
FUNDAMENTA

MATHEMATICAE

209 (2010)

Differentiation of n-convex functions

by
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Abstract. The main result of this paper is that if f is n-convex on a measurable
subset E of R, then f is n − 2 times differentiable, n − 2 times Peano differentiable and
the corresponding derivatives are equal, and f (n−1) = f(n−1) except on a countable set.
Moreover f(n−1) is approximately differentiable with approximate derivative equal to the
nth approximate Peano derivative of f almost everywhere.

1. Introduction. Throughout this paper, E denotes a measurable sub-
set of R. In addition, because most of the results concern right or left limit
points of E, we further assume that E has no isolated points. This is not
much of a restriction since we are primarily concerned with a.e. statements.

Definition 1.1. Let f : E → R, let n ∈ N ∪ {0} and let x0 < x1 <
· · · < xn be points in E. Then the nth divided difference of f is denoted by
[f ;x0, x1, . . . , xn] and defined inductively. For n = 0, [f ;x0] = f(x0) and for
n ∈ N,

(1) [f ;x0, x1, . . . , xn] =
[f ;x0, x1, . . . , xn−1]− [f ;x1, x2, . . . , xn]

x0 − xn
.

In particular [f ;x0, x1] = (f(x0)− f(x1))/(x0 − x1).
Alternatively [f ;x0, x1, . . . , xn] can be defined as

n∑
i=0

f(xi)∏
6̀=i(xi − x`)

,

which shows that [f ;x0, x1, . . . , xn] is independent of the order in which the
numbers x0, x1, . . . , xn are listed. (For basic properties of divided differences
see [6].) So in the future if V = {x0, . . . , xn}, we use [f ;V ] for [f ;x0, . . . , xn].
We also permit the slight abuse of notation to write [f ;u, V ] for [f ;V ∪{u}]
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where u ∈ E \ V. As a consequence, equation (1) can be written as

[f ;V ] =
[f ;V \ {v}]− [f ;V \ {w}]

w − v
where w, v ∈ V with w 6= v, and the equivalent definition can be written as

(2) [f ;V ] =
∑
u∈V

f(u)∏
v∈V
v 6=u

(u− v)
.

Definition 1.2. Let f : E → R and let n ∈ N. Then f is n-convex on
E means [f ;V ] ≥ 0 for each V ⊂ E of cardinality n+ 1.

Consequently, f is 0-convex on E means f ≥ 0 on E, 1-convex on E
means f is increasing on E, and 2-convex means f is convex in the usual
sense. It is easy to show that a polynomial of degree n is n-convex if and
only if the leading coefficient of f is positive. If f is n-convex on a set E,
then, as will be shown, f has a unique n-convex extension to the closure
of E. Consequently, it could be assumed that E is closed, but there is no
advantage in doing so.

The motivation for this paper is the article by P. S. Bullen and S. N.
Mukhopadhyay ([3]) in which the following is asserted.

Theorem (Theorem 6.1 in [3]). If f is n-convex on a measurable set
E ⊂ [a, b] on which the (n−1)th Peano derivative f(n−1) exists finitely, then
both the nth approximate Peano derivative f(n),ap of f and the approximate
derivative (f(n−1))′ap of fn−1 exist finitely and are equal almost everywhere
in E.

In 2000, M. Laczkovich (see [4]) pointed out that the proof is not valid,
but he did not determine if the assertion itself was true or false. The purpose
of this paper is to show that the assertion is true.

2. Notation and other definitions. As will be seen, convexity im-
plies some smoothness described in terms of differentiation. We recall the
definition.

Definition 2.1. Let f : E → R, u ∈ E and k ∈ N. Then f is
k times Peano differentiable at u means there exist numbers f(0)(u) :=
f(u), f(1)(u), . . . , f(k)(u) such that

f(w) =
k∑

i=0

f(i)(u)
(w − u)i

i!
+ o(|w − u|k) as w E→ u,

where w E→ u means that w → u with w ∈ E. In this case we say that
f(k)(u) is the kth Peano derivative of f at u. We say that f is k times Peano
differentiable on E if f has a kth Peano derivative at each point of E. The
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right and left kth Peano derivatives of f are defined in an analogous fashion
for the right and left limit points of E and are denoted by f(k,+)(u) and
f(k,−)(u) respectively. If in the limit above we further restrict w to a set of
density 1 at u, then the corresponding derivatives are called approximate
Peano derivatives and we use f(n),ap in place of f(n). Ordinary derivatives
are defined in the usual way and we use f (i), f (i,+), f (i,−) to denote the ith,
right ith, and left ith derivatives of f respectively.

Many of the results to follow concern limit points of E. For that reason
we introduce the following notation.

Notation. Let E ⊂ R. Then

E+ = {u ∈ E; u is a right limit point of E and u 6= minE}.

E− is defined similarly.

The maximum and minimum points of E are omitted to avoid infinite
limits.

The connection between convexity and differentiation will be established
through the use of the next concept.

Definition 2.2. Let f : E → R, let V ⊂ E be finite and let u ∈ E+ \V .
Then for k ∈ N, [f ;u, V ](k,+) is defined inductively by

[f ;u, V ](1,+) = lim
y

E→u+

[f ;u, y, V ]

if the limit exists, and for k ≥ 2,

[f ;u, V ](k,+) = lim
y

E→u+

[f ;u, y, V ](k−1,+)

if the limit exists.
[f ;u, V ](k,−) for u ∈ E− is defined analogously.

3. Preliminaries. In this section some preliminary results concerning
[f ;u, V ](k,+) are presented.

Proposition 3.1. Let f : E → R, let ∅ 6= V ⊂ E be finite and let
u ∈ E+ \ V . For k ∈ N and w ∈ V , [f ;u, V ](k,+) exists if and only if
[f ;u, V \ {w}](k,+) exists, and in that case

[f ;u, V ](k,+) =


[f ;u, V ]− [f ;u, V \ {w}](1,+)

w − u
for k = 1,

[f ;u, V ](k−1,+) − [f ;u, V \ {w}](k,+)

w − u
for k ≥ 2.

The analogous assertion with + replaced by − is also true.
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Proof. The proof is by induction on k. For k = 1 the calculation

[f ;u, V ](1,+) = lim
y

E→u+

[f ;u, y, V ] = lim
y

E→u+

[f ;u, V ]− [f ;u, y, V \ {w}]
w − y

=
[f ;u, V ]− lim

y
E→u+

[f ;u, y, V \ {w}]

w − u
shows that [f ;u, V ](1,+) exists if and only if [f ;u, V \ {w}](1,+) exists, and

[f ;u, V ](1,+) =
[f ;u, V ]− [f ;u, V \ {w}](1,+)

w − u
.

Assume the assertion is true for k. Then by definition

[f ;u, V ](k+1,+) = lim
y

E→u+

[f ;u, y, V ](k,+)

= lim
y

E→u+

[f ;u, y, V ](k−1,+) − [f ;u, y, V \ {w}](k,+)

w − u

=
[f ;u, V ](k,+) − lim

y
E→u+

[f ;u, y, V \ {w}](k,+)

w − u
(where for k = 1, [f ;u, y, V ](k−1,+) means [f ;u, y, V ]). Hence [f ;u, V ](k+1,+)

exists if and only if [f ;u, V \ {w}](k+1,+) exists, and

[f ;u, V ](k+1,+) =
[f ;u, V ](k,+) − [f ;u, V \ {w}](k+1,+)

w − u
.

It follows from this assertion that the existence of [f ;u, V ](k,+) does not
depend on the choice of V . In particular [f ;u, V ](1,+) exists if and only if
[f ;u](1,+) exists. It is easy to see that if one of [f ;u](1,+) or f (1,+)(u) exists
then so does the other and they are equal. Consequently, [f ;u, V ](1,+) exists
if and only if f (1,+)(u) exists. The corresponding assertion with + replaced
by − is also true. An analogous assertion for [f ;u, V ](k,+) is established in
Corollary 3.3.

The previous result and the following corollary are used in the proof of
Theorem 6.3 in Section 6.

Corollary 3.2. Let f : E → R, let V ⊂ E be finite, and let v, w ∈ V
with v 6= w, u ∈ E+ \ V and k ∈ N. If [f ;u, V ](k,+) exists, then

(3) [f ;u, V ](k,+) =
[f ;u, V \ {v}](k,+) − [f ;u, V \ {w}](k,+)

w − v
.

The analogous result with + replaced by − holds as well.

Proof. From Proposition 3.1,

(4) (w − u)[f ;u, V ](k,+) = [f ;u, V ](k−1,+) − [f ;u, V \ {w}](k,+)
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(where as above [f ;u, V ](0,+) denotes [f ;u, V ]), and on replacing w with v,

(5) (v − u)[f ;u, V ](k,+) = [f ;u, V ](k−1,+) − [f ;u, V \ {v}](k,+).

Subtracting (5) from (4) yields the desired result.

Note the similarity between (3) and the defining equation for divided
differences. That observation justifies referring to [f ;u, V ](k,+) as generalized
divided differences.

The following equation involving divided differences is known as New-
ton’s formula (see [6] for a proof):

f(w) = f(y0) +
k−1∑
i=1

[f ; y0, y1, . . . , yi]
i−1∏
`=0

(w − y`)

+ [f ; y0, y1, . . . , yk−1, w]
k−1∏
`=0

(w − y`).

This equation will be used extensively in Section 6.
Taking, in order, first lim

y1
E→y+

0

, followed by lim
y2

E→y+
0

, . . . , lim
yk−1

E→y+
0

yields

f(w) = f(y0) +
k−1∑
i=1

[f ; y0](i,+)(w − y0)i + [f ; y0, w](k−1,+)(w − y0)k,

assuming these limits exist. Finally replace y0 by u to get

(6) f(w) = f(u) +
k−1∑
i=1

[f ;u](i,+)(w − u)i + [f ;u,w](k−1,+)(w − u)k.

Similarly

f(w) = f(u) +
k−1∑
i=1

[f ;u](i,−)(w − u)i + [f ;u,w](k−1,−)(w − u)k.

This result is first used to establish the connection between these gener-
alized divided differences and Peano derivatives.

Corollary 3.3. Let f : E → R, u ∈ E+ and k ∈ N. Then [f ;u](k,+)

exists if and only if f is k times Peano differentiable from the right at u and
f(k,+)(u) = k![f ;u](k,+). The assertion with + replaced by − is also valid.

Proof. Suppose [f ;u](k,+) exists. Then by definition [f ;u](i,+) exists for
all i = 1, . . . , k, and by equation (6) for w ∈ E,
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f(w) = f(u) +
k−1∑
i=1

[f ;u](i,+)(w − u)i + [f ;u,w](k−1,+)(w − u)k

= f(u) +
k∑

i=1

[f ;u](i,+)(w − u)i + ([f ;u,w](k−1,+) − [f ;u](k,+))(w − u)k

Since lim
w

E→u+
[f ;u,w](k−1,+) = [f ;u](k,+), by definition f is k times Peano

differentiable from the right at u and f(k,+)(u) = k![f ;u](k,+).
The converse is established by induction on k. Its validity for k = 1 has

already been established. Suppose it is true for k − 1 and assume that f is
k times Peano differentiable from the right at u. Then from (6) we get

f(w) = f(u) +
k−1∑
i=1

[f ;u](i,+)(w − u)i +
f(k,+)(u)

k!
(w − u)k

+
(

[f ;u,w](k−1,+) −
f(k,+)(u)

k!

)
(w − u)k.

By the definition of Peano differentiability, it follows that

[f ;u](k,+) = lim
w

E→u+

[f ;u,w](k−1,+) exists and equals
f(k,+)(u)

k!
.

4. Basic properties of n-convex functions. This section begins with
a theorem designed to help the reader better understand the geometric
meaning of n-convexity. The assertion uses the notion of the Lagrange in-
terpolation polynomials which is recalled next.

Notation. Let V be a set of n distinct points. Then the polynomial LV

that agrees with f on V is given by

LV (x) =
∑
u∈V

f(u)

∏
v∈V
v 6=u

(x− v)∏
v∈V
v 6=u

(u− v)
.

The degree of the polynomial LV is no more than n− 1.
A geometric description of n-convexity is given in [2]. The result is that

f is n-convex if and only if for each V = {v1 < · · · < vn} the graph of
f is above the graph of LV for x > vn, below for vn−1 < x < vn, above
for vn−2 < x < vn−1 and so on. Here we present a simpler version of that
theorem whose proof can easily be used to prove the more involved version.

Theorem 4.1. Let f : E → R and n ∈ N. Then f is n-convex if and only
if for each V ⊂ E with cardinality n, f(x) ≥ LV (x) for every x ≥ maxV .



Differentiation of n-convex functions 15

Proof. Suppose f is n-convex. Let V ⊂ E be of cardinality n and let
x > maxV . By (2) for the set V ∪ {x},

0 ≤ f(x)∏
v∈V (x− v)

+
∑
u∈V

f(u)
(u− x)

∏
v∈V
v 6=u

(u− v)
,

or

− f(x)∏
v∈V (x− v)

≤
∑
u∈V

f(u)
(u− x)

∏
v∈V
v 6=u

(u− v)
.

Multiplying by the negative of the denominator on the left hand side (which
is positive since x > v for all v ∈ V ) results in

f(x) ≥
∑
u∈V

f(u)
∏

v∈V (x− v)
(x− u)

∏
v∈V
v 6=u

(u− v)
=
∑
u∈V

f(u)

∏
v∈V
v 6=u

(x− v)∏
v∈V
v 6=u

(u− v)
= LV (x).

Reversing the above argument proves the converse.

In the remainder of this section we show how the generalized divided
differences introduced in the previous section relate to n-convex functions.
First note that a divided difference can be interpreted as a function defined
on finite subsets of E.

Notation. For n ∈ N let (n,E) = {V ⊂ E; V has cardinality n}. In
particular, (1, E) = E.

Definition 4.2. Let V and W be finite subsets of E with the same
cardinality. Then V ≤ W means that there is a permutation h : V → W
such that v ≤ h(v) for each v ∈ V .

It is not hard to see that f : E → R is n-convex if and only if [f ;V ] ≤
[f ;W ] for all pairs V ≤ W ∈ (n,E) that differ by one element, say v < w.
From this observation the following assertion is easily proved. (See Lemma 8
in [4].)

Proposition 4.3. Let f : E → R and n ∈ N. Then f is n-convex if and
only if [f ;V ] ≤ [f ;W ] for each pair V ≤W in (n,E).

Definition 4.4. Let F : X ⊂ (n,E) → R. Then F is nondecreasing
means that if V, W ∈ X with V ≤W , then F (V ) ≤ F (W ).

Proposition 4.5. Let n ∈ N with n ≥ 2 and let f : E → R be n-convex.
Then for each k ∈ {1, . . . , n − 1}, V ∈ (n − k − 1, E+) and u ∈ E+ \ V ,
[f ;u, V ](k,+) exists and is nondecreasing on (n− k,E+).

The analogous assertion with + replaced by − is also valid.

Proof. The proof is by induction on k. For k = 1 let V ⊂ E+ have
cardinality n − 2 and let u ∈ E+ \ V . Because f is n-convex, [f ;u, y, V ]
is nondecreasing as a function of y ∈ E. Thus [f ;u, V ](1,+) exists. Now
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let V,W ∈ (n − 2, E+) with V ≤ W and let u, v ∈ E+ with u ≤ v. If
u < v, then for u < y1 < v < y2 with y1, y2 ∈ E, because f is n-convex,
[f ;u, y1, V ] ≤ [f ; v, y2,W ] and hence [f ;u, V ](1,+) ≤ [f ; v,W ](1,+). If u = v,
then clearly [f ;u, V ](1,+) ≤ [f ; v,W ](1,+), which verifies the assertion for
k = 1.

Assume k ≤ n−2 and the assertion is true for k−1. Let V ∈ (n−k−1, E+)
and u ∈ E+. Then by the induction assumption, [f, u, y, V ](k−1,+) exists
and is nondecreasing as a function of y. Thus [f ;u, V ](k,+) exists. Now let
V,W ∈ (n − k − 1, E+) with V ≤ W and let u, v ∈ E+ with u ≤ v. If
u < v, then for u < y1 < v < y2 with y1, y2 ∈ E, by the induction as-
sumption, [f ;u, y1, V ](k−1,+) ≤ [f ; v, y2,W ](k−1,+) and hence [f ;u, V ](k,+) ≤
[f ; v,W ](k,+). If u = v, then clearly [f ;u, V ](k,+) ≤ [f ; v,W ](k,+), which
completes the proof.

Corollary 4.6. Let n ∈ N with n ≥ 2 and let f : E → R be n-convex.
Then for each k ∈ {1, . . . , n − 1} and for each u ∈ E+, [f ;u](k,+) exists.
Similarly for u ∈ E−, [f ;u](k,−) exists.

This assertion follows easily from Propositions 4.5 and 3.1.

5. Extendibility of n-convex functions. Let f : E → R. If f is
0-convex (resp. 1-convex), then clearly f has a 0-convex (resp. 1-convex)
extension to the closure of E with inf E and supE omitted. This set will
be denoted by Ẽ. These extensions need not be unique. However, it is well
known that if f is 2-convex, it has a unique 2-convex extension to Ẽ. The
next result proves the same assertion for n-convex functions with n ≥ 2.
We will first state the following lemma due to Miklos Laczkovich (see [5,
Lemma 1]).

Lemma 5.1. Let f : E → R be n-convex with n ≥ 2. Then f is Lipschitz
on I ∩ E for every compact subinterval of (inf E, supE).

Theorem 5.2. Let f : E → R be n-convex with n ≥ 2. Then f has a
unique n-convex extension to Ẽ.

Proof. By Lemma 5.1 if c ∈ Ẽ is a limit point not in E we can define f(c)
as lim

x
E→c
f(x). It is easy to check that this extended f is locally Lipschitz on

Ẽ. If we know that [f ;V ] ≥ 0 for V ⊂ E, the continuity of the extension of f
to Ẽ and (2) easily show that [f ;V ] ≥ 0 for V ⊂ Ẽ. Thus f is n-convex on Ẽ.
The uniqueness also follows from Lemma 5.1, since any n-convex extension
of f to Ẽ would have to be locally Lipschitz on Ẽ.

For n = 0, 1, 2 an n-convex function defined on E can be further extended
to an interval with endpoints inf E and supE on which the extension is
n-convex. The example to follow shows that 3-convex functions need not
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have such an extension, which is important because many of the results in
the next section are known for n-convex functions defined on an interval
where they are proved using facts not valid on measurable sets. For ex-
ample, in [2] Bullen showed that the kth ordinary and kth Peano derivatives
of an n-convex function, 1 ≤ k < n − 1, are equivalent using results of
Oliver [7]. He also showed that the kth derivative of an n-convex function is
(n−k)-convex using an integration technique. For finite sets nonextendable
3-convex functions are easy to find, as was pointed out by Miklos Laczkovich,
who offered the following example. Let the set E consist of the numbers −3,
−2, −1, 1, 2, 3 and let

f(x) =


0 if x = −3,−2,−1,
1 if x = 1,
6 if x = 2,
c ∈ (14, 15) if x = 3.

Then f is strictly 3-convex on E, but f has no extension to E ∪ {0} as a
3-convex function. However, for infinite sets, such examples are somewhat
more difficult.

Example 5.3. Let

f(x) =
{

0 if x ≤ 0,
x(x− 1) if x ≥ 1.

Then f is 3-convex on its domain, but cannot be extended to a 3-convex
function on R.

Proof. We use the criterion in Theorem 4.1. We must test every set of
three elements a < b < c with a, b, c in the domain of f . If a < b < c ≤ 0 the
corresponding Lagrange polynomial is identically 0 and hence f(x) exceeds
it for every x ≥ c. If a < b ≤ 0 and 1 ≤ c, then the Lagrange parabola
has its vertex at (a+ b)/2 and hence is increasing on [b,∞). Thus it has
a second intersection with x2 − x between b and 0. It cannot have a third
intersection with x2− x, for it would then be x2− x. Therefore it lies below
x2 − x for x > c. Next assume that a < 0 < 1 < b < c. If the graph of the
Lagrange parabola is above x2−x on [1, b], then it must intersect x2−x for
a third time and be identical with x2 − x. So it lies below x2 − x on [1, b]
and hence above on [b, c] and below on [c,∞). Finally if 1 < a < b < c, then
the Lagrange parabola agrees with x2 − x. Therefore f is 3-convex on its
domain.

Suppose f has a 3-convex extension to R, denoted also by f . First we
assert that f must lie below x2 − x on [0, 1], for if there is an x ∈ [0, 1]
with f(x) > x2 − x, then the Lagrange parabola through (x, f(x)), (b, f(b))
and (c, f(c)) with 1 < b < c would lie above f on [c,∞) contrary to the
assumption that f is 3-convex. Consequently, f (1,+)(0) ≤ −1. However, as
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will be seen from Theorem 6.3 below, a 3-convex function is differentiable
everywhere. Hence f ′(0) = 0. Thus f has no 3-convex extension to R.

6. Convexity and differentiation

Proposition 6.1. Let f : E → R and V ⊂ E+. Suppose f (1,+)(u) exists
for each u ∈ V . Then [f ;u, V \ {u}](1,+) exists for each u ∈ V and

[f (1,+);V ] =
∑
u∈V

[f ;u, V \ {u}](1,+).

The analogous result holds when + is replaced by −.

Proof. The proof is by induction on the cardinality of V . If V consists
of one element, say u, then the result becomes [f (1,+);u] = f (1,+)(u), which
is true by definition.

Assume the assertion holds for any set with cardinality k and let V have
cardinality k+1. First [f ;u, V \{u}](1,+) exists for each u ∈ V by Proposition
3.1. Choose v, w ∈ V with v 6= w. Then

[f (1,+);V ] =
[f (1,+);V \ {v}]− [f (1,+);V \ {w}]

w − v

=

∑
u∈V \{v}[f ;u, V \ {u, v}](1,+) −

∑
u∈V \{w}[f ;u, V \ {u,w}](1,+)

w − v
(by the induction hypothesis)

=
[f ;w, V \ {v, w}](1,+) − [f ; v, V \ {v, w}](1,+)

w − v

+
∑

u∈V \{v,w}

[f ;u, V \ {u, v}](1,+) − [f ;u, V \ {u,w}](1,+)

w − v

= A+
∑

u∈V \{v,w}

Bu.

A direct application of Corollary 3.2 yields Bu = [f ;u, V \ {u}](1,+).
Note that [f ;V ] = [f ;w, V \ {w}] = [f ; v, V \ {v}]. Hence

A =
[f ;w, V \ {v, w}](1,+) − [f ;w, V \ {w}]

w − v

+
[f ; v, V \ {v}]− [f ; v, V \ {v, w}](1,+)

w − v

=
−[f ;w, V \ {w}](1,+)(v − w) + [f, v, V \ {v}](1,+)(w − v)

w − v
(by Proposition 3.1)

= [f, v, V \ {v}](1,+) + [f ;w, V \ {w}](1,+).
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Thus
[f (1,+);V ] =

∑
u∈V

[f ;u, V \ {u}](1,+).

Corollary 6.2. Let n ∈ N and let f : E → R be n-convex. Suppose
f (1,+) exists on E+. Then f (1,+) is (n − 1)-convex on E+. The analogous
assertion for f (1,−) is also valid.

Proof. Let V ⊂ E+ have cardinality n− 1. Then by Proposition 6.1,

[f (1,+);V ] =
∑
u∈V

[f ;u, V \ {u}](1,+).

Because f is n-convex, [f ;u, V \ {u}](1,+) is nondecreasing for each u ∈ V .
Thus [f (1,+);V ] is nondecreasing, proving that f (1,+) is (n− 1)-convex.

The next theorem, which is central to the results of this paper, establishes
the Peano differentiability of n-convex functions.

Theorem 6.3. Let n ∈ N with n ≥ 3, let f : E → R be n-convex and
let u ∈ E+. Then f is n − 2 times Peano differentiable at u and f(i)(u) =
i![f ;u](i,+) for each i = 1, . . . , n − 2. In addition, f is n − 1 times Peano
right differentiable at u ∈ E+ and f(n−1,+)(u) = (n − 1)![f ;u](n−1,+) The
corresponding assertion with + replaced by − is also true. Furthermore for
u ∈ E+ ∩ E−, f(i,+)(u) = f(i,−)(u) for i = i, . . . , n − 2 and f(n−1,−)(u) ≤
f(n−1,+)(u).

Proof. Letting k = n− 1 in (6) yields

f(w) = f(u) +
n−2∑
i=1

[f ;u](i,+)(w − u)i + [f ;u,w](n−2,+)(w − u)n−1.

By Proposition 4.5 all of the limiting objects in the above formula exist
because f is n-convex and in addition, the function [f ;u,w](n−2,+) is nonde-
creasing in w and hence bounded near u. (Here is where u 6= minE or maxE
is used.) Thus lim

w
E→u

[f ;u,w](n−2,+)(w − u) = 0. Consequently, f is n − 2

times Peano differentiable at u with f(i)(u) = i![f ;u](i,+) for i = 1, . . . , n−2.
Similarly, f(i)(u) = i![f ;u](i,−) for u ∈ E− and i = 1, . . . , n − 2. By the
uniqueness of Peano derivatives, f(i,+)(u) = f(i,−)(u) for u ∈ E+ ∩ E−.

Now let k = n in (6). In this case the existence of the last term,
[f ;u,w](n−1,+), does not follow immediately. However, by Proposition 3.1,
[f ;u,w](n−1,+) exists if and only if [f ;u](n−1,+) exists, and this latter limit
does exist because f is n-convex. Thus

f(w) = f(u) +
n−1∑
i=1

[f ;u](i,+)(w − u)i + [f ;u,w](n−1,+)(w − u)n
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= f(u) +
n−2∑
i=1

f(i)(u)
i!

(w − u)i + [f ;u](n−1,+)(w − u)n−1

+ [f ;u,w](n−1,+)(w − u)n

= f(u) +
n−2∑
i=1

f(i)(u)
i!

(w − u)i + [f ;u](n−1,+)(w − u)n−1

+ ([f ;u,w](n−2,+) − [f ;u](n−1,+))(w − u)n−1.

by Proposition 3.1. Because lim
w

E→u+
[f ;u,w](n−2,+) = [f ;u](n−1,+), it fol-

lows that the last term in the above equation is o((w − u)n−1); that is, f
is n − 1 times Peano differentiable from the right at u and f(n−1,+)(u) =
(n−1)![f ;u](n−1,+). Similarly f(n−1,−)(u) = (n−1)![f ;u](n−1,−) for u ∈ E−.

Finally for u ∈ E+ ∩ E− since f is n-convex, for xi ∈ E with xi < u
and yi ∈ E with yi > u for i = 1, . . . , n− 1, we have [f ;u, x1, . . . , xn−1] ≤
[f ;u, y1, . . . , yn−1]. Consequently, [f ;u](n−1,−) ≤ [f ;u](n−1,+) and hence
f(n−1,−)(u) ≤ f(n−1,+)(u).

Corollary 6.4. Let n ∈ N with n ≥ 3 and let f : E → R be n-convex.
Then f (1) = f(1) is (n−1)-convex on E+∩E−. Consequently, f (i) is (n− i)-
convex for i = 1, . . . , n− 2.

This assertion follows immediately from Corollary 6.2 and the preceding
theorem.

Next we investigate the relationship between the Peano and ordinary
derivatives of an n-convex function.

Theorem 6.5. Let n ∈ N with n ≥ 3 and let f : E → R be n-convex.
Then f (1) is n − 3 times Peano differentiable on E \ {inf E, supE} and
(f (1))(i) = f(i+1) for i = 1, . . . , n−3. Moreover (f (1))(n−2,+)(u) ≥ f(n−1,+)(u)
for u ∈ E+ and (f (1))(n−2,−)(u) ≤ f(n−1,−)(u) for u ∈ E−.

Proof. Start from equation (6) with k = n− 2 to obtain

f(w) = f(u) +
n−3∑
i=1

f(i)(u)
i!

(w − u)i + [f ;u,w](n−3,+)(w − u)n−2.

Now assume w ∈ E+ ∪ E− and differentiate with respect to w to get

f(1)(w) =
n−3∑
i=1

f(i)(u)
(i− 1)!

(w − u)i−1 +
d

dw
([f ;u,w](n−3,+)(w − u)n−2)

=
n−4∑
i=0

f(i+1)(u)
i!

(w − u)i + [f ;u,w](n−3,+)(n− 2)(w − u)n−3
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+ (w − u)n−2 d

dw
[f ;u,w](n−3,+)

=
n−4∑
i=0

f(i+1)(u)
i!

(w − u)i +A+B.

First we handle A. By Proposition 3.1,

[f ;u,w](n−3,+) = [f ;u](n−2,+) + (w − u)[f ;u,w](n−2,+).
Thus

A =
f(n−2)(u)
(n− 3)!

(w − u)n−3 + [f ;u,w](n−2,+)(n− 2)(w − u)n−2.

Because f is n-convex, [f ;u,w](n−2,+) is nondecreasing in w and hence
bounded near u. Thus

A =
f(n−2)(u)
(n− 3)!

(w − u)n−3 + o((w − u)n−3).

Next we turn to B. We have
d

dw
[f ;u,w](n−3,+) = lim

v
E→w

[f ;u, v](n−3,+) − [f ;u,w](n−3,+)

v − w

= lim
v

E→w

[f ;u, v, w](n−3,+) (by Corollary 3.2).

Because f in n-convex, [f ;u, v, w](n−3,+) is nondecreasing in u, v, w. It fol-
lows that lim

v
E→w

[f ;u, v, w](n−3,+) exists and is nondecreasing in u and w.
Consequently, it is bounded near u; that is, B = o((w − u)n−3). Therefore

f(1)(w) =
n−3∑
i=0

f(i+1)(u)
i!

(w − u)i + o((w − u)n−3),

completing the first part of the proof.
To prove the inequality (f (1))(n−2,+)(u) ≥ f(n−1,+)(u) we must estimate

[f (1,+);u](n−2,+). By definition

[f (1,+);u](n−2,+) = lim
yn−2

E→u+

. . . lim
y1

E→u+

[f (1,+);u, y1, . . . , yn−2].

By Proposition 6.1,

[f (1,+);u, y1, . . . , yn−2] = [f ;u, y1, . . . , yn−2](1,+)

+
n−2∑
i=1

[f ; yi, u, y1, . . . , yi−1, yi+1, . . . , yn−2](1,+).

Because for every u < w < yi we have

L := [f ; yi, u, y1, . . . , yi−1, yi+1, . . . , yn−2](1,+)

≥ [f ; yi, u, w, y1, . . . , yi−1, yi+1, . . . , yn−2],
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taking w → u we obtain

L ≥ [f ;u, yi, y1, . . . , yi−1, yi+1, . . . , yn−2](1,+).

Thus

[f (1,+);u, y1, . . . , yn−2] ≥ [f ;u, y1, . . . , yn−2](1,+) +
n−2∑
i=1

[f ;u, y1 . . . , yn−2](1,+)

= (n− 1)[f ;u, y1, . . . , yn−2](1,+).

Consequently, taking limits results in [f (1,+);u](n−2,+) ≥ (n−1)[f ;u](n−1,+).
According to Corollary 3.3,

(f (1,+))(n−2,+)(u) = (n− 2)![f (1,+);u](n−2,+)

≥ (n− 2)!(n− 1)[f ;u](n−1,+) = f(n−1,+)(u).

A similar argument proves (f (1,−))(n−2,−)(u) ≤ f(n−1,−)(u) for u ∈ E−.

Next we recall an assertion about convex (2-convex) functions.

Theorem 6.6. Let f : E → R be convex. Then f (1) exists for all but at
most countably many u ∈ E.

Proof. Both f (1,+) and f (1,−) are nondecreasing on E+ and E− respec-
tively and hence are continuous except at countably many points of E+∩E−.
It is easy to see that f (1,−)(u) ≤ f (1,+)(u) for u ∈ E+ ∩ E−. Moreover
f (1,+)(u1) ≤ f (1,−)(u2) for u1 ∈ E+ and u2 ∈ E− with u1 < u2. Conse-
quently, at a point u ∈ E+∩E− of continuity of f (1,−) the function f (1,+) is
continuous and f (1,+)(u) = f (1,−)(u). Finally E \ (E+ ∩E−) is countable.

Corollary 6.7. Let n ∈ N with n ≥ 2 and let f : E → R be n-
convex. Then f (i)(u) = f(i)(u) for u ∈ E+ ∩ E− and i = 1, . . . , n − 2. Also
f (n−1)(u) = f(n−1)(u) except for countably many u ∈ E.

Proof. The proof is by induction on n. For n = 2 the assertion is true
by Theorem 6.6 and because first order Peano and ordinary derivatives are
equal.

Assume the assertion is true for n− 1. By Corollary 6.4, f (1) is (n− 1)-
convex. So by the induction hypothesis f (i+1)(u) = (f (1))(i)(u) = (f (1))(i)(u)
for u ∈ E+ ∪ E− and i = 1, . . . , n − 3. By Theorem 6.5, (f (1))(i)(u) =
f(i+1)(u). Thus f (i)(u) = f(i)(u) for i = 2, . . . , n− 2. The equality holds for
i = 1 again because first order Peano and ordinary derivatives are equal.

By the inequality

(f (1))(n−2,−)(u) ≤ f(n−1,−)(u) ≤ f(n−1,+)(u) ≤ (f (1))(n−2,+)(u),

which follows from Theorem 6.5, f(n−1)(u) exists if (f (1))(n−2)(u) exist, and
in that case f(n−1)(u) = (f (1))(n−2)(u). By the induction hypothesis, for all
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but countably many u ∈ E, (f (1))(n−2)(u) = (f (1))(n−2)(u) = f (n−1)(u).
Thus f(n−1)(u) = f (n−1)(u) for all but countably many u ∈ E.

Finally we investigate the approximate differentiability of n-convex func-
tions. We begin by reminding the reader of the pertinent definition.

Definition 6.8. Let f : E → R be Lebesgue measurable, and let u ∈ E
and n ∈ N. Then f is n times approximately Peano bounded at u means
there are numbers fi(u) for i = 1, . . . , n− 1 such that

f(u+ h) = f(u) +
n−1∑
i=1

hi

i!
fi(u) +Mu(h)hn

where Mu(h) remains bounded (not necessarily uniformly in u) as h → 0
through a set of density 1 at h = 0. The setA has density 1 at u (equivalently,
u is a point of density of A) if A is Lebesgue measurable and

lim
r→0

m(A ∩ (u− r, u+ r))
2r

= 1.

Proposition 6.9. Let n ∈ N and let f : E → R be n-convex. Set

B+ = {u ∈ E+; lim sup
w

E→u+

[f ;u,w](n−1,+) =∞},

B− = {u ∈ E−; lim sup
w

E→u−

[f ;u,w](n−1,+) =∞}.

Then m(B+) = m(B−) = 0.

Proof. Let a < b ∈ E+. It suffices to show that m(B+ ∩ (a, b)) = 0. Fix
K ∈ N and let O = {[u,w]; [f ;u,w](n−1,+) > K}. By Proposition 3.1,

[f ;u,w](n−1,+) =
[f ;u,w](n−2,+) − [f ;u](n−1,+)

w − u
.

If [u,w] ∈ O, then

[f ;u,w](n−2,+) − [f ;u](n−1,+)

K
> w − u.

Let u ∈ B+ and let δ > 0. Then there is w ∈ (u, u+ δ) such that [u,w] ∈ O.
Thus O is a Vitali cover of B+ ∩ (a, b) and by the Vitali Covering Theorem,
for each ε > 0 there are finitely many pairwise disjoint intervals, {[ui, wi]}ki=1,
covering all of B+ ∩ (a, b) except for a set of measure < ε. Assuming, as we
may, that u1 < · · · < uk, and that wk ≤ b we get

m(B+ ∩ (a, b))− ε ≤
k∑

i=1

(wi − ui) ≤
k∑

i=1

[f ;ui, wi](n−2,+) − [f ;ui](n−1,+)

K
.
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Since [f ;u,w](n−2,+) is nondecreasing, [f ;ui, wi](n−2,+) ≤ [f ;ui+1](n−1,+) for
i = 1, . . . , k − 1 and [f ;uk, wk](n−2,+)] ≤ [f ; b](n−1,+), we obtain

m(B+∩(a, b))−ε ≤ [f ; b](n−1,+) − [f ;u1](n−1,+)

K
≤
f(n−1,+)(b)− f(n−1,+)(a)

K(n− 1)!
.

Since K and ε are arbitrary, m(B+ ∩ (a, b)) = 0. Similarly one can prove
that m(B− ∩ (a, b)) = 0.

Corollary 6.10. Let n ∈ N and let f : E → R be n-convex. Then f is
n times approximately Peano bounded a.e. on E.

Proof. Let B+ and B− be as in Proposition 6.9. Then m(B+∪B−) = 0.
Let A′ = {u ∈ E; f(n−1)(u) exists}. By Corollary 6.7, m(E \ A′) = 0. Let
u ∈ A′\(B+∪B−). Combining (6) (applied with k = n−1) with (3) (applied
to the term [f ;u,w](n−2,+)) for y, w ∈ E we get

f(w) = f(u) +
n−2∑
i=1

[f ;u](i,+)(w − u)i + [f ;u, y](n−2,+)(w − u)n−1

+ [f ;u, y, w](n−2,+)(w − y)(w − u)n−1.

Letting y E→ u yields

f(w) = f(u) +
n−1∑
i=1

f(i)(u)
i!

(w − u)i + lim
y

E→u

[f ;u, y, w](n−2,+)(w − u)n.

The remaining limit must exist and is [f ;u,w](n−1,+). By Proposition 6.9,
it follows that [f ;u,w](n−1,+) is bounded for w near u. Hence f is n times
approximately Peano bounded at u.

We now employ the following result about approximately Peano bounded
functions, which is a special case of the main theorem from [1].

Theorem 6.11. Let n ∈ N and let f : E → R be n times approximately
Peano bounded on E. Then for every ε > 0 there is a perfect set P ⊂ E and
a Cn function g such that m(E \ P ) < ε and f = g on P.

Finally we are ready to prove the main result of the paper.

Corollary 6.12. Let n ∈ N and let f : E → R be n-convex. Then
f is n times approximately Peano differentiable almost everywhere on E.
Moreover f(n−1) is approximately differentiable with (f(n−1))′ap = f(n), ap.

Proof. Let E′ ⊂ E be such that every point of E′ is a density point
of E′ and such that f is n times approximately Peano bounded on E′.
For n-convex functions Corollary 6.10 shows that there is an E′ such that
m(E′) = m(E). By Theorem 6.11 for every ε > 0 there is a perfect set
P ⊂ E′ and a Cn function g such that m(E′ \P ) < ε and f = g on P. Since
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(g(n−1))′ = g(n) everywhere, from the Taylor formula for g it follows that
f(n), ap exists and equals (f(n−1))′ap at every density point of P . Since ε is
arbitrary, the same is true almost everywhere on E.
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