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A model-theoretic Baire category theorem for
simple theories and its applications

by

Ziv Shami (Ariel)

Abstract. We prove a model-theoretic Baire category theorem for 7/ -sets in a

countable simple theory in which the extension property is first-order and show some
of its applications. We also prove a trichotomy for minimal types in countable nfcp theo-
ries: either every type that is internal in a minimal type is essentially 1-based by means of
the forking topologies, or 1" interprets an infinite definable 1-based group of finite D-rank
or T interprets a strongly minimal formula.

1. Introduction. The goal of this paper is to generalize a result from
[S1] and to give some applications. In [S1] the first step for proving supersim-
plicity of countable unidimensional simple theories eliminating hyperimagi-
naries is to show the existence of an unbounded type-definable forking-open
set (a set defined in terms of forking by formulas, see Definition of
bounded finite SUg-rank (for definition see Section 4).

In this paper we develop a general framework for this kind of result. It is
a new idea of a model-theoretic Baire category theorem, namely, one deals
with certain “uniformly definable” family of generalized closed sets (in com-
plicated “logic”); roughly speaking, given a partition of a complicated open
set into countably many sets, each of which is the intersection of a “uniformly
definable” family of generalized closed sets, one can find a forking-open set
that is contained in some generalized closed set in one of these families.
So, the main point is that we obtain a very nice set (forking-open), but we
can only require that it be a subset of some generalized closed set in one
of these families and not in its intersection. In particular, it is not just the
usual Baire category theorem for a complicated topological space. The proof
is quite similar to the proof in [S1] and has some important consequences,
e.g. in a countable wnfcp theory if for every non-algebraic element a (even in

some fixed non-empty 7 -set) there is o’ € acl(a)\ acl(d) of finite SU-rank,

low
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then there exists a weakly minimal formula. We also prove a trichotomy for
countable nfcp theories as indicated in the abstract.

We assume basic knowledge of simple theories. A good textbook on sim-
ple theories is [W]. The notations follow usual conventions. 7" will denote a
complete first-order theory with no finite models in some language L. We
will work in some large saturated model C of T' (not necessarily with elim-
ination of imaginaries, unless stated otherwise). Ordinals will be denoted
by a, 8,7, .... Sets A, B,C, ... will be small subsets of C, i.e. of cardinality
strictly less than the cardinality of C. The letters a,b,c,... denote finite
tuples from C, and z,v, z, . . . denote finite tuples of variables, unless stated
otherwise. We use p, g, , ... to denote types (possibly partial) over some set.
For an invariant set V' (over some small set) and n, we denote by V™ the
set of n-tuples of realizations of V.

2. Preliminaries. The forking topology is introduced in [SO] and is a
variant of Hrushovski’s and Pillay’s topologies from [H0] and [P0], respec-
tively. In this section T' is assumed to be simple and we work in a large
saturated model C of T.

DEFINITION 2.1. Let A C C and let = be a finite tuple of variables.

(1) An invariant set U over A is said to be a basic 7/ -open set over A if
there is ¢(x,y) € L(A) such that

U={a| ¢(a,y) forks over A}.

Note that the family of basic 77-open sets over A is closed under finite
intersections, thus forms a basis for a unique topology on S;(A4). An open
set in this topology is called a 7/-open set over A or a forking-open set
over A.

(2) An invariant set U over A is said to be a basic Tgo—open set over A

if U is a type-definable 7/-open set over A. The family of basic Tgo—open
sets over A is a basis for a unique topology on S;(A). An open set in this

topology is called a Tgo—open set over A.

Recall that a formula ¢(x,y) € L is low in x if there exists k < w such
that for every (-indiscernible sequence (b; | i < w), the set {¢(x,b;) | i < w}
is inconsistent iff every subset of it of size k is inconsistent. 7" is low if every
¢(z,y) is low in x.

REMARK 2.2. Assume ¢(z,t) € L is low in ¢t and ¥ (y,v) € L is low in v
(x Ny, tNv may not be (). Then O(xy, tv) = ¢(x,t) VY (y,v) is low in tv.

Proof. Let ki < w be a witness that ¢(z,t) is low in ¢ and let ko < w
be a witness that ¢ (y,v) is low in v. Let & = k1 + ko — 1. By adding
dummy variables we may assume z = y and ¢ = v (as tuples of variables).
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Let (a; | @ < w) be indiscernible such that {¢(a;,t) V ¢(a;,t) | i < w} is
inconsistent. Thus, every subset of {¢(a;,t) | i < w} of size k; is inconsistent,
and every subset of {¢(a;,t) | i < w} of size ky is inconsistent. Thus every
subset of size k of {¢(a;,t) V ¢(a;,t) | i < w} is inconsistent.

Here we state some basic facts about the 77-topology.

REMARK 2.3. (1) The 7/-topology on S, (A) refines the Stone topology
of S;(A) for all z, A.

(2) A basic 7/-open set in a low theory is type-definable and every Stone-
closed subset of (S;(A),7/) is a Baire topological space (i.e. the intersection
of countably many dense open sets in it is dense) [S1, Remark 7.6].

(3) Let A be a small set. Let F'(z,y) be a type-definable relation over
A and let f(z) be an A-definable function. Let I'rs(z) = Jy (F(x,y) A
y | f(x)). Then I'r (z) is 7/-closed over A ([SO, Claim 2.5] is slightly dif-

A

ferent, but the proof is the same).
Recall the following definition from [SO] whose roots are in [HO].

DEFINITION 2.4. We say that the 7/ -topologies over A are closed under
projections (or T is PCFT over A) if for every 77-open set U(x,y) over A
the set Iy U(z,y) is 77-open over A. We say that the 77 -topologies are closed
under projections (or T is PCFT) if they are such over every set A.

In [BPV], Proposition 4.5] the authors proved the following equivalence
which, for convenience, we will use as a definition (their definition involves
extension with respect to pairs of models of T).

DEFINITION 2.5. We say that the extension property is first-order in T
iff for any formulas ¢(x,y), v (y, z) € L the relation Q4 defined by

Qgp(a) iff  @(x,b) does not fork over a for every b |= 9 (y, a)

is type-definable (here a can be an infinite tuple from C whose sorts are
fixed). We say that T has wnfep if T is low and the extension property is
first-order in T

REMARK 2.6. Recall that T has nfcp (non-finite cover property) iff for
every formula ¢(x,y) € L there exists k < w such that every set {¢(x,a;) |
i € I} of instances of ¢(x,y) is consistent iff every subset of it of size k
is consistent. By a theorem of Shelah, T" has nfcp iff T is stable and 74
eliminates the quantifier 3°° [Shl Chapter 2, Theorems 4.2, 4.4]. Moreover,
if T' is stable then T" has nfcp iff 7" has wnfcp [BPV].

Fact 2.7 ([S1, Corollary 3.13]). Suppose the extension property is first-
order in T. Then T is PCFT.
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We say that an A-invariant set U has finite SU-rank if SU(a/A) < w
for all @ € U, and has bounded finite SU-rank if there exists n < w such
that SU(a/A) < n for all a € U. The existence of a 7/-open set of bounded
finite SU-rank implies the existence of an SU-rank 1 formula (i.e. a weakly
minimal formula):

Fact 2.8 (S0, Proposition 2.13]). Let U be an unbounded 75 -open set
over some set A. Assume U has bounded finite SU-rank. Then there exist
a set B D A with |B\ Al < w and 0(x) € L(B) of SU-rank 1 such that
6¢ C U Uacl(B).

In [ST] the class of 7f-sets and its subclass of %sjjf—sets were introduced.
The class of 7/-sets is much wider than the class of basic 7/-open sets. Here
we look at the intermediate class of %l]:)w—sets.

DEFINITION 2.9. A relation V(z,21,...,%) is said to be a pre-7/-set
relation over () if there are 6(Z,x, z1,...,2;) € L and ¢;(Z,y;) € L for 0 <
1 <[ such that for all a,dq,...,d; from C we have

l
V(a, dl, ey dl) iff da 9(56, a, dl, ceey dl) VAN /\((b,(d,yl) forks over d1 Ce dl)
=0

(for i = 0 the sequence dj ...d; is interpreted as 0). If each ¢;(Z,y;) is
assumed to be low in y;, V(z, z1,..., z) is said to be a pre—%l];w -set relation.

DEFINITION 2.10. (1) A 7/-set over () is a set of the form
U= {a | Eldl,...,dl V(a,dl,...,dl)}

for some pre-7/-set relation V(z,z1,...,2).
(2) A %f;w-set over () is a set of the form

U= {a | Edl,...,dl V(a,dl,...,dl)}
-set relation V' (z, z1,..., 2).

REMARK 2.11. Every 7

low

~ f
for some pre-7j,,,

-set is type-definable.

Proof. Let ¢(x,y) € L be low in . Let I'y(y, z) be the invariant relation
defined by I'y(a, c) iff ¢(x, a) divides over c. Then I'y(y, 2) is type-definable,
so the claim follows by compactness.

3. The Theorem. In this section T is assumed to be a simple theory
and we work in C (so, T' not necessarily eliminates imaginaries).

DEFINITION 3.1. Let © = {6;(z;, x)}icr be a set of L-formulas such that
Vo 3<%x; 0;(x;,x) for all i € I. Let s be the sort of x. For A C C*, let
aclo(A) = {b] 0;(b,a) for some 0; € © and a € A}.
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DEFINITION 3.2. An invariant set U(z,y1,...,y,) is said to be a gen-
eralized uniform family of %l];w—sets if there is a formula p(Z,z,y1,...,Yr,
Z1,...,2,) € L and there are formulas 1;(Z, v;), (%, w;) € L for 0 < i <r

and 1 < j < k that are low in v; and low in wj, respectively, such that for
all a,dy,...,d, we have U(a,dy,...,d,) iff 3a Jey, ..., e
T

pla,a,dy, ... dpe1,... ex) A [/\(%(&,Uz‘) forks over d; . dz)}

i=0
k
A { (nj(a,w;) forks over dy ...dyeq ... ej)]
j=1
DEFINITION 3.3. An invariant set F(x,y1,...,y,) is said to be a gener-

alized uniform family of #  _closed sets if

low
F(I)yh cee )yT‘) = m"ui(ajvyla cee 7y’r‘)7
i
where each U;(z,y1,...,yr) is a generalized uniform family of 7:[]; w-Sets.

The following fact [SI, Theorem 8.7] is the key ingredient of our main
theorem.

FAcT 3.4. Assume the extension property is first-order in T. Let U be
an unbounded 7f-set over (). Then there exists an unbounded T1-open set
U* over some finite set A* such that U* C U. In fact, if V(z,21,...,2) is
a pre-77-set relation such that U = {a | 3dy,...,d; V(a,dy,...,d))}, and

d* = (dj,...,d},) is any mazimal sequence (with respect to extension) such
that U3, = dm+1,...,d V(C,d;,...,d},,dm+1,-..,d) is unbounded, then

W isa 71 -open set over d*.

THEOREM 3.5. Let T be a countable simple theory in which the extension
property is first-order. Assume:

(1) ©={6;(x},x)}icw is a set of L-formulas such that Vx 3<>z, 6;(x}, x)
for alli < w.

(2) Up(z) is a non-empty %l];w—set over ().

(3) {Fn(n)}n<w is a family of B-invariant sets such that F,(C) Nacl(0)
=0 for alln < w. )

(4) For every n < w and any variables §j = y1,...,yr, let Fi(x,,7) be
a generalized uniform family of ﬂ];w—closed sets such that F,(C) C

FJ(C,d) for all d.

Now, assume that for all a € Uy there exist b € aclg(a) and n < w such that
b € F,(C). Then there is an unbounded Téco-open set U* over a finite tuple



196 7. Shami

d* and variables §* of the sort of d*, and n* < w such that
U C Fr.(C,d*) Nacle(Up).

Proof. First, we may assume © is downwards closed (i.e. if § € @ and
0’ I 0 then 0’ € ©; note that since L is countable the closure of © in this
sense remains countable). Assume the conclusion of the theorem is false. To
get a contradiction, it will be sufficient to show the following.

SUBCLAIM 3.6. For every non-empty %l{)w

-set U C Uy over B, every

0 € O, and every n < w there exists a non-empty %ZJ;w-set u* C U over

0 such that either =3z’ O(2’, a) for all a € U*, or for all a € U* there exists
b= 0(x',a) withb ¢ F,(C).

First, we show this is sufficient. Construct a decreasing sequence (U, |
m < w) of non-empty %l];w—sets that begins at Uy, and for every m < w the
set U 41 is obtained from U, by applying Subclaim for an appropriate
pair (6,n) (that corresponds to m by a fixed bijection of © x w with w).
By Remark and compactness, (U, # 0, so there exists a* € Uy such
that for all § € © either -3z’ 0(2',a*), or for every n < w there exists
bno = 6(2',a*) such that b,p ¢ F,(C). Now, by the assumption of the
theorem there exist 6(z',2) € O, b* and n* < w such that 0(b*,a*) and
b* € F,«(C). As O is downwards closed, there exists 6*(2/, x) € © such that
0*(2',x) b O(2', z) and 6*(2’,a*) isolates tp(b*/a*) (as it is algebraic). By
the above property of a*, there exists b** |= 0*(2/,a*) with b** & F,-(C),
contradicting the fact that 6*(2’, a*) isolates tp(b*/a*) and the assumption
that F,«(C) is (-invariant.

Proof of Subclaim . Let U, § and n < w be given. Let V(x, z1,...,2)

be a pre—i‘f

iow-Set relation such that

L{:{a ’ Hdl,...,dl V(a,dl,...,dl)},
where V is defined by:

l
Via,di,...,dy) iff 3a [o(d, aydi,...,di) A N\ (i@, t;) forks over d; . ..di)}
i=0
for some o(Z,z,21,...,2) € L and ¢;(Z,t;) € L which are low in ¢; for
0 <i <. Let Vy be defined by: for all b,dq,...,d; € C,
Vo(b,dy,...,dy) iff Fa (6(b,a) ANV (a,dy,...,dp)),
and let
Up = {b|3dy,... dy Va(bydy,. .. dp)}.

Since by the assumption F,(C) Nacl(() = , we may assume Uy Nacl() = 0
and Up is non-empty. Now, let d* = (dj,...,d},) be a maximal sequence,
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with respect to extension (0 < m <), such that
Vo(z') = s, ... dy Vol',di, ... d5  dmyts ... dy)

' mo

is non-algebraic. We may assume m < [ (by choosing V' appropriately).
By Fact Vp(C) is an unbounded basic Tgo—open set over d*. Since we
assume the conclusion of the theorem is false, V4(C) € F¥ (C,d*) where
v = yi,...,y,, has the same sort as d*. Now, let each Usy(zp,y*) for
s < « be a generalized uniform family of Tlow—sets such that Fp,(z,,7*) =
Nsca Usn(Tn, ¥*). Let b* € Vo(C) \ FL (C,d*). So, there exists s* < o
such that b* € Ug- »(C,d"). Let p(Z', zpn,y7, ... Y. 215, 2,) € L and let
Yi(Z,vi), 1 (&, w;) € Lfor 0 <i<mand 1< j <k below in v; and low
in wj respectively, such that for all b, d1, ..., d,, we have Ug (b, d1, ..., dm)
iﬂ’ﬂB 361,...,€k

p(b,b,dy, ... dm e, ex) A [/\wi(z},vi) forks over dj . ..di)}

i=0
k
A [ /\(Mj(ga wj) forks over dy ...dpeq ... ej)].
j=1
Now, let dy . q,...,d; and a*,a* and E* = (e],...,e}) and b* be such that

!
(x1)  0(b*,a") Ao(a*,a*,d],...,dJ) A /\(qﬁi(d*,yi) forks over dj ...d}),

=0
(+2)  p(b*,b* L. dy el ),
(x3) [/\(%(i)*, v;) forks over dj ... d;")}
i=0

k
[/\ 115 (b*,w;) forks over dj .. dyer...eq)l.
By maximality of d*, we know b* € acl(d*d},, ). Thus, by taking a non-
forking extension of tp(b*E*/acl(d*dy, 1)) over acl(dj...dfa*a*) we may
assume E* is independent of df ...dfa*a* over d*d}, ; and (x1)—(x3) still
hold. We conclude that
l
/\ (¢i(a*,t;) forks over dj ...d; E™).
i=m+1

Now, we define the # et U, First, define a relation V* by:

low™

V¥(a,dy,. .. dm,e1,... e dmit,. .. dp) iff 3a,b,0 (0F AVE AVE AV,
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where 0* is defined by: 6*(a, b, bya,dy,...,dm,e1,.. €y A1,y .., dy) iff
0(b,a) Ao(a,a,dy,....d;) Ap(b,bydi,... dmer,... e,
Vg is defined by: Vi (@, b, dy, . . ., dyy,) iff

/\(@'(@7 ti) Vv wi(i), v;) forks over dj .. .d;),
i=0
Vi is defined by: Vi(b,dy, ..., dm,e1,..., e) iff
k ~
/\(,uj(b, wj) forks over di ...dpe1 ... ¢€j),
j=1

and V5 is defined by: Va(a,d1,...,dm,e1, ... e dmt1, ..., dp) iff
l
/\ (¢i(a,t;) forks over dy ...d;e; . ..ep).
i=m+1

Note that V* is a pre-f’lj;w—set. Let

ur :{a|Eldla---7dmaela---7€k7dm+17~-,dl
V*(a7d17"'adma€17'-'aek7dm+17"'7dl)}'

By the definition of U*, we have U* C U. Moreover U* is a %f;w—set by
Remark By construction, U* # (). Now, let a € U*. By the definition
of U*, there are b,b,dy,...,dpy,e1,..., e, such that 6(b,a), p(b,b,dy, ..., dpn,

€1,...,€k), and

(%’(5, v;) forks over dj ...d;),

~-

@
Il
=)

(11 (b, w;) forks over di ...dper ... ¢ej).

~.

<
Il
-

Thus U (b, d; .. .dy) and therefore -F7 (b,dy...dn). Hence b ¢ F,, as
required.

4. Applications. In this section we give some applications of Theorem
B.5l In fact, we will show several instances of this theorem that are appar-
ently new even for stable theories. In this section T is assumed to be a simple
theory and we work in C.

We start by pointing out that Theorem [3.5 generalizes [S1, Theorem
9.4] that is one of the essential steps towards the proof of supersimplicity
of countable simple unidimensional theories with elimination of hyperimagi-
naries. First recall the following definitions from [S1] of stable independence
and SUge-rank.
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DEFINITION 4.1. For a € C, A,B C C, a 1° B if for some stable ¢(z,y)

A
€ L, there are b C AU B and d' € ¢(C,b) Ndcl(Aa) such that ¢(z,b) forks
over A.

DEFINITION 4.2. The SUge-rank of tp(a/A) is defined by induction on

a: if @« = 41, then SUse(a/A) > « if there exist By O By 2 A such that

a 1° By and SUge(a/By) > 3. For limit a, SUsc(a/A) > av if SUse(a/A) > B
B

0
for all 8 < a.

REMARK 4.3. In [S1, Lemma 6.8] it is proved that in a simple theory,
in which Lstp = stp over sets, |? is symmetric. In fact, | is symmetric in
any simple theory. Thus for any simple theory, if sg and s; are finite tuples
of sorts and n < w then the set F,,>"*! defined by

Fiost = {(a,A) € C*° x C*' | SUse(a/A) < n}
is a generalized uniform family of %l];w—closed sets.
Proof. To prove that |* is symmetric, first recall [STl, Claim 6.5]:

FacT 4.4. Let T be simple. Let ¢(x,y) € L be stable. Assume a | b and
A
a’ | b and Lstp(a/A) = Lstp(a’/A). Then ¢(a,b) iff ¢(a’,b).
A

By the proof of symmetry of stable independence [S3, Lemma 6.8] it
will be sufficient to prove Fact with the weaker assumption stp(a) =
stp(a’) instead of the assumption Lstp(a) = Lstp(a’) (we may clearly assume
A = (). Indeed, assume stp(a) = stp(a’). Now, for every complete type
q € S(0) let E; be the equivalence relation defined by: Ey(a,a’) iff “for
every b = ¢ that is independent of aa’ we have [¢(a,b) iff ¢(a’,b)]”. Then
E, is Stone-open. By Fact equality of the Lascar strong type refines E,.
Thus Ey is a (-definable finite equivalence relation (as a bounded Stone-open
equivalence relation is definable [S3| Lemma 7]). Now, by the assumption
that stp(a) = stp(a’), E4(a,a’) for all complete ¢. Thus, by extension we
infer that for every b, if each of a and o’ is independent of b, then ¢(a,b) iff
o(d',b).

We now explain the last phrase. We need to show that —F,"* is a
disjunction of invariant sets, each of which is a generalized uniform fam-
ily of %l];w—sets for all sg, s; and n as above. Indeed, by symmetry of 17
—Fn>° (a, A) iff there are by, c1, . .., by, ¢, such that ¢; L a for all

Abjci...b;_1c;—1b;
1 < i < n. By the definition of 17, this can be easily seen to be equivalent
to a disjunction of the required form (since any stable ¢(z,y) € L is low in
both z and y).
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For an A-invariant set V', we set acly(V) = {d’ | @’ € acl(a) for some
a € V1}. The following corollary generalizes [S1, Theorem 9.4].

COROLLARY 4.5. Let T be a countable simple theory in which the ez-
tension property is first-order. Let Uy be a mon-empty %{;w-set. Assume for
every a € Uy there exists a' € acl(a) \ acl(D) such that SUse(a') < w. Then
there exists an unbounded Tgo—open set U C acly(Up) over a finite set such

that U has bounded finite SUge-rank.
Proof. Let x be the variable of Uy, so Uy = Uy(z). Let
O ={0(2',2) | 32 6(2',z), 2’ any variable}.

Let S be the set of sorts. Let [ : w — & X w be a bijection, and I, I> the
projections of I to the first and second coordinate, respectively. Now, for
each n < w let F,, = {a € C(™ \ acl(()) | SUs(a) < Iz(n)}. Now, for every
finite tuple of variables Y and n < w let s(Y") be the finite sequence of sorts
of Y and let

FY ={(a,A) e ' x c5¥) | SU(a/A) < Ir(n)}.

By the definition of the SUg.-rank, F,(C) C FY (C, A) for every n < w and
all Y, A. By Remark E FY is a generalized uniform family of ?IJ; »~closed
sets for all Y, n. By our assumptions, we see that the assumptions of Theorem
hold for Uy(z), O, {F,}, and {F) }y.,, and thus by its conclusion we

are done.

COROLLARY 4.6. Let T be a countable theory with wnfcp. Let Uy be an
unbounded 7¥-set over O of finite SU-rank. Then there exists a finite set A
and an SU-rank 1 formula 0 € L(A) such that 6 C Uy U acl(A).

Proof. First, by modifying Uy, we may assume Uy N acl(f)) = (. Let
O = {2’ =z}, Uy(x) = Up. Let s(x) be the sort of z. Now, for each n < w let

F, ={a € C*®\ acl(0) | SU(a) < n}.

For every finite tuple of variables Y and n < w let s(Y") be the finite sequence
of sorts of Y and let

FY ={(a,A) e c*® x c*Y) | SU(a/A) < n}.

By symmetry of forking and the assumption that 7' is low, each F) is a
generalized uniform family of 7/ -closed sets. Clearly, Fy,(C) C FY(c,A)

low™
for all n < w and Y, A. By our assumption, the assumptions of Theorem

are satisfied for Uy, O, {F,,}n and {FY }y,, and thus by its conclusion there

exists an unbounded Tgo—open set U* C Uy over a finite set Ag and U* has

bounded finite SU-rank. By Fact there exists a finite set A O Ay and
there exists an SU-rank 1 formula 6 € L(A) such that §¢ C U* Uacl(A).
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COROLLARY 4.7. Let T be a countable theory with wnfcp. Let Uy be a
non-empty 7/ -set over 0. Assume that for every a € Uy there exists a' in
acl(a) \ acl(@) such that SU(a’') < w. Then there exists a finite set A and an
SU-rank 1 formula 0 € L(A) such that ¢ C acly(Up) U acl(A).

Proof. Just like the proof of Corollary [£.6]

5. Dichotomies for countable theories with wnfcp. In this section
we show that the dichotomy [S1, Theorem 5.5] implies a strong dichotomy
between essential 1-basedness and supersimplicity in the case T' is a count-
able wnfcp theory that eliminates hyperimaginaries. Before we state the
above dichotomy for the special case of the 77-topologies (simplified ver-
sion), let us recall the basic definitions. In this section 7" is assumed to be
simple and we work in C = C®4.

First, let us fix some notations and terminology. Let V, W be invariant
sets. We say that V is generated over W by a small set B if V' C dcl(W U B).
We say that V is generated over W if it is generated over W by some small
set. If V' is A-invariant, we say that V is (almost) W-internal over A if
for every a € V there exists B O A, over which W is invariant, that is
independent of a over A and there exists a tuple ¢ of realizations of W such
that a € dcl(B, ¢) (a € acl(B, ¢), respectively). If we say that V' is W-internal
(without specifying over what set) then we mean that V' is W-internal over
the set that V' comes with (e.g. in case it is a partial type, we consider it
with its specified parameters). Note that if both V and W are A-invariant
then for all B,C 2 A, V is (almost) W-internal over B iff V is (respectively,
almost) W-internal over C.

DEFINITION 5.1. A type p € S(A) is said to be essentially 1-based by
means of the 11 -topologies if for every finite tuple ¢ from p and for every
type-definable 7/-open set U over Ag, the set {a € U | Cb(a/Ac) & bdd(aA)}
is nowhere dense in the Stone topology of U.

We now state [SI, Theorem 5.5] for the 7/-topologies (in fact, it is a
special case of it when working over constants). Also, as indicated at the
end of the proof of this fact, the finite SU-rank 7f-open set we obtained is
almost pp-internal.

Fact 5.2. LetT be a countable simple theory with PCFT that eliminates
hyperimaginaries. Let py be a partial type over () of SU-rank 1. Then either
there exists an unbounded T4 -open set over some countable set that is almost
internal to po (in particular, has finite SU-rank) or every type p € S(A),
with A countable, that is internal in po is essentially 1-based by means of
the 71 -topologies.
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THEOREM 5.3. Let T be a countable theory with wnfcp that eliminates
hyperimaginaries. Let p be a partial type over O of SU-rank 1. Then either

(1) every type q € S(A), with A countable, that is internal in p is essen-
tially 1-based by means of the 1 -topologies, or

(2) there exists a weakly minimal definable set (in L(C)) that is generated
over p(C).

Proof. Assume (1) is false. By Fact there exists an unbounded type-
definable 7/-open set U over some countable set A such that tp(a/A) is
almost p-internal for every a € U.

SUBCLAIM 5.4. There exists an unbounded type-definable 77 -open set U*
over A that is generated over p(C).

Proof. By [BW] or [S2, Corollary 4.9], for every a € U \ acl(A) there
exists a’ € dcl(aA) \ acl(A) such that tp(a’/A) has a fundamental system of
solutions over p(C) (i.e. tp(a’/A) is generated over p(C) by a set of realiza-
tions of tp(a’/A) together with A). In particular, there exists a (finite) set
A’ of realizations of tp(a’/A) that is independent of @’ over A and a tuple ¢
of realizations of p such that o’ € dcl(A’Ac). For any A-definable functions

fy9g let
Fro={a€lU]| f(a) = g(b,e) & acl(A) for some b, ¢ with f(a) | b,
A
where ¢ is a tuple of realizations of p,
and b is a tuple of realizations of tp(f(a)/A)}.

By Remark (3), each Fy, is 7f-closed over A. Thus, by the Baire
category theorem for the 7/-topology (by Remark (2)7 U\ acl(A), 7)) is
a Baire space) there are A-definable functions f*,g* such that Fy« 4« has
non-empty interior in the 7/-topology over A. By Fact there exists an
unbounded type-definable 77-open set U4* over A such that for every a € U*
there exists a tuple b of realizations of tp(a/A) that is independent of a over
A such that a = g*(b, €) for some tuple ¢ of realizations of p. The subclaim
follows now directly from [S2, Theorem 3.7]:

Fact 5.5. Letp € S(0) and let R be D-invariant. Suppose the internality
of p in R is witnessed by a generic parameter whose type q is almost-R-
internal. Then p is generated over R by a set of realizations of q.

Now, as U* has bounded finite SU-rank (the bound is determined by g*),
by Fact there exists an SU-rank 1 formula 6(x,b) such that 6(C,b) C
U* Uacl(Ab). Thus (2) follows.

5.1. A trichotomy for countable theories with nfcp. Here we
prove a trichotomy for countable theories with nfcp. In this subsection we
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work in a large saturated model C = C®? of a simple theory T with elimina-
tion of hyperimaginaries unless stated otherwise.

We begin with some standard terminology and remarks. For a definable
set D over A we denote by D* the induced structure on D over A, namely, D*
is the set D equipped with all A-definable relations in C that are subsets of
D" for some n. Then clearly D* has elimination of quantifiers and therefore
saturated.

DEFINITION 5.6. Let D be a type-definable set over a set A. We say that
D is 1-based if for every finite tuple a of realizations of D and set B D A,
we have Cb(a/B) € acl(aA). A type-definable group G over A is said to be
1-based if its underlying set is.

REMARK 5.7. (1) A type-definable set D over A is 1-based iff a is inde-
pendent of @ over acl(Aa) Nacl(Aa’) for any finite tuples @ and @ from D.
(2) Let D be a definable set over A. Then

(i) if T is stable (simple), so is Th(D*),
(i) if D* is 1-based then D is 1-based (as a type-definable set),
(iii) if D is stably embedded (e.g. T is stable), and p is a partial
type of D*, then RMp-(p) = RM(pp) (where pp is just the
conjunction of p with appropriate power of D, RM is the usual
Morley rank in C, and RMp- is the Morley rank in D*).

LEMMA 5.8. Assume L is countable and 0(C) C acl(p(C)), where p is
any partial type over O and 6(x) € L is non-algebraic. Then

(1) there exists a O-definable 0*(x) - 0(x) and O-definable functions f,g
and n < w such that f[0*(C) \ acl(D)] C g[p"(C)] and f[0*(C)] is
non-algebraic, and

(2) if p is minimal then f]0*(C)] has ordinal Morley rank and thus con-
tains a strongly minimal formula.

Proof. For every a € 0(C) \ acl() there exist n < w and ¢ € p"(C) such
that a € acl(¢). Let e = Cb(¢/a). Now, by elimination of hyperimaginaries
there exists e* € acl(a) N decl(p(C)) \ acl(D). Let e** = {¢’ | tp(e'/a) =
tp(e*/a)} (e** is an imaginary element). Then clearly e** is in dcl(a) N
del(p(C)) \ acl(D). For any appropriate (-definable functions f, g let

Fyg={a€0(C) |3 Cp(C) [f(a) =g(c) € acl(D)]}.
Consequently, {Ff 4} 7,4 is a countable family of Stone-closed sets that covers
6(C) \ acl(P) and thus by the Baire category theorem for the Stone topology
of 6(C) \ acl() we get the required formula 8* € L and (-definable functions
fygasin (1).

To prove (2), assume that p is minimal. Then, by induction on n, we
easily find that for every countable set A the number of (complete) types
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of realizations of p™ over A is countable. Thus by (1), for every countable
set A the number of complete types over A extending f[6*(C)] is countable.
Therefore f[6*(C)] has ordinal Morley rank.

We will be using the following two important facts. The first one is
Buechler’s dichotomy for minimal types (see [P1, Corollary 3.3]).

FAacT 5.9. Let T be superstable and let p € S(A) be a minimal type.
Then either p is 1-based or RM(p) = 1.

The second fact is Wagner’s result [W] on analysis in 1-based types in
simple theories (it generalizes previous results of Hrushovski and Chazi-
dakis).

Fact 5.10. Let T be any simple theory and work with hyperimaginaries.
Assume p € S(A) is analyzable in an A-invariant family of 1-based types.
Then p is 1-based.

THEOREM 5.11. Let T be a countable theory with nfcp. Let p € S(0) be
mianimal. Then either

(1) every type q € S(A), with A countable, that is internal in p is essen-
tially 1-based by means of the T -topologies, or

(2) there is an infinite definable 1-based group of finite D-rank that is
p-internal, or

(3) there exists a strongly minimal definable set that is p-internal.

Proof. Assume (1) is false. By Theorem there exists a weakly min-
imal formula 6(x,b) that is p-generated and in particular p-internal (in the
stable case an invariant set is p-internal iff it is p-generated). First, assume
6(C,b) C acl(p(C) Ub). Then by Lemma there exists a strongly min-
imal formula ¢ € L(C) that is p-internal (even generated over p¢). Thus,
we may assume 0(C,b) € acl(p® Ub). Let a € 0(C,b) \ acl(p® U b). Let
q = tp(a/acl(b)) and let I' = Aut(q®/p¢ U acl(b)). We will be using the
following fact [S2l Theorem 2.9], with its proof, which for simplicity we
state for a special case. In the following, for a set .S, possibly large, we let
DCL(S) be the set of all elements in C that are fixed by any automorphism
that fixes S pointwise; we say that a set V is controlled by B over S, if
V CDCL(BUS).

Fact 5.12. Let T be any simple theory. Let Q) be a stably embedded
type-definable set over () and let ¢ € S(0). Suppose there exists a subset
B of DCL(¢° U Q) with tp(B) + Lstp(B) such that ¢¢ is controlled by
B over Q. Then I' = Aut(¢®/Q) is type-definable with its action on ¢©
over ().

REMARK 5.13. It is well known that in a stable theory if ¢ is Q-internal
then there is always a set B of realizations of ¢ such that ¢(C) C dcl(Q, B),
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in particular, ¢ is controlled by B over Q; if g is stationary then B can be
taken to be a finite initial segment of a Morley sequence of ¢ and clearly
tp(B) F Lstp(B).

Now, I' in Fact can be interpreted in the following way. As @ is a
type-definable stably embedded set, there exists a partial type Yo(Y,Y”) ex-
pressing that Y, Y" are Q-conjugate, for Y, Y’ [=tp(B). Now, let I'gz (Y, Y”)
be the type expressing that tp(Y) = tp(Y’) = tp(B) and Xg(Y,Y”). Now, by
definition, o € I' = Aut(¢®/Q) iff o is the restriction to ¢€ of some automor-
phism of C that fixes Q pointwise. As ¢ is controlled by B € DCL(¢¢ U Q)
over @, it is not hard to show (see proof of [S2, Theorem 2.9]) that I'
can be interpreted as I'p2/q /E for a certain (-definable equivalence rela-
tion F.

By Remark and the fact that ¢(z) F 6(x,b), there is an infinite
type-definable group G over acl(b) that is isomorphic to I' such that for
some acl(b)-definable equivalence relation F and some n < w, we have
G C 0(C,b)"/E. Now, by stability of T\, G is an intersection of definable
groups over acl(b) [H1, Theorem 2]. By compactness, there is an infinite
acl(b)-definable group Gy that is p-internal and has finite D-rank. By Fact
and Remark [5.7)(2)(i) applied to the induced structure Gf on Go over
acl(b), every minimal type r in Gf is either 1-based or of Morley rank 1.
Thus if (3) fails, then any such r is 1-based in G§ by Remark [5.7/(2)(iii)
and stability of 7'. As Gj has finite SU-rank, we conclude, when working in
G}, that every non-algebraic type is non-orthogonal to a minimal type, and
therefore any type in Gjj is analyzable in 1-based types. By Fact G} is
1-based. By Remark [5.7)(2)(ii), Gy is 1-based.
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