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No arc-connected treelike continuum is the 2-to-1
image of a continuum

by

Jo Heath (Auburn, AL) and Van C. Nall (Richmond, VA)

Abstract. In 1940, O. G. Harrold showed that no arc can be the exactly 2-to-1
continuous image of a metric continuum, and in 1947 W. H. Gottschalk showed that no
dendrite is a 2-to-1 image. In 2003 we show that no arc-connected treelike continuum is
the 2-to-1 image of a continuum.

1. Introduction. Perhaps the biggest question in the category of 2-to-1
maps defined on metric continua is whether or not it is possible for a treelike
continuum to be an image [9]. The spectrum of treelike continua goes from
simple arcs to hereditarily indecomposable continua. Much is known at the
ends of the spectrum, and little is known in the middle.

Perhaps the first result was Harrold’s [4] 1940 result that arcs cannot be
2-to-1 images and this was generalized to dendrites (uniquely arc-connected
Peano continua) by Gottschalk [3] in 1947. Much more recently, in 1987,
Smithson [10] showed that if the domain continuum is arcwise connected,
then it cannot map 2-to-1 onto an arc-connected treelike continuum (a den-
droid). Last year the authors showed that if the domain continuum is hered-
itarily decomposable, then it cannot map 2-to-1 onto a dendroid [6]. As you
can see by the title, we have removed the restriction of hereditary decom-
posability. (Although this current paper supercedes our previous paper, we
use heavily the theorems and proofs from that paper.) Thus we now know
that no arc-connected treelike continuum can be the 2-to-1 image of a metric
continuum.

What happens at the other end of the spectrum? If the treelike con-
tinuum is hereditarily indecomposable, it is known [5] that it cannot be a
2-to-1 image. If every proper subcontinuum of an indecomposable treelike
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continuum is an arc, then again [2] it cannot be a 2-to-1 image; this class of
continua includes all Knaster continua and the Ingram continua [7].

For the middle of the spectrum, it is known [2] that if a treelike contin-
uum is the finite union of subcontinua each of which is not a 2-to-1 image,
and no two of which intersect in more than one point, then the union also
is not a 2-to-1 image. So, using this structure many hybrid treelike continua
can be shown not to be 2-to-1 images.

It would seem, then, that the next logical step is to prove (or, if one
must, disprove) either of the following conjectures:

Conjecture 1. No indecomposable treelike continuum can be the 2-to-1
image of a continuum.

Conjecture 2. No hereditarily decomposable treelike continuum can be
the 2-to-1 image of a continuum.

2. Simple maps from indecomposable continua to dendroids.
We know [6] that if a continuum X is hereditarily decomposable then there
is no 2-to-1 map from X onto a dendroid. Therefore we naturally consider
the case when X contains indecomposable continua. A 2-to-1 map defined
on X, when restricted to an indecomposable subcontinuum I, is a simple
map (meaning each point inverse has at most 2 elements) from I onto a
dendroid. In this section we study these simple maps. There is an amazing
amount of structure imposed on an indecomposable continuum if it admits
a simple map onto a dendroid—perhaps contradictory structure.

Question 1 ([6]). Does there exist an indecomposable continuum that
admits a simple map onto a dendroid?

In [8] Piotr Minc constructed a finite-to-one map from the Knaster
buckethandle space onto a dendroid; in fact, each point inverse had at most
3 inverse points. But some points did have three inverse points. He also
showed there is no simple map from an indecomposable continuum onto a
planar dendroid, and that no Knaster type indecomposable continuum could
be the domain of a simple map onto a dendroid. In the final section of this
paper we generalize Minc’s result to show that an indecomposable contin-
uum with at least three arc-connected composants does not admit a simple
map onto a dendroid.

In the same paper, Minc introduced the idea of a bottleneck continuum
in a dendroid.

Definition 1 (Minc [8]). A subcontinuum C of a dendroid X is called
a bottleneck continuum if there are two nonempty disjoint open sets U and
V such that, for each u ∈ U and v ∈ V , the arc uv intersects C.
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Theorem 1 (Minc [8]). Every nondegenerate dendroid X contains points
a, b and w ∈ ab \ {a, b} with the property that for every positive number ε
there is a continuum Cε ⊂ X and there are two open sets Uε ⊂ X and
Vε ⊂ X such that

(1) a ∈ Uε,
(2) b ∈ Vε,
(3) w ∈ Cε,
(4) diam(Cε) < ε, and
(5) uv ∩ Cε 6= ∅ for any u ∈ Uε and v ∈ Vε.
In this paper we refer to the point w in Theorem 1 as a center of X.

If a and b are two points in a dendroid, then ab will denote the unique arc
in the dendroid with endpoints a and b. If f is a simple map defined on a
continuum containing the point p, then p̂ denotes the twin point of p, i.e.
the other point in the domain that maps the same as p. Of course, if f is
not 2-to-1 then some twins do not exist. Similarly, two disjoint sets in the
domain of a simple map are twin sets if their images are the same. Other
definitions may be found in the glossary at the end of the paper.

We often use the fact that dendroids are hereditarily unicoherent and
arcwise connected and we use a result [1] of Borsuk that the closure of a
nested union of arcs in a dendroid is also an arc. Thus if the collection of
nested arcs all have a common endpoint then there is at most one new point
in the closure of the union, the new endpoint.

Lemma 1. Let f : I → E be a simple map from an indecomposable
continuum to a dendroid. If K is a composant of I then f(K) is arcwise
connected.

Proof. If x and y are points in K then there is a proper subcontinuum
S of I containing x and y that is contained in K. The image f(S) is a
subdendroid of E containing f(x) and f(y) and hence contains an arc from
f(x) to f(y).

Lemma 2. Let f : I → E be a simple map from an indecomposable
continuum to a dendroid. Let c be a center of E, and let K be a composant
of I. Then, for each y ∈ f(K), cy \ {c} ⊂ f(K), and , if K is disjoint from
f−1(c), there is a z ∈ cy \ {c} such that f−1(z) ⊂ K, and |f−1(z)| = 2.

Proof. Using the construction of Minc for the center c = f(p), there are
points a and b in E, disjoint open sets Un and Vn containing a and b and a
continuum Cn containing f(p), for each positive integer n, that satisfy the
construction for en = 1/2n. Without loss of generality, we assume that 1/2
is less than the distance from y = f(x) to f(p). The open sets can be chosen
to be nested, Un+1 ⊂ Un and Vn+1 ⊂ Vn, as well as the continua Cn+1 ⊂ Cn.
For each positive integer n, a point f(xn) can be found in Cn∩f(K). To see
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this, note that the image of K is dense in E and thus intersects, for each n,
both Un and Vn, and that from Lemma 1 we know there is an arc in f(K)
from Un to Vn. From the definition of bottleneck continuum, this arc inter-
sects Cn. Now, since the continua {Cn} are nested, we see that the point
f(xn+1) ∈ Cn+1 is also in Cn. Thus for each n > 1, there is an arc An in the
dendroid Cn from f(xn) to f(xn+1). By Lemma 1, f(K) contains An for
each n. Since the diameter of An is less than 1/2n, the union of the arcs, to-
gether with the limit point {f(p)}, contains an arc B from f(x1) to f(p) such
that B \ {f(p)} ⊂ f(K). By Lemma 1 the arc from f(x) to B is a subset of
f(K), and this arc union B contains the arc A from f(x) to f(p). Since A is
contained in f(K)∪{f(p)}, the first conclusion of this lemma is established.

Now suppose K is a composant of I whose image f(K) does not con-
tain f(p). Let R = A \ {f(p)} and suppose f is 1-to-1 on the set N =
K ∩ f−1(R). Note that K, and hence N , maps onto R. Then N is homeo-
morphic to [0, 1) and its external limit points can only be p or p̂, if p̂ exists.
The closure of N then is an arc in I connecting x in one composant to p
(or p̂) in another composant. This contradiction completes the proof.

Lemma 3. Suppose f is a simple map from an indecomposable contin-
uum I to a dendroid E, and f(p) is a center of E. If K is a composant of I
containing neither p nor p̂, then f(K) is an arc component of E \ {f(p)},
and K = f−1(f(K)).

Proof. It follows from Lemma 1 that f(K) is arc-connected and, since
f(p) is not in f(K), there is an arc component α of E \{f(p)} that contains
f(K). Now suppose another composant K2 has a point y that maps into α.
Choose any point x in K. Since α is arc-connected, there is an arc B in α
from f(x) to f(y). Let C be the arc in E from B to f(p). Since the arc in E
from f(x) to f(p) lies in f(K) and the arc from f(y) to f(p) lies in f(K2),
by Lemma 2, the arc C is in f(K)∩ f(K2). But C is an arc in f(K) to the
point f(p) and f cannot be 1-to-1 on the points of K that map to C (by
Lemma 2, second part). This contradicts the fact that f is simple.

Corollary 1. Suppose f is a simple map from a continuum X to a
dendroid E and wb is an arc in E such that for some indecomposable sub-
continuum J of X, b is a center of f(J). Then there is a composant K
of J such that (1) b 6∈ f(K), and (2) for every point c in f(K), the arc bc
intersects wb only in the point b.

Proof. If the arc wb intersects the dendroid f(J) in a first point a 6= b,
then ab \ {b} lies in an arc component of f(J) \ {b}. From Lemma 3 we
know that if K is a composant of J such that f(K) does not contain b (and
there are uncountably many such composants) then f(K) is one of the arc
components of f(J)\{b} and we can simply choose one of these composants
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such that f(K) does not contain ab\{b}. If the arc wb intersects the dendroid
f(J) in a first point that is b, then any composant of J whose image misses
b will do.

Lemma 4. Suppose there is a simple map from an indecomposable con-
tinuum to a dendroid. Then the image dendroid has only one center.

Proof. Let f be a simple map from the indecomposable continuum I
onto a dendroid D and suppose D has two centers f(p) and f(t), where p
and t are not twins. Let x be a point of I in a composant K that contains
no point mapping to either f(p) or f(t). By Lemma 2, the arc A from f(x)
to f(t) cannot contain f(p) since the arc lies in f(K) ∪ {f(t)}, and the arc
B from f(x) to f(p) cannot contain f(t). Hence, if C denotes the interior of
the arc in E from f(p) to f(t), then C ⊂ A ∪B. Thus, by Lemma 2 again,
C is in the image of K. But there are uncountably many composants that
could have been chosen instead of K and there is only one arc in E from
f(p) to f(t).

Lemma 5. Suppose f is a simple map from an indecomposable contin-
uum I to a dendroid E, and f(p) is the center of E. If I is irreducible about
a pair of twin points that do not map to f(p), then p has a twin p̂ in I and
there are disjoint twin arcs in different composants of I from one of the twin
points to p and from the other to p̂.

Proof. Since I is irreducible about the twin pair of points which we will
name x and x̂, they cannot be in the same composant. So if K1 and K2 are
the composants containing x and x̂ respectively, then K1 and K2 must both
contain a point that maps to f(p) by Lemma 3, since their images are not
disjoint. Suppose p ∈ K1 and p̂ ∈ K2. It follows from Lemma 1 that both
K1 and K2 map onto the arc A in E from f(x) to f(p). Thus each of K1 and
K2 have, for each point t ∈ A, exactly one point that maps to t. This means
that f−1(A) ∩K1 and f−1(A) ∩K2 are disjoint twin arcs as needed.

Lemma 6. If f is a simple map from a continuum X onto a dendroid
and f(x) = f(y), then either

(1) there is an arc in X from x to y, or
(2) there are disjoint twin arcs xx′ and yy′ in X such that for some

indecomposable continuum I in X containing x′ and y′, f(x′) is the center
of f(I), or

(3) there is an indecomposable continuum I in X containing x and y
such that f(x) is the center of f(I).

Proof. In [6] we show that if f is a simple map from a hereditarily
decomposable continuum X onto a dendroid, and f(x) = f(y), then there
is an arc in X connecting x and y.
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The proof of this theorem implies that if f is a simple map from a
hereditarily decomposable continuumX onto a dendroid, if f(x) = f(y), and
if L is a continuum in X irreducible about x and y, then (1) L = H ∪ N ,
two proper subcontinua of L with x ∈ H \ N and y ∈ N \ H, and (2)
there are disjoint twin half-open arcs in L, xx′ \ {x′} and yy′ \ {y′}, such
that (i) xx′ \ {x′} ⊂ H \ N , and (ii) {x′} ∪ yy′ ⊂ N , or the other way
around. Then, if the new endpoints x′ and y′ are not equal (else there
is an arc f from x to y), the construction continues in a subcontinuum
of N irreducible about x′ and y′. Furthermore, at each limit case, after
infinitely many extensions, there continues to be an extension. The point is
that so long as the irreducible continuum containing the new endpoints is
decomposable, the process continues. More details can be found in Lemma 7
in [6].

Therefore, if f is a simple map from a continuum X onto a dendroid, if
f(x) = f(y), and if there is no arc in X connecting x and y, then there are
disjoint twin arcs xx′ and yy′ in X and an indecomposable subcontinuum I
in X that is irreducible about x′ and y′. Then Lemma 5 implies that either
f(x′) is the center for f(I), or there are disjoint twin arcs x′p and y′p̂ in
different composants of I such that f(p) is the center for f(I). Contained in
the disjoint twin sets xx′∪x′p and yy′∪y′p̂ are disjoint twin arcs xp and yp̂.

Or, much easier, the degenerate arcs case occurs. This is the case where
the disjoint twin arcs are just points because the original two points x and y
are already in an indecomposable continuum I and f(x) is the center for
f(I).

Definition. Suppose f : X → D is a simple map from a continuum X
onto a dendroid D and aw is an arc in D. Then the endpoint w will be called
a fold point in aw if there is a sequence w1, w2, . . . in aw \ {w} converging
to w, there are two points in the preimage of wi for each i, and there is one
point x in the preimge of w such that the sequence {f−1(wi)} converges
to x. Note that since the sequence {f−1(wi)} can only have inverse points
of w as limit points, if w happens to have only one inverse point, then w
will be a fold point by default.

Smithson [10] showed that if f is a simple map defined on an arc A and
f(A) is uniquely arc-connected and such that the endpoints of A, denoted
e and e′, are mapped to the same point, then the structure of the map is
straightforward: there is a point c in A such that the image of f is an arc
with endpoints f(e) and f(c), and f restricted to each of the two parts of A,
ec and ce′, is a homeomorphism onto the image arc. Notice that this makes
f(c) a fold point in the arc from f(e) to f(c).

Lemma 7. Suppose f : I → E is a simple map from an indecomposable
continuum I onto a dendroid E, w = f(p) is the center of f(I), and K is
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a composant of I such that f(K) does not contain w. Then there is a point
w′ ∈ f(K) such that w′ is a fold point in ww′.

Proof. Assume there is no w′ ∈ f(K) such that w′ is a fold point in ww′.
Let T be the set of all triples T (b) = (b, Sb, Fb) where

(a) b ∈ f(K),
(b) Sb ⊂ wb \ {b} in E with b = sup(Sb), and
(c) Fb = {Ic | c ∈ Sb} is a collection of indecomposable continua in K

such that for each c ∈ Sb,
(i) c is the center of f(Ic),

(ii) |f−1(c) ∩ Ic| = 2, and
(iii) if c, c′ ∈ Sb and c < c′, then there is a composant Kc of Ic

such that f(Kc) contains cc′ \ {c} but does not contain c, and
Ic′ ⊂ Kc.

Define an order on T by T (b) < T (c) iff wb ⊂ wc, Sb ⊂ Sc, and if Is ∈ Fb
and I ′s′ ∈ Fc with s = s′, then Is = I ′s′ .

Observation 1. These definitions imply that if T (b) < T (c) then there
is no arc in Ib whose image contains both b and c since this arc would connect
points from two composants in Ib.

First we need to see that T is not empty. Notice that if there exists a
twin pair {b1, b2} of points in K that is not contained in an arc in K, then
for any continuum L in K that contains b1 and b2, according to Lemma 6,
there is an indecomposable continuum Iw1 in L, where w1 denotes the center
of f(Iw1), such that |f−1(w1) ∩ Iw1 | = 2. Let K1 be any composant of Iw1

that satisfies the conclusion of Corollary 1, i.e. w1 6∈ f(K1) and if w2 is any
point in f(K1) then ww1 ∩ w1w2 = {w1}

If K1 contains a twin pair that is not contained in an arc in K1, the
process of constructing the nested arcs continues. If the process continues
for infinitely many steps the result will be a nested sequence of arcs {wwi}
whose closure is an arc wb such that the triple T (b) = (b, Sb, Fb), where
Sb = {w1, w2, . . .} and Fb = {Iw1 , Iw2 , . . .}, satisfies all of the conditions
above. That is, if this process continues, then the collection T is not empty.

We will show that this process continues. For assume it is not true.
That is, assume that for some i each twin pair in the composant Ki of the
indecomposable continuum Ic is contained in an arc that is contained in Ki.
Let Q = {b ∈ f(Ki) : |f−1(b) ∩Ki| = 2}. It follows from Lemma 2 that Q
is not empty. For each b ∈ Q let Ab be the irreducible arc in Ki containing
f−1(b) and let wb be the element of f(Ki) such that f(Ab) = bwb. Note that
wb is a fold point of bwb, and if wb is not in wb, then wb is a fold point of
wwb, contrary to our assumption. So assume that wb ∈ wb for each b ∈ Q.
It follows that f(Ab) ⊂ wb for each b ∈ Q.
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Now we shall show that this leads to a contradiction. First we prove that

(∗) if M is a continuum in f(Ic) containing c and the point y in f(Ki),
then there is a continuum in f−1(M ∩ f(Ki)) that contains f−1(y).

We may assume that f−1(y) is not connected and both of its points
are in Ki since f−1(f(Ki)) = Ki. Thus it is enough to show that Ay is
a continuum with the desired properties. By our assumption f−1(y) ∈ Ay.
Above it was noted that f(Ay) ⊂ yc\{c}. But yc ⊂M and yc\{c} ⊂ f(Ki),
hence yc \ {c} ⊂ M ∩ f(Ki). Therefore Ay ⊂ f−1(M ∩ f(Ki)), which ends
the proof of (∗).

The dendroid f(Ic) is decomposable, so there are proper subcontinua H
and L whose union is f(Ic). If one of them, say H, does not contain c, let
H ′ = H ∪ xc where x is a point of H. Then H ′ is still proper because H ′

is locally connected at points of xc near c and the whole space f(Ic) is not
locally connected at any point different from c. This is because there are
uncountably many arc components of f(Ic) \ {c} that are dense in f(Ic).
Therefore f(Ic) = M0 ∪M1, where each Mj , j = 0, 1, is a proper subcontin-
uum of f(Ic) containing c.

In a dendroid the intersection Mj∩f(Ki) of two arcwise connected sets is
arcwise connected, hence connected. The mapping f : f−1(Mj ∩ f(Ki)) →
Mj ∩ f(Ki) is quotient (i.e. a set is open in the image iff its preimage is
open in the domain). This follows from the straightforward lemma that if f
is a map from a compact space I onto E and L is a subset of E, then the
restricted map f : f−1(L) → L is quotient. Since f : f−1(Mj ∩ f(Ki)) →
Mj ∩ f(Ki) is quotient it satisfies the property of all quotient maps that if
the image C is connected and for each y ∈ C there is a connected subset
of the domain containing f−1(y), then the domain is connected. Thus each
set f−1(Mj ∩ f(Ki)) is connected. Since Ki ⊂ Ic we have f(Ki) = (M0 ∩
f(Ki)) ∪ (M1 ∩ f(Ki)). As Mj is a proper subcontinuum of f(Ic) we infer
that cl(f−1(Mj ∩ f(Ki))) is a proper subcontinuum of Ic. It follows that
Ic = cl(Ki) = cl(f−1(M0 ∩ f(Ki))) ∪ cl(f−1(M1 ∩ f(Ki))) contrary to the
indecomposability of Ic.

So T is not empty. If T (bλ)λ∈Λ is a linearly ordered subcollection of T
and

wb =
⋃

λ∈Λ
wbλ, Sb =

⋃

λ∈Λ
Sbλ , Fb =

⋃

λ∈Λ
Fbλ ,

then T (b) = (b, Sb, Fb) ∈ T , and T (bλ) < T (b) for each λ ∈ Λ.
It follows from Zorn’s lemma that there is a maximal triple T (m). Let

M =
⋂
c∈Sm Fc. Suppose |f−1(m)∩M | = 1. We know that |f−1(c)∩ Ic| = 2

for each c ∈ Sm and that m = sup(Sm). Therefore, m is a fold point in wm,
and we have assumed there are none. So |f−1(m) ∩M | = 2.
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We will extend the maximal triple T (m) to complete the contradiction.
Using M as the continuum X in Lemma 6, and using x and y to denote the
two inverse points of m, there are only three possibilities: (1) there is an arc
in M from x to y, (2) there are disjoint twin arcs xx′ and yy′ in M and
an indecomposable continuum J in M containing x′ and y′ such that f(x′)
is the center of f(J), or (3) there is an indecomposable continuum J in M
containing x and y such that f(x) is the center of f(J).

First we will show that case (1) cannot hold. On the contrary, suppose
Am denotes an arc in M from x to y and let mz be the image of Am. We
have seen that unless mz lies in wm, z will be a fold point of wz. So mz
is contained in wm, and there is a point c in mz such that the inverse of
mc is the union of two disjoint twin arcs A and B in M . But mc ⊂ wm
means that there are two elements of Sm, say a and b with T (a) < T (b),
that lie in mc. Since A is a subset of M , it is a subset of Ia; but the arc A
contradicts Observation 1.

If (2) occurs, the same argument implies that the image of the disjoint
twin arcs in M cannot backtrack, i.e. the new arc mf(x′) intersects wm only
in the point m.

So, whether case (2) holds or case (3) holds, we have an arc wf(x′)
that contains wm and an indecomposable continuum J in M , containing
x′ and y′, such that f(x′) is the center of f(J). (Note that in case (3),
x′ = x and so f(x′) = m). Now, using the same construction in J as was
used at the beginning of the proof in I, and using Corollary 1 to choose a
suitable composant of J to work in, we have an element of T that properly
contains T (m). This contradiction completes the proof.

3. Main result

Theorem 2. No dendroid is the image of a 2-to-1 map defined on a
continuum.

Proof. On the contrary, suppose there is a 2-to-1 map f from a con-
tinuum X onto a dendroid D. Let a denote any point of D. We consider
the collection B of all arcs aw in D where w is a fold point in aw. Our
plan is to show, using Zorn’s lemma, that B must have a maximal element
(with respect to the natural ordering of inclusion), and yet we can extend
any element of B to a longer arc in B. This contradiction will complete our
proof.

First, we will show that B is non-empty, and at the same time give a
preview of the constructions to come. We know from Lemma 6 that if a is
a point of D and its inverse points are a1 and a2, then one of three things
can happen. Either (1) there is an arc in X with endpoints a1 and a2,
or (2) there are disjoint twin arcs a1w1 and a2w2 and an indecomposable
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continuum I containing w1 and w2 such that f(w1) is the center of f(I),
or (3) (the degenerate arcs case (2)) there is an indecomposable continuum
I containing a1 and a2 such that f(a1) is the center of f(I).

In case (1), we know by Smithson’s construction that there is a point c
in A such that f(c) is a fold point in the arc af(c); so af(c) belongs to B.

For case (2) (case (3) is similar), we use Lemma 7 with the simple map f
restricted to I. For every composant K of I whose image misses w there is
a point w′ ∈ f(K) such that w′ is a fold point in the arc ww′ in f(I). From
Corollary 1, there a composant K if I such that w 6∈ f(K) and the arc ww′

intersects aw only in the point w. Hence, w′ is a fold point of the arc aw′

in B. Thus, in all three cases, we have shown that B is not empty.
If {atλ}λ∈Λ is a linearly ordered subcollection of B, then the closure of

the union of this subcollection is an arc [1], say aw′. The arc aw′ is in B
because the new endpoint w′ is a limit point of a sequence of fold points
and it is easy to see that such a limit of fold points is a fold point.

So, there is a point w such that aw is a maximal element in B. Then,
from the definition of fold point, there is a sequence {ti} of points on the arc
aw converging to w and one inverse point of w, say w2, that is not a limit
point of

⋃{f−1(ti)}. Notice that the definition of fold point implies that for
any point y in aw, the inverse of the arc yw cannot be the disjoint union of
twin arcs.

From Lemmas 6 and 7, there are three ways, depending on the 3 cases
described earlier, to construct an arc ww′ such that w′ is a fold point in ww′.
Our primary concern now will be that aw and ww′ intersect only in their
common endpoint w, so that aw will be a proper subset of aw′. In cases (1)
and (2), the constructed arc ww′ has an initial segment wz whose inverse
consists of two disjoint twin arcs in X. But from the definition of the fold
point w in aw, no final segment yw in aw has an inverse consisting of disjoint
twin arcs. We also know, since D is a dendroid, that if aw intersects ww′ in
more than their common endpoint then they intersect in some final segment
yw of aw. Hence in cases (1) and (2), the arc aw′ in B properly contains
the arc aw. In the third and last case, the degenerate arc case, there is, as
in the construction to show B is nonempty, a composant of I whose image
contains a suitable arc ww′ \ {w} where w′ is a fold point of ww′, and the
new arc ww′ intersects aw only in the point w. Hence, in all three cases, w
cannot be a fold point since aw is maximal.

4. Simple maps onto dendroids. In this final section we use facts
established in the previous lemmas to say more about the structure of a
simple map from an indecomposable continuum onto a dendroid, if, in fact,
there is such a map.
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Lemma 8. If two points of an indecomposable continuum are identified ,
the resulting continuum is still indecomposable.

Proof. Suppose i denotes the map from the indecomposable continuum
I onto a continuum I ′ that identifies the points p and q of I. Let x and
y denote two points from different composants of I that are both also not
in either the composant of I containing p or the one containing q. To see
that I ′ has uncountably many composants and hence is indecomposable, we
need to show that i(x) and i(y) remain in different composants of I ′. So
suppose that there is a proper subcontinuum C in I ′ containing both i(x)
and i(y). If C does not contain i(p) then i−1(C) is homeomorphic to C and
so is a proper subcontinuum of I containing x and y. Hence C contains i(p).
Consider the component T of C \ {i(p)} that contains x. Then T goes to
the boundary so {i(p)} is in the closure of T and this implies that either
p or q is in the closure of i−1(T ). But i−1(T ) is connected (remember i is
1-to-1 on i−1(T )) and its closure is a continuum containing both x and either
p or q. But its closure is a proper subcontinuum of I since C is a proper
continuum in I ′ that contains i(p). This contradiction to the fact that x and
either p or q are in different composants of I completes the proof.

Theorem 3. Suppose f is a map from an indecomposable continuum I
onto a dendroid D, f(p) is a center in D, and there is a composant K of I
whose image does not contain f(p) such that each pair of twin points in K
is contained in an arc in K. Then the map f cannot be simple.

Proof. Suppose on the contrary that I, D, f , and K exist satisfying the
hypothesis, but f is simple. First, we will consolidate the domain without
changing the image by identifying in I the two points p and p̂, if indeed p̂
exists. Then the natural map based on f defined on the new indecomposable
continuum is a simple map onto the same dendroid and the set K is still a
composant whose image does not contain f(p). In other words, without loss
of generality we may assume that p̂ does not exist.

Let A be an arc in f(K)∪{f(p)} with one endpoint f(p). (See Lemma 2.)
There are points a and b in D such that these two points satisfy the con-
clusion of Theorem 1 for the center f(p). From Theorem 1 again, f(p) is on
the arc ab in D, and it is possible that either a or b is on the arc A. If so,
choose a shorter A so that neither a nor b is on A. We will need this fact
later.

From Lemma 2 we know some points of A have two point inverses; let
B = {f(x) ∈ A | |f−1(f(x))| = 2}. Note that f(p) is not in B since p
has no twin. From the hypothesis we know that there is an arc xx̂ in K
for each f(x) ∈ B. Let A denote this collection of arcs. We need to know
now that C = f−1(A) ∪ (

⋃A) is connected. Suppose on the contrary that
C = H|L, the disjoint union of separated sets. Note that no point c of A
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belongs to both f(H) and f(L) since that would mean that c is in B and
the arc in K between its inverse points would be in C and intersect both
H and L. Hence the arc A is the disjoint union of f(H) ∩ A and f(L) ∩ A.
Since A is connected, there is a convergent sequence of points ci of, say,
f(H)∩A that converges to the point c of f(L)∩A. A convergent sequence
of points in H can be extracted from the sequence of point sets f−1(ci), and
this sequence must converge to an inverse of c that is not in L. So c is in B
and the arc in C between its inverse points intersects both H and L. This
is a contradiction.

We now know that C is a continuum containing p and many points of K.
Hence C = I, and since f−1(A) is compact and its complement dense, the
union of the arcs in A is dense in I.

We now want to find a convergent subsequence of arcs in A that is still
dense in I. Choose a point q in a composant of I other than K and other
than the composant containing p, and choose a convergent sequence of arcs S
from A that has q in its limiting set. Each of these arcs has twin endpoints
that map to a point of A, and so the images of the arcs in S are arcs in D
whose endpoints on A converge to a point of A and these arcs have the
point f(q) in their limiting set. Hence the limiting set of the image arcs
must contain f(p) since f(q) is not in the same arc component of D \{f(p)}
as the points of f(K) (see Lemma 3). This means that the limiting set of
the arcs in S contains p, and since it is a continuum containing p and q, it is
the continuum I. Thus we have extracted from A a convergent sequence S
of arcs whose union is dense in I. If S′ denotes the convergent sequence of
image arcs {f(xx̂) | xx̂ ∈ S} in D, the union of the elements of S ′ is dense
in D.

For the rest of the proof we use the technique of Piotr Minc in his
proof that no Knaster type indecomposable continuum admits a simple map
onto a dendroid. Referring again to the bottleneck structure in D set up in
Theorem 1 for the center f(p), we have points a and b with the property
that for every positive number ε there is a continuum Cε ⊂ D and there are
two open sets Uε ⊂ D and Vε ⊂ D such that

(1) a ∈ Uε,
(2) b ∈ Vε,
(3) f(p) ∈ Cε,
(4) diam(Cε) < ε, and
(5) uv ∩ Cε 6= ∅ for any u ∈ Uε and v ∈ Vε.
Choose ε small enough and open sets Uε and Vε small enough about a

and b that the closures of all three are pairwise disjoint and the closures of
both Uε and Vε miss A. (Recall that neither a nor b is in the arc A.) The
sequence S′ of arcs in D is dense in D and so there is a subsequence that has
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a in its limiting set and a further subsequence that also has b in its limiting
set. Thus there is an arc G in S′ that has its initial point in A, and two
other points, one in Uε, and one in Vε; but between these two points, by
Theorem 1, there is a point of Cε in G. If M denotes the continuum Cε∪A,
then the arc G starts in M , goes over to either Uε or Vε, and then returns
to M . But in a dendroid, the intersection of two continua such as G and M
must be connected. This contradiction completes the proof.

The following is a consequence of Lemma 3 and Theorem 3.

Corollary 2. If three composants of an indecomposable continuum I
are arc-connected , then there is no simple map from I onto a dendroid.

5. Glossary. 1. A topological space is a continuum if it is compact,
connected and metrizable.

2. A 2-to-1 map is crisp if the preimage of each proper subcontinuum in
the image consists of two components, each of which maps homeomorphi-
cally onto the subcontinuum.

3. If M is a continuum, a subcontinuum N of M is a c-set in M provided
N is a subset of any subcontinuum of M that contains both a point in N
and a point not in N .

4. A continuum is a dendrite if it is hereditarily decomposable, heredi-
tarily unicoherent, arc-connected, and locally connected.

5. A continuum is a dendroid if it is hereditarily decomposable, heredi-
tarily unicoherent, and arc-connected.

6. A map is simple if the inverse of each point in the range contains at
most two points.
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