∈ W ′, such that the map gXY = dY kXm−1kXm−2 . . . kX2kX1uX :
X → Y is a Q-homology equivalence. By Lemma 2, gXY is a Z/p-homology
equivalence for all p 6∈ T .

Since imHi,p(uXj ) are the same for each prime p ∈ T and Xj ∈ W ′ for
all j = 0, . . . ,m, it follows that gXY is also a Z/p-homology equivalence for
all p ∈ T .

Thus gXY is a Q-homology equivalence and Z/p-homology equivalence
for all p ∈ P. Applying Lemma 3 we conclude that gXY is a homology
equivalence. This ends the proof.
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Thus we can formulate

Theorem 1. Let P be a polyhedron. All the CW -complexes dominated
by P can be partitioned into finitely many classes such that for any two
CW -complexes belonging to the same class, there is a homology equivalence
between them.

Proof. This is an immediate consequence of Lemma 4.

In what follows, X̃ will denote, as usual, the universal covering space
of X.

If f : X → Y is a cellular map of CW -complexes such that f(x) = y for
some vertices x ∈ X, y ∈ Y , then for any chosen x̃ ∈ p−1(x) and ỹ ∈ p−1(y)
(where p denotes the projections), there exists a unique map f̃ : X̃ → Ỹ

such that pf̃ = fp and f̃(x̃) = ỹ. Then f̃ induces homomorphisms Hi(f̃) :
Hi(X̃)→ Hi(Ỹ ) for i ∈ N (see [Hl, p. 107]).

In what follows, according to the remarks in the introduction, we consider
pointed dominations and the pointed version of the Borsuk question. For
simplicity, in our notations the base points will be omitted.

Let us prove the following

Theorem 2. Let P be a polyhedron with finite fundamental group π1(P ).
There are only finitely many homotopy types of CW -complexes dominated
by P .

Proof. Consider all the CW -complexes X ≤ P , each with a fixed domi-
nation dX : P → X and inverse map uX : X → P , where P is a polyhedron
with finite fundamental group π1(P ). Note that the universal covering space
P̃ of P is a polyhedron.

Let d̃X : P̃ → X̃ and ũX : X̃ → P̃ be liftings of the maps dX and uX ,
respectively, to the universal covers. Then d̃X : P̃ → X̃ is a domination of P̃
over X̃ with inverse map ũX , and k̃X = ũX d̃X : P̃ → P̃ is a homotopy idem-
potent. From now on, writing X̃ ≤ P̃ , we will have in mind the domination
d̃X of P̃ over X̃.

The group π1(P ) is finite, thus all the CW -complexes dominated by P
can be partitioned into finitely many classes such thatX and Y belong to the
same class if and only if imπ1(uX) = imπ1(uY ), where π1(uX) : π1(X) →
π1(P ) and π1(uY ) : π1(Y )→ π1(P ) are the homomorphisms induced by uX
and uY , respectively.

Let W be a fixed class of this partition. Apply Lemma 4 to P̃ and to
the class of all CW -complexes X̃ ≤ P̃ for X ∈ W. Thus we divide W into
finitely many classes such that if X and Y belong to the same class, then
there exists a finite sequence {Xj}mj=0, m ≥ 1, where X0 = X, Xm = Y ,



8 D. Kołodziejczyk

Xj ∈ W, such that the map g̃XY = d̃Y k̃Xm−1 k̃Xm−2 . . . k̃X2 k̃X1 ũX : X̃ → Ỹ
is a homology equivalence.

Since imπ1(uXj ) in π1(P ) are the same for all the Xj (where j =
0, 1, . . . ,m), the map gXY = dY kXm−1kXm−2 . . . kX2kX1uX : X → Y in-
duces an isomorphism π1(gXY ) : π1(X)→ π1(Y ).

By the Whitehead Theorem (see, for example, [Hi, Theorem 3.1, p. 107]),
if X and Y are CW -complexes and there exists a map f : X → Y such
that f induces an isomorphism π1(f) : π1(X) → π1(Y ) and isomorphisms
Hi(f̃) : Hi(X̃;Z)→ Hi(Ỹ ;Z) for all i ∈ N, then f is a homotopy equivalence.
Thus the proof is finished.

Remark 1. The result of M. Putcha (Lemma 1.6 of [Pu2], see the
Lemma in the Preliminaries) was used by L. Renner to prove that for a
simply connected CW -complex Z for which the rational cohomology al-
gebra H∗(Z;Q) is finitely generated, there are only finitely many rational
homotopy classes of rational retracts of Z [Re]. However, neither this fact
nor its proof in [Re] allow one to obtain the result of our paper. Moreover,
our Corollary in the Preliminaries also enables a shorter and simpler proof
of the result mentioned above.

Remark 2. By our previous paper [K1], there exist polyhedra with
nilpotent fundamental group dominating infinitely many different homotopy
types (see the introduction and notice that every finitely generated, nilpo-
tent torsion-free group is a poly-Z-group). However, applying Theorem 1 of
the present paper we can show that every nilpotent polyhedron (i.e. a poly-
hedron with nilpotent fundamental group acting nilpotently on the higher
homotopy groups) dominates only finitely many different homotopy types.

Acknowledgments. The author would like to thank Prof. S lawomir
Nowak for bringing up the problem, for some conversations in 1990 which
had an influence on obtaining the results of this paper, and for reading the
manuscript.
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