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Abstract. We obtain two classifications of weighted projective spaces: up to hom-
eomorphism and up to homotopy equivalence. We show that the former coincides with
Al Amrani’s classification up to isomorphism of algebraic varieties, and deduce the latter
by proving that the Mislin genus of any weighted projective space is rigid.

1. Introduction. Weighted projective spaces are the simplest projective
toric varieties that exhibit orbifold singularities. They have been extensively
investigated by algebraic geometers, but have attracted only fleeting atten-
tion from algebraic topologists since Kawasaki’s pioneering work [10], in
which he computed their integral cohomology rings. Subsequently, their K-
theory was determined by Al Amrani [2], and the study of their KO-theory
was initiated by Nishimura–Yosimura [13].

In toric geometry, weighted projective spaces are classified by their fans.
Here, we give two classifications that are fundamental to algebraic topol-
ogy: up to homeomorphism and up to homotopy equivalence. We obtain the
latter as a consequence of the fact that the Mislin genus of a weighted pro-
jective space is rigid. Our results are stated below, following summaries of
the definitions and notation.

A weight vector χ = (χ0, . . . , χn) is a finite sequence of positive integers.
It gives rise to a weighted action of S1 on S2n+1 ⊂ Cn+1,

(1.1) g · z = (gχ0z0, . . . , g
χnzn) for g ∈ S1, z ∈ S2n+1.

The quotient S2n+1/S1〈χ〉 is the weighted projective space P(χ). Alterna-
tively, P(χ)may be defined as the quotient of Cn+1\{0} by the same weighted
action of C×; this exhibits P(χ) as a complex projective variety.
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Scaling the weight vector χ leads to isomorphic weighted projective spaces
P(χ) and P(mχ) for any integer m ≥ 1. Moreover, if all weights except, say,
χ0 are divisible by some prime p, then the map

(1.2) P(χ)→ P(χ0, χ1/p, . . . , χn/p), [z0 : · · · : zn] 7→ [zp0 : z1 : · · · : zn],
is an isomorphism as well (cf. [8, §5.7]). This leads to the notion of nor-
malized weights: a weight vector χ is normalized if for any prime p at least
two weights in χ are not divisible by p. Any weight vector can be trans-
formed to a unique normalized vector by repeated application of scaling and
(1.2). Consequently, two weighted projective spaces are isomorphic as al-
gebraic varieties and homeomorphic as topological spaces if they have the
same normalized weights, up to order. We prove that the converse is also
true. In particular, we recover Al Amrani’s classification up to isomorphism
of algebraic varieties [1, §8.1].

Theorem 1.1. The following are equivalent for any weight vectors χ
and χ′:

(1) The normalizations of χ and χ′ are the same, up to order.
(2) P(χ) and P(χ′) are isomorphic as algebraic varieties.
(3) P(χ) and P(χ′) are homeomorphic.

For any prime p, the p-content pχ of χ is the vector made up of the high-
est powers of p dividing the individual weights. For example, 2(1, 2, 3, 4) =
(1, 2, 1, 4). Let χ and χ′ be two normalized weight vectors. It follows from
Kawasaki’s result that the cohomology rings H∗(P(χ);Z) and H∗(P(χ′);Z)
are isomorphic if and only if, for all primes p, the p-contents pχ and pχ

′ are
the same up to order. The same phenomenon can be observed in K-theory
and KO-theory. In fact, no cohomology theory can tell such spaces apart:

Theorem 1.2. Two weighted projective spaces are homotopy equivalent
if and only if for all primes p, the p-contents of their normalized weights are
the same, up to order.

The torus T = (S1)n+1/S1〈χ〉 ∼= (S1)n and its complexification TC act
on P(χ) in a canonical way, and the resulting equivariant homotopy type
is a finer invariant. As shown in [3, Thm. 5.1], the equivariant cohomology
ring H∗T (P(χ);Z) determines the normalized weights up to order.

Let pχ
∗ be the vector obtained from pχ by ordering its coordinates as

a non-decreasing sequence, and let χ∗ denote the product of the pχ
∗, taken

coordinatewise. For example, (1, 2, 3, 4)∗ = (1, 1, 2, 12). By Theorem 1.2,
P(χ) is homotopy equivalent to P(χ∗). The weights in χ∗ form a divisor
chain, in the sense that each weight divides the next. As a consequence, the
space P(χ∗) is particularly easy to work with because the differences

(1.3) ∗ = P(χ∗n), P(χ∗n−1, χ∗n) \ P(χ∗n), . . . ,P(χ∗0, . . . , χ∗n) \ P(χ∗1, . . . , χ∗n)
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form a cell decomposition of P(χ∗) (see Remark 3.2 below), and

(1.4) ∗ = P(χ∗0) ⊂ P(χ∗0, χ∗1) ⊂ · · · ⊂ P(χ∗0, . . . , χ∗n−1) ⊂ P(χ∗0, . . . , χ∗n)
displays P(χ∗) as an iterated Thom space [4, Cor. 3.8].

The Mislin genus of a weighted projective space P(χ) is the set of all
homotopy classes of simply connected CW complexes Y of finite type such
that for all primes p the p-localizations of Y and P(χ) are homotopy equiv-
alent. The Mislin genus of a space is rigid if it contains only the class of the
space itself.

Theorem 1.3. The Mislin genus of any weighted projective space is rigid.

For CPn, this has been established by McGibbon [11, Thm. 4.2(ii)].

In Section 2 we review Kawasaki’s results on which our work is based.
Theorem 1.1 is proved in Section 3, and Theorems 1.2 and 1.3 in Section 5;
necessary conditions for the rigidity of the Mislin genus are established in
Section 4.

2. Kawasaki’s results. From now on, χ = (χ0, . . . , χn) always denotes
a normalized weight vector, and cohomology is taken with integer coefficients
unless otherwise stated. In order to make Kawasaki’s description ofH∗(P(χ))
explicit, it is convenient to recall his notation (r0(χ; p), . . . , rn(χ; p)) for the
non-decreasing weight vector pχ∗; given any 0 ≤ i ≤ n, we then set

(2.1) li = li(χ) =
∏

p prime

rn−i+1(χ; p) · · · rn(χ; p).

We also consider the map

(2.2) ϕ = ϕχ : CPn → P(χ), [z0 : · · · : zn] 7→ [zχ0
0 : · · · : zχn

n ].

Theorem 2.1 ([10, Thm. 1]). Additively, H∗(P(χ)) ∼= H∗(CPn). Fur-
thermore, there exist generators ξi ∈ H2i(P(χ)) and η ∈ H2(CPn) such that
ϕ∗(ξi) = liη

i for 0 ≤ i ≤ n; the multiplicative structure is specified by

ξiξj =
lilj
li+j

ξi+j

in H2(i+j)(P(χ)), for 0 ≤ i+ j ≤ n.
Remark 2.2. Kawasaki’s proof of Theorem 2.1 shows that the integral

homology groups H∗(P(χ)) are finitely generated and torsion-free, and there-
fore isomorphic to Hom(H∗(P(χ)),Z) by the Universal Coefficient Theorem.

Moreover, [5, Sec. 3.2] and [9, Cor. 7.2] confirm that P (χ) is a simply
connected finite CW complex for every choice of χ.

Kawasaki also determined the cohomology of the generalized lens space
L(k;χ) = S2n+1/Zk〈χ〉, where in this case χ describes the weights of the kth
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roots of unity. The answer depends on the augmented weight vector (χ, k) =
(χ0, . . . , χn, k).

Theorem 2.3 ([10, Thm. 2]). The non-zero cohomology groups of L =
L(k;χ) are H0(L) ∼= H2n+1(L) ∼= Z and H2i(L) ∼= Zq for 1 ≤ i ≤ n, where
q = li(χ, k)/li(χ).

3. Classification up to homeomorphism. Fix a point z ∈ P(χ). Let
I and J be the subsets of {0, . . . , n} corresponding to the zero and non-zero
homogeneous coordinates of z, respectively, and let q = gcd{χi : i ∈ J}. Also,
write χI ∈ ZI for the weights indexed by I, and let UI = {[z0 : · · · : zn] :
zi 6= 0 for i /∈ I}.

Lemma 3.1 (cf. [8, §5.15]). There is an isomorphism of algebraic varieties

UI ∼= (C×)|J |−1 × CI/Zq〈χI〉,

sending z to a point of the form (z̃, 0).

Observe that CI/Zq〈χI〉 is the unbounded cone over L(q;χI).

Proof of Lemma 3.1. The weight vector χJ determines a morphism C× →
(C×)J with kernel Zq. Let T ′ be its image and T ′′ ∼= (C×)|J |−1 a torus
complement. Then

UI = ((C×)J × CI)/C×〈χ〉 = (T ′′ × T ′ × CI)/C×〈χ〉 = T ′′ × CI/Zq〈χI〉.

Remark 3.2. If χ0 = 1 and z = [1 : 0 : · · · : 0], then UI ∼= Cn. If
the weights form a divisor chain, we have P(χ) \ UI = P(χ1, . . . , χn) =
P(1, χ2/χ1, . . . , χn/χ1); hence we obtain an inductive decomposition of P(χ)
into n+ 1 cells ∗, C, C2, . . . , Cn.

Lemma 3.3. There is an isomorphism H2n−1(P(χ),P(χ) \ {z}) ∼= Zq.

Proof. Set X = (C×)|J |−1, Y = CI/Zq〈χI〉 and m = |I|−1. Note that X
is a manifold of dimension 2(n−m−1), so that H∗(X,X \{z̃}) is isomorphic
to Z in dimension 2(n − m − 1) and zero otherwise. Excision, Lemma 3.1
and the Künneth formula for relative cohomology therefore imply

H∗(P(χ),P(χ) \ {z}) ∼= H∗(UI , UI \ {z})
∼= H∗(X × Y, (X \ {z̃})× Y ∪X × (Y \ {0}))
∼= H∗(X,X \ {z̃})⊗H∗(Y, Y \ {0}),

because H∗(X,X \ {z̃}) is free. In particular,

H2n−1(P(χ),P(χ) \ {z}) ∼= H2m+1(Y, Y \ {0}) ∼= H̃2m(L(q;χI)).

If m = 0, then q = 1 because χ is normalized, and the claim holds.
Otherwise, Theorem 2.3 gives H2m(L(q;χI)) ∼= Zq′ , where the p-content
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of q′ is given by

(3.1) p-content of
lm(χI , q)

lm(χI)
=

m∏
i=1

rm+2−i(χI , q; p)

rm+1−i(χI ; p)
.

We have to show q′ = q, which means that q′ and q have the same p-content
for all p. This is clearly true if q is not divisible by p. Otherwise, χI inherits
from the normalized weight vector χ two weights not divisible by p. (Recall
that q is the gcd of the weights appearing in χ, but not in χI .) Hence,
r1(χ; p) = 1, and the numerator of (3.1) differs from the denominator by the
p-content of q.

Proof of Theorem 1.1. By the remarks preceding the theorem, we only
have to prove the implication (3)⇒(1). In order to do so, we show how to
read off the normalized weights from topological invariants of a weighted
projective space P(χ). For z ∈ P(χ), let q′(z) be the order of the finite
group H2n−1(P(χ),P(χ) \ {z}). Lemma 3.3 implies that for all d ≥ 1 the
space

X(d) = {z ∈ P(χ) : d | q′(z)}

is again a weighted projective space or empty. In fact,

X(d) = {[z0 : · · · : zn] ∈ P(χ) : zi = 0 if d - χi}

because d divides q′(z) = q if and only if it divides χi for all i such that
zi 6= 0. For each d, the dimension of X(d) (which equals the degree of the
highest non-vanishing cohomology group) therefore tells us the number of
weights divisible by d. This determines the normalized weights completely
up to order.

4. The Mislin genus. This section relies heavily on the theory of lo-
calization and homotopy pullbacks. We refer the reader to [7], especially
Chapter II, and to [14, Chap. 7], for background information.

Throughout the section, X, Y , and Z denote simply connected CW com-
plexes. A map f : X → Y is therefore a homotopy equivalence (written
X ' Y ) if and only if it induces an isomorphism H∗(f) of integral homol-
ogy; in this case, f−1 denotes a homotopy inverse for f .

Given any set P of primes, the algebraic localization of Z is denoted
by ZP , and the homotopy-theoretic localization of X by XP ; the latter is
also a CW complex. Every X admits a localization map lP : X → XP ,
which induces an isomorphism H∗(lP ;ZP), and every f admits a localization
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fP : XP → YP , for which the square

X
f−−−−→ Y

lP

y ylP
XP

fP−−−−→ YP

is homotopy commutative. Any map g : XP → YP of localized spaces is a
homotopy equivalence if and only if it induces an isomorphism H∗(g;ZP).

If P is empty, then the localization map l∅ is rationalization, and is de-
noted by l0 : X → X0; likewise, f∅ is denoted by f0 : X0 → Y0. If P consists of
a single prime p, then the localization map l{p} is abbreviated to lp : X → Xp,
and f{p} is abbreviated to fp : Xp → Yp. If P contains all primes, then lP is
a homotopy equivalence.

The homotopy pullback of a diagram X → Z ← Y may be constructed
by replacing either map with a fibration, and pulling it back along the other
in the standard fashion. The resulting square is unique up to equivalence of
diagrams in the homotopy category [14, §7.3]; in particular, the homotopy
pullback is well-defined up to homotopy equivalence.

For any set P of primes, the rationalization of XP is homotopy equivalent
to X0, so the rationalization map may be expressed as l0 : XP → X0. If
P and Q are disjoint, then the homotopy pullback of

(4.1) XQ
l0−→ X0

l0←− XP
is XP∪Q (see [12, Prop. 2.9.3] or [7, proof of Thm. 7.13]).

Lemma 4.1. Given two disjoint sets P and Q of primes, let f : YP → ZP
and g : YQ → ZQ be homotopy equivalences, and define h = f0g

−1
0 ; then YP∪Q

is the homotopy pullback of the diagram

(4.2) ZQ
hl0−−→ Z0

l0←− ZP .

If there also exist homotopy equivalences d : ZP → ZP and e : ZQ → ZQ such
that h ' d0e−10 , then YP∪Q and ZP∪Q are homotopy equivalent.

Proof. The vertical maps in the homotopy commutative ladder

(4.3)

YQ
l0−−−−→ Y0

l0←−−−− YP

g

y yf0 yf
ZQ

hl0−−−−→ Z0
l0←−−−− ZP

are homotopy equivalences, and the homotopy pullback of the upper row is
YP∪Q, by analogy with (4.1). So the ladder induces a homotopy equivalence
of homotopy pullbacks following [14, §7.3], and the first claim follows.
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Substituting Y = Z, f = d and g = e into (4.3) creates an upper row
with homotopy pullback ZP∪Q. The second claim is then immediate.

The following proposition gives criteria for ensuring that the genus of a
finite CW complex is rigid.

Proposition 4.2. Let Z be a simply connected finite CW complex sat-
isfying

(i) for any space Y in the Mislin genus of Z, there exists a rational
homotopy equivalence k : Y → Z, and

(ii) for any disjoint sets P and Q of primes, and any rational homo-
topy equivalence h : Z0 → Z0, there exist homotopy equivalences d :
ZP → ZP and e : ZQ → ZQ such that h ' d0e−10 .

Then the genus of Z is rigid.

Proof. Let Y belong to the Mislin genus of Z. It follows from [7, p. 105]
that there is an isomorphism H∗(Y ;Z) ∼= H∗(Z;Z) of graded abelian groups.
Since H∗(k;Q) is an isomorphism, there exists a maximal set Q of primes
for which H∗(kQ) is also an isomorphism. Since H∗(Y ;Z) and H∗(Z;Z) are
finitely generated in each dimension and vanish in large dimensions, the
complement P = {p1, . . . , ps} of Q is finite (and possibly empty). Define
Qi = Q∪ {p1, . . . , pi} for 0 ≤ i ≤ s. Since Qs contains all primes, it suffices
to show that YQs ' ZQs .

In fact we prove that YQi ' ZQi for every 0 ≤ i ≤ s, using induction
on i. The base case i = 0 holds because H∗(kQ) is an isomorphism, so kQ
is a homotopy equivalence. Now assume that g : YQi → ZQi is a homotopy
equivalence, and write p = pi+1. By choice of Y , there is a homotopy equiv-
alence f : Yp → Zp, so we may apply the first claim of Lemma 4.1. This
identifies YQi+1 as the homotopy pullback of

ZQi

hl0−−→ Z0
l0←− Zp,

where h is the homotopy equivalence f0g−10 : Z0 → Z0. By assumption, there
exist homotopy equivalences d : Zp → Zp and e : ZQi → ZQi such that h '
d0e
−1
0 . The second claim of Lemma 4.1 then confirms that YQi+1 ' ZQi+1 ,

and completes the inductive step.

5. Classification up to homotopy equivalence. Finally, we return
to the case of weighted projective space.

In Theorem 2.1 we selected a generator ξ1 for H2(P(χ)) ∼= Z. Given
any set P of primes, its localization in H2(P(χ)P ;ZP) ∼= ZP must also be
a generator. We therefore define the degree deg(h) of any self-map h of
P(χ)P to be the P-local integer satisfying H∗(h;ZP)(ξ1) = deg(h) ξ1; this
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determines a multiplicative function

(5.1) deg : [P(χ)P ,P(χ)P ]→ ZP .
Remark 2.2 shows that any such h is a homotopy equivalence if and only if
H∗(h;ZP) is an isomorphism.

Proposition 5.1.

(1) A self-map of P(χ)P is a homotopy equivalence if and only if its
degree is a unit in ZP .

(2) The degree function (5.1) is surjective.
(3) If P contains no divisor of any χj, then the degree function is a

bijection.

Proof. Since deg is multiplicative and the degree of the identity map is 1,
deg maps homotopy equivalences to units. Let h be any self-map of P(χ)P ,
and assume it has degree a. By Theorem 2.1, H∗(h;ZP) induces multiplica-
tion by ak on H2k(P(χ)P ;ZP) ∼= ZP for every 1 ≤ k ≤ n. If a is a unit, then
H∗(h;ZP) is an isomorphism, so h is a homotopy equivalence. Thus (1) holds.

Fix a positive integer a, and define the self-map ma : P(χ) → P(χ) by
raising each homogeneous coordinate to the power a; in particular, write
m′a : CPn → CPn for the standard case. Thus ma and m′a commute with the
map ϕ of (2.2), leading to the commutative diagram

H∗(P(χ)) H∗(ϕ)−−−−→ H∗(CPn)

H∗(ma)

y yH∗(m′a)
H∗(P(χ)) H∗(ϕ)−−−−→ H∗(CPn)

Since H2(m′a) is multiplication by a, it follows that deg(ma) = a. But every
element c ∈ ZP may be written as a quotient c = b/a of integers, where
a is a positive unit in ZP . Then (2) follows from (1), combined with the
observations that complex conjugation on a single coordinate has degree −1,
and constant self-maps have degree 0.

If P contains no divisor of any weight, then ϕP : CPnP → P(χ)P is a
homotopy equivalence by Theorem 2.1. To prove (3), it therefore suffices
to consider maps h1, h2 : CPnP → CPnP of equal degree; in other words, we
may restrict attention to the special case CPn. Since CP∞P is an Eilenberg–
MacLane space K(ZP , 2), the compositions of iP : CPnP → CP∞P with h1
and h2 are homotopic. Moreover, CPnP is 2n-dimensional and its image is
the (2n + 1)-skeleton of CP∞P , so the homotopy corestricts to a homotopy
h1 ' h2. Thus deg is injective, and (3) follows.

The special case CPn of part (3) is well-known [11, Thm. 2.2], but is
stated there without proof.
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To complete the proof of Theorem 1.3, it remains only to show that the
criteria of Proposition 4.2 apply to P(χ).

Proof of Theorem 1.3. Let Y be an element of the Mislin genus of P(χ).
Since H∗(Y ) ∼= H∗(P(χ)) as graded abelian groups, Y is homotopy equiv-
alent to a CW complex of dimension 2n, by [6, Prop. 4C.1]. Furthermore,
H∗(P(χ);Q) is multiplicatively generated by a single element of degree 2,
so any of the homotopy equivalences Yp ' P(χ)p induces the corresponding
structure on H∗(Y ;Q). A multiplicative generator γ may be chosen to be in-
tegral in H2(Y ;Q), because the Universal Coefficient Theorem confirms that
H2(Y ;Z) ∼= Z. Also, γ is represented by a map j : Y → CP∞ ' K(Z, 2),
for which H2(j;Z) is an isomorphism. Up to homotopy, j factors through
CPn ⊂ CP∞, so its corestriction j′ : Y → CPn is a rational homotopy equiv-
alence. Since ϕ : CPn → P(χ) is a rational homotopy equivalence by Theo-
rem 2.1, the same holds for the composition ϕj′ : Y → P(χ). Criterion (i) of
Proposition 4.2 is therefore satisfied by k = ϕj′.

Now let h : P(χ)0 → P(χ)0 be a homotopy equivalence, let deg(h) = ±a/b
where a, b ∈ N, and let P andQ be two disjoint sets of primes. Write a = a′a′′

and b = b′b′′, where a′, b′ are divisible only by primes not contained in P,
and a′′, b′′ are divisible only by primes contained in P. Then a′/b′ ∈ ZP
and b′′/a′′ ∈ ZQ are units. So Proposition 5.1(2) guarantees the existence
of homotopy equivalences d : P(χ)P → P(χ)P and e : P(χ)Q → P(χ)Q of
degrees ±a′/b′ and b′′/a′′ respectively, and h ' d0e−10 by Proposition 5.1(3).
Criterion (ii) of Proposition 4.2 is therefore satisfied, as required.

Proof of Theorem 1.2. If χ and χ′ have the same p-content up to or-
der, then some permutation of homogeneous coordinates defines a homeo-
morphism P(pχ) ∼= P(pχ′) for each prime p. This homeomorphism may be
localized at p.

Now consider the map

g : P(pχ)→ P(χ), [z0 : · · · : zn] 7→ [z
α(0)
0 : · · · : zα(n)n ],

where α(j) = χj/pχj for 0 ≤ j ≤ n. Theorem 2.1 implies thatH∗(g;Zp) is an
isomorphism, and Remark 2.2 confirms that gp is a homotopy equivalence.
So g−1p and g′p determine a chain of maps

P(χ)p ' P(pχ)p ∼= P(pχ′)p ' P(χ′)p
for any prime p, and the result follows from Theorem 1.3.
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