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Abstract. The purpose of this article is to connect the notion of the amenability
of a discrete group with a new form of structural Ramsey theory. The Ramsey-theoretic
reformulation of amenability constitutes a considerable weakening of the Følner criterion.
As a by-product, it will be shown that in any non-amenable group G, there is a subset E
of G such that no finitely additive probability measure on G measures all translates of E
equally. The analysis of discrete groups will be generalized to the setting of automorphism
groups of ultrahomogeneous structures.

1. Introduction. A group G is amenable (1) if there is a finitely addi-
tive, translation invariant probability measure defined on all subsets of G.
This notion was isolated by von Neumann from the Banach–Tarski paradox.
Since then it has played an important role in a diverse cross-section of math-
ematics. It has a large number of seemingly different equivalent formulations
(see [17], [23]); two of the most celebrated are:

Theorem 1.1 ([20], [21]). A group G is amenable if and only if there do
not exist elements gi (i < k) of G and a partition of G into sets Ai (i < k)
such that, for some i0 < i, both {giAi : i < i0} and {giAi : i0 ≤ i < k} are
partitions of G.

Theorem 1.2 ([5], see also [11]). A group G is amenable if and only if
for every finite A ⊆ G and every ε > 0 there is a finite B ⊆ G such that
(letting 4 denote symmetric difference)∑

a∈A
|(aB)4B| ≤ ε|B|.
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The set B which satisfies the conclusion of this theorem is said to be
ε-Følner with respect to A; the assertion that such sets exist for each ε > 0
is known as the Følner criterion.

One of the main results of the present article is to formulate a weaker
criterion for amenability than the Følner criterion. If A is a set, let Pr(A)
denote the collection of all finitely additive probability measures on A. If G
is a group, then the operation on G is extended to `1(G) affinely:

µν(A) =
∑
xy∈A

µ({x})ν({y}).

(Here and throughout we identify G with both a subset of `1(G) and a
subset of Pr(G) by regarding its elements as point masses.) Observe that
gν(E) = ν(g−1E).

If A and B are finite subsets of G and ε > 0, then B is ε-Ramsey with
respect to A if whenever E ⊆ B, there is a ν in Pr(B) such that

• Pr(A)ν ⊆ Pr(B) and
• |µν(E)− µ′ν(E)| ≤ ε for all µ and µ′ in Pr(A).

The definition is unchanged if E is allowed to be an arbitrary subset of G (in
particular, if B is ε-Ramsey with respect to A, then so is any finite superset
of B). Also, one obtains an equivalent statement if µ ranges over the elements
of A—these are the extreme points of Pr(A). Observe that if ν is a finitely
supported probability measure on G, then Pr(A)ν can be regarded as a copy
of Pr(A). Thus B is ε-Ramsey with respect to A if whenever we induce an
affine coloring of Pr(B) by assigning the values 0 and 1 to the elements of B,
there is a copy of Pr(A) on which the coloring is ε-monochromatic.

Theorem 1.3. Let G be a group. The following are equivalent:

(1) For every E ⊆ G and every finite A ⊆ G, there is a µ in Pr(G) such
that µ(gE) = µ(E) for all g in A.

(2) For every finite A ⊆ G, there is a finite B which is 1/2-Ramsey with
respect to A.

(3) For every finite A ⊆ G, there is a finite B which is 0-Ramsey with
respect to A.

(4) G is amenable.

The equivalence of (1) and (4) was unexpected and while they are purely
global statements about G involving its typically infinite subsets, the proof
crucially employs the finitary interpolation provided by (2). Also notice that
the only examples of 0-Følner sets are the trivial ones: a finite group is
a 0-Følner set in itself. Thus (3) represents a new phenomenon for which
the Følner criterion provides no analog. The proof of Theorem 1.3 will also
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provide a quantitative relationship between ε-Ramsey sets and ε-Følner sets;
this is the content of Section 4.

Let us say that a subset E of a group G is invariantly measurable if
there is a µ in Pr(G) such that µ(gE) = µ(E) for all g in G. By the above
theorem, a group is amenable exactly when all of its subsets are invariantly
measurable. That the invariant measurability of sets can be witnessed by
a single measure turns out not to be a phenomenon present in arbitrary
groups.

Theorem 1.4. There are two invariantly measurable subsets of F2 which
cannot be simultaneously measured invariantly.

Theorem 1.3 tells us that if a group G is not amenable, then there is a
single set E ⊆ G which cannot be measured invariantly. It is natural to ask
to what extent E can be specified by a finite amount of information. Let A
be a fixed finite subset of G. If E ⊆ G, define

X A
E = {Eg−1 ∩A : g ∈ G}.

(When A is clear from the context, the superscript will be suppressed.) Thus
if A is a ball about the identity, Eg−1 ∩ A is a “picture” of E centered at
g where the scope of the image is specified by A. The set XE is then the
collection of all such pictures of E taken from different vantage points in G.
If Y is a collection of subsets of A, then we say that Y is realized in G if
Y = XE for some E ⊆ G.

A collection Y of subsets of a finite set A is ε-balanced if there is a
probability measure µ on Y such that

|µ({Y ∈ Y : a ∈ Y })− µ({Y ∈ Y : b ∈ Y })| ≤ ε
whenever a and b are in A. Balanced will be taken to mean 0-balanced. It
follows from the Hahn–Banach separation theorem that a collection Y is
unbalanced if and only if there is an f : A → R such that

∑
a∈A f(a) = 0

and for every Y in Y ,
∑

a∈Y f(a) > 0.
We will prove the following analog of Theorem 4.2 of [1].

Theorem 1.5. For a group G, the following are equivalent:

(1) G is non-amenable.
(2) There is a finite A ⊆ G and an unbalanced collection Y of subsets of

A which is realized in G.
(3) There is a finite A ⊆ G for which there is no finite B which is

0-Ramsey with respect to A.

Thus in order to establish the non-amenability of a group, it is sufficient
to realize a subcollection of

Yf =
{
Y ⊆ A :

∑
a∈Y

f(a) > 0
}
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for some f : A → R such that
∑

a∈A f(a) = 0. Balanced sets have been
studied in game theory (e.g. [18]), although the focus has been on minimal
balanced collections rather than the maximal unbalanced collections, which
are most relevant to the present discussion.

The above theorems concern the amenability of discrete groups. The
amenability of a topological group G can be formulated as follows: whenever
G acts continuously on a compact space K, K supports an Borel probability
measure which is preserved by the action of G. A strengthening of amenabil-
ity in this context is that of extreme amenability : every continuous action of
G on a compact space has a fixed point. In [9], Kechris, Pestov, and Todor-
cevic discovered a very general correspondence which equates the extreme
amenability of the automorphism group of an ordered Fraïssé structure with
the Ramsey property of its finite substructures.

Theorem 1.6 ([9]). Let G be a closed subgroup of S∞. The following are
equivalent:

(1) G is extremely amenable.
(2) G = Aut(G) where G is a Fraïssé structure with an order relation

and the finite substructures of G have the Ramsey property.

At the time of [9], it was unclear whether there was an analogous connec-
tion between amenability and Ramsey theory. In Section 7 it will be shown
that such an analog does exist.

The notation will be mostly standard. Following a set-theoretic conven-
tion, I will sometimes abbreviate {0, . . . , k − 1} to k. The set of natural
numbers is taken to include 0 and all counting will begin at 0. The letters
i, j, k, l,m, n will be used to denote natural numbers unless otherwise stated.
If H ⊆ G, then we will identify Pr(H) with the set of those µ in Pr(G) such
that µ(H) = 1.

2. A Ramsey-theoretic criterion for amenability. In this section
we will prove most of Theorem 1.3, deferring the equivalence of amenability
with (3) to the next section. Before we begin, it will be necessary to extend
the evaluation map (ν,E) 7→ ν(E) to a bilinear map on Pr(G) × `∞(G) by
integration. We will only need this for finitely supported ν, in which case

ν(f) =
∑
g∈B

ν({g})f(g).

We will define f(ν) = ν(f). Observe that the map (ν, f) 7→ ν(f) is bilinear.
When proving the theorem, it will be natural to further divide the task

as follows.

Theorem 2.1. Let G be a group and H ⊆ G be closed under products
and contain the identity of G. The following are equivalent:
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(1) For every E ⊆ G and every finite A ⊆ H, there is a µ in Pr(H) such
that µ(g−1E) = µ(E) for every g ∈ A.

(2) For every finite A ⊆ H, there is a finite B ⊆ H such that B is
1/2-Ramsey with respect to A.

(3) There is a positive q < 1 such that for every finite A ⊆ H, there is a
finite B ⊆ H such that if f : B → [0, 1], then there is a ν in Pr(B)
such that for all g, g′ ∈ A, gν is in Pr(B) and

|gν(f)− g′ν(f)| ≤ q.

(4) For every finite A ⊆ H and ε > 0, there is a finite B ⊆ H such
that if f : B → [0, 1], then there is a ν in Pr(B) such that for all
g, g′ ∈ A, gν is in Pr(B) and

|gν(f)− g′ν(f)| < ε.

(5) There is a µ ∈ Pr(H) such that for every E ⊆ G, µ(g−1E) = µ(E)
whenever g is in H.

Remark 2.2. The above generality allows H to be the positive elements
of the group with respect to some generating set. This will be useful below
when reformulating the amenability problem for Thompson’s group F .

Proof of Theorem 2.1. Observe that trivially (5)⇒(1). It is therefore
sufficient to prove (1)⇒(2)⇒(3)⇒(4)⇒(5).

(1)⇒(2): Suppose that (2) is false for some finite A ⊆ H. I claim there
is a set E ⊆ H such that for every µ ∈ Pr(H), there are g, h ∈ A such that
|µ(g−1E)−µ(h−1E)| > 1/2, a condition which implies the failure of (1). By
replacing G by a subgroup if necessary, we may assume that G is generated
by A and in particular that G is countable. Let Bn (n <∞) be an increasing
sequence of finite sets covering H. Define Tn to be the collection of all pairs
(n,E) where E is a subset of Bn which witness that Bn is not 1/2-Ramsey
with respect to A. Let T =

⋃
n Tn and if (n,E) and (n′, E′) are in T , define

(n,E) <T (n′, E′) if n < n′ and E = E′ ∩ Bn. Observe that if (n′, E′) is in
Tn′ and n < n′, then (n,E′∩Bn) is in Tn. Thus (T,<T ) is an infinite finitely
branching tree and hence there is an E ⊆ H such that (n,E ∩ Bn) is in Tn
for each n. If there were a measure ν such that |ν(g−1E)− ν(h−1E)| < 1/2
for all g, h ∈ A, there would exist such a ν which has a finite support S. But
this would be a contradiction since then S ∪ (A · S) would be contained in
some Bn and would witness that (n,E ∩Bn) was not in Tn.

(2)⇒(3): Let A ⊆ H be a given finite set and let B ⊆ H be finite
and 1/2-Ramsey with respect to A. It suffices to prove that B satisfies the
conclusion of (3) with q = 3/4. Let f : B → [0, 1] be given and define
E = {b ∈ B : f(b) ≥ 1/2}. By assumption, there is a ν in Pr(B) such that
Pr(A)ν ⊆ Pr(B) and for all g, g′ ∈ A, |gν(E)− g′ν(E)| ≤ 1/2. Also
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0 ≤ min
(
gν
(
f − 1

2χE
)
, g′ν

(
f − 1

2χE
))

and
max

(
gν
(
f − 1

2χE
)
, g′ν

(
f − 1

2χE
))
≤ 1/2.

Notice that if 0 ≤ a, b ≤ 1/2, then |a− b| ≤ 1/2. Therefore for all g, g′ ∈ A,
|gν(f)− g′ν(f)| =

∣∣1
2(gν(E)− g′ν(E)) + gν

(
f − 1

2χE
)
− g′ν

(
f − 1

2χE
)∣∣

≤ 1
2 |gν(E)− g′ν(E)|+

∣∣gν(f − 1
2χE

)
− g′ν

(
f − 1

2χE
)∣∣

≤ 1/4 + 1/2.

(3)⇒(4): Let A ⊆ H and ε > 0 be given. Let n be such that qn < ε and
construct a sequence Bi (i ≤ n) such that, setting B0 = A, Bi+1 satisfies
the conclusion of (3) with respect to Bi. Construct νi (i < n) by downward
recursion such that Pr(Bi)νi ⊆ Pr(Bi+1) and for all g, g′ ∈ Bi,

|gνi · · · νn−1(f)− g′νi · · · νn−1(f)| ≤ qn−i.
This is achieved by applying (3) to the function fi defined on Bi+1 by

fn−1 = f, fi(g) = (1/q)n−i−1
(
gνi+1 · · · νn−1(f)− min

g′∈Bi+1

g′νi+1 · · · νn−1(f)
)

if i < n−1. Our inductive hypothesis implies that the range of fi is contained
within [0, 1]. Therefore there is a νi such that Pr(Bi)νi ⊆ Pr(Bi+1) and

|gνi(fi)− g′νi(fi)| ≤ q
for every g, g′ ∈ Bi and thus

(1/q)n−i−1|gνi · · · νn−1(f)− g′νi · · · νn−1(f)|
= (1/q)n−i−1|f(gνi · · · νn−1)− f(gνi · · · νn−1)|
= |fi(gνi)− fi(g′νi)| = |gνi(fi)− g′νi(fi)| ≤ q.

Multiplying both sides of the inequality by qn−i−1, we see that νi satisfies
the desired inequality. This completes the recursion. If ν = ν0 · · · νn−1, then
for all g, g′ in A = B0 we have

|gν(f)− g′ν(f)| ≤ qn < ε.

(4)⇒(5): Observe that, by compactness, it is sufficient to prove that for
every ε > 0, every finite list Ei (i < n) of subsets of H, and gi (i < n) in H,
there is a finitely supported µ ∈ Pr(H) such that for all i < n,

|µ(g−1i Ei)− µ(Ei)| < ε.

Set B0 = {eG} ∪ {gi : i < n} and construct a sequence Bi (i ≤ n) such that
Bi+1 satisfies (4) with Bi in place of A and ε/2 in place of ε. Inductively
construct νi (i < n) by downward recursion on i. If νj (i < j < n) has been
constructed, let νi ∈ Pr(Bi+1) be such that Pr(Bi)νi ⊆ Pr(Bi+1) and

|µνi · · · νn−1(Ei)− µ′νi · · · νn−1(Ei)| < ε/2
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for all µ, µ′ ∈ Pr(Bi). Set µ = ν0 · · · νn−1. If i < n, then since ν0 · · · νi−1 and
g−1i ν0 · · · νi−1 are in Pr(Bi),

|giµ(Ei)− νi · · · νn−1(Ei)| < ε/2, |µ(Ei)− νi · · · νn−1(Ei)| < ε/2

and therefore |µ(g−1i Ei)− µ(Ei)| < ε.

I will finish this section with the following basic example, which shows
that existence of 0-Ramsey sets for Z is just the well known pigeon hole
principle. Suppose that A ⊆ Z is finite; without loss of generality, A =
{0, . . . ,m − 1}. Let B = {1, . . . , 2m + m + 1} and suppose that E ⊆ B.
Notice that {A ∩ (E − i) : i ∈ Z} has at most 2m elements and therefore
there are 1 ≤ i < j ≤ 2m + 1 such that for all 0 ≤ k < m, k + i is in E
if and only if k + j is in E. Let ν be the uniform measure on the interval
{i, . . . , j − 1}. By our choice of i and j,

|E ∩ {i, . . . , j − 1}| = |E ∩ {i+ k, . . . , j − 1 + k}|
and thus ν(E) = ν(E − k) for all 0 ≤ k < m.

3. The amenability problem for Thompson’s group F . Perhaps
the best known problem concerning the amenability of a specific group asks
whether Richard Thompson’s group F is amenable. In this section I will
discuss how this problem reduces to a natural finite Ramsey-theoretic state-
ment. I will only briefly review the terminology and basic facts about Thomp-
son’s group; the reader is referred to [2] and [10] for further background and
justification for some of the statements made below.

Thompson’s group F is the group with generators xi (i < ∞) satisfying
the relations x−1i xnxi = xn+1 whenever i < n. The positive elements of F
are the products of these generators. It is easy to see that x0 and x1 already
generate the group and it is straightforward to show that every element of F
can be written as a fraction of positive elements. Thus by Ore’s theorem (see
[17]), F is amenable if and only if its (left) action on its positive elements is
amenable.

The action of F on its positive elements can be described as follows. Let
(T, ̂) denote the free binary system on one generator. The elements of T
are just formal sums—with associating parentheses—of some number of 1’s.
They can naturally be thought of as rooted ordered binary trees in the sense
of [2]. The following partial action of F on T

x0 · ((ÂB)̂C) = Â(B̂C),
x1 · (Ŝ((ÂB)̂C)) = Ŝ(Â(B̂C))

is equivalent to the partial action of F on its positive elements (see [10]).
By unraveling the definitions, one can reformulate the amenability of F

in the following way. Let Tn denote those elements of T with n leafs and
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let An denote the set of probability measures on Tn. A copy of Tm in Tn
is a collection of the form {T (U1, . . . , Um) : T ∈ Tm} where Ui (1 ≤ i
≤ m) is an ordered sequence of elements of T with a total of n leafs. Here
T (U1, . . . , Um) denotes the result of substituting Ui for the ith occurrence of
the generator in T . A copy of Tm in An is a convex combination of copies
of Tm in Tn (formally we take a convex combination of maps of the form
T 7→ T (U1, . . . , Um) to obtain a map from Tm into An and then collect the
range of this map).

Theorem 3.1. The following are equivalent:

(1) Thompson’s group F is amenable.
(2) For every m there is an n such that if f : Tn → {0, 1}, then there is

a copy of Tm in An on which f is constant.

In order to see the relationship to Ramsey’s theorem, observe that Ram-
sey’s theorem can be formulated in the following way. If n and k are natural
numbers, let n[k] denote all partitions of {1, . . . , n+ 1} into k + 1 intervals.
Notice that there are canonical bijections between this set and the k-element
subsets of {1, . . . , n} and also with sequences of natural numbers of length
k + 1 which add to n + 1. If m ≥ k and X is in n[m], let X [k] denote all
elements of n[k] which are refined by X. In this language, Ramsey’s theorem
asserts that for every m and k there is an n such that if n[k] is colored red
and blue, there is an X in n[m] such that X [k] is monochromatic.

Let n[[k]] denote all families X of intervals in {1, . . . , n+ 1} such that:

• the ⊆-minimal elements of X are the singletons of {1, . . . , n+ 1} and
the ⊆-maximal elements of X form an element of n[k],
• any element of X with more than one element is the union of two other

elements of X,
• if x, y are in X, then x ⊆ y, y ⊆ x, or x ∩ y = ∅.

Thus an element of n[[k]] is the result of starting with {{1}, . . . , {n+1}} and
iteratively joining consecutive pairs of intervals until one obtains a partition
of {1, . . . , n + 1} into k + 1 intervals. There is a canonical correspondence
between n[[k]] and sequences from T of length k + 1 where the total number
of leaves is n+ 1.

The amenability of Thompson’s group is now the statement that for every
m and k there is an n such that if n[[k]] is colored with red and blue, there
is a probability measure Ξ on n[[m]] such that Ξ [[k]] is monochromatic. (As
above, Ξ is regarded as a formal convex combination of elements X of n[[m]]

and Ξ [[k]] consists of the corresponding convex combinations of the elements
of the X [[k]]’s.) Observe that the case k = 1 is the strongest assertion and it
is, modulo the definitions, the reformulation given in Theorem 3.1.
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4. Comparing the Ramsey and Følner functions. The purpose of
this section is to define the Ramsey function of a finitely generated group
with respect to a finite generating set and relate it to the Følner function
which has been studied in, e.g., [3], [4], [8]. The main result of this section is
due to Henry Towsner, answering a question in an early draft of this paper:
The Følner function for a given group and generating set can be obtained
from the Ramsey function by primitive recursion. It is included with his
kind permission.

We will now turn to the definitions of the Følner and Ramsey functions.
Let G be a group with a fixed finite generating set S (which is not required to
be closed under inversion). Let Bn denote the elements of G whose distance
from the identity is at most n in the word metric. Define the following
functions:

• FølG,S(k) is the minimum cardinality of a 1/k-Følner set with respect
to the generating set S.
• FG,S(m, ε) is the minimum n such that there is a ν in Pr(Bn) such

that Pr(Bm)ν ⊆ Pr(Bn) and
∑

g∈Bm
‖gν − ν‖`1 < ε.

• RG,S(m, ε) is the minimum n such that Bn is ε-Ramsey with respect
to Bm.
• R̃G,S(m, ε, l) is the minimum n such that if fi (i < l) is a sequence

of functions from Bn into [0, 1], then there is a ν ∈ Pr(Bn) such that
Pr(Bm)ν ⊆ Pr(Bn) and such that for every g, g′ ∈ Bm and i < l,

|gν(fi)− g′ν(fi)| < ε.

Set RG,S(m) = RG,S(m, 1/2) and R̃G,S(m, ε) = R̃G,S(m, ε, 1). The definition
of FG,S is formulated so that it is a triviality that RG,S(m, k) ≤ R̃G,S(m, k) ≤
FG,S(m, k) for all m and k. The following relationship holds between FG,S
and FølG,S :

FølG,S(k) ≤ (2|S|+ 1)FG,S(1,1/k).

The reason for this is that the n-ball in G with respect to S contains at most
(2|S|+ 1)n elements and if ν ∈ `1(G) is such that∑

g∈S
‖gν − ν‖`1 < ε

then the support of ν contains an ε-Følner set with respect to S [11].
The proof of Theorem 2.1 shows that

R̃G,S(m, ε) ≤ RpG,S(m)

whenever (3/4)p < ε (here RpG,S denotes the p-fold composition of RG,S).
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Furthermore, it shows that

R̃G,S(m, ε, l) ≤ R̃G,S(R̃G,S(m, ε, l − 1), ε)

= R̃G,S(R̃G,S(. . . R̃G,S(m, ε) . . . , ε), ε) ≤ RlpG,S(m)

whenever l > 1. Finally we have the following proposition.

Proposition 4.1. FG,S(m, 2ε|S|) ≤ R̃G,S(m, ε, |S|).

Proof. Let B = Bn where n = R̃G,S(m, ε, |S|). Define

C = {〈gν − ν : g ∈ S〉 : ν ∈ Pr(B) and Pr(S)ν ⊆ Pr(B)},

U =
{
ξ ∈ (`1(B))S :

∑
g∈S
‖ξg‖`1 < 2ε|S|

}
.

Observe that C and U are both convex subsets of (`1(B))S with C being
compact and U being open. If C∩U is non-empty, then there is a ν in Pr(B)
such that Pr(S)ν ⊆ Pr(B) and∑

g∈S
‖gν − ν‖`1 < 2ε|S|.

In particular, we would have FG,S(m, 2ε|S|) ≤ n = R̃G,S(m, ε, |S|).
Now suppose for contradiction that C and U are disjoint. By the Hahn–

Banach separation theorem (see [19, 3.4]), there is a linear functional Λ
defined on (`1(B))S such that, for some r ∈ R, Λξ < r if ξ ∈ U and r ≤ Λξ
if ξ ∈ C. In the present setting, such a functional Λ takes the form

Λξ =
∑
g∈S

ξgfg

for some 〈fg : g ∈ S〉 ∈ (`∞(B))S . If we give (`1(B))S the norm by identifying
it with `1(B×S), then we may assume that Λ has norm 1. Since `1(B×S)∗ is
isometric to `∞(B×S), it follows that |fg(b)| ≤ 1 for all b and g with equality
obtained for some (b, g) ∈ B × S. It follows that we may take r = ε|S|. This
is a contradiction, however, since by our choice of B = Bn, there is a ν in
Pr(B) such that Pr(S)ν ⊆ Pr(B), and for all g ∈ S,

|gν(fg)− ν(fg)| < 2ε

(the factor of 2 is because fg maps into an interval of length 2) and therefore∑
g∈S |gν(fg)− ν(fg)| < 2ε|S|.

Putting this together, we have the following upper bound on the Følner
function in terms of the iterated Ramsey function.

Theorem 4.2. FølG,S(k) ≤ (2s + 1)R
ps(1) whenever (3/4)p < 1/(2ks)

where s = |S|.
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5. Invariantly measurable sets in F2. In light of the theorem of the
previous section, it is natural to define, for an arbitrary group G, the collec-
tion MG of subsets of G which are invariantly measurable. It is tempting to
suspect that Theorem 1.3 might be subsumed under a more general result
which asserts that, in any group G, there is a µ which measures each element
of MG invariantly. Theorem 1.4, whose proof we now turn to, asserts that
this is not the case.

Proof of Theorem 1.4. Let a and b denote the generators of F2 and let A
denote the collection of all elements of F2 whose reduced word begins with
a or a−1. Let h : F2 → Z be the homomorphism which sends a to 1 and
b to −1 and define Zk = {w ∈ F2 : h(w) ≥ k}, setting Z = Z0. Define

A+ = {g ∈ A : h(g) > 0}, A− = {g ∈ A : h(g) ≤ 0}.
Notice that A cannot be measured invariantly since {bkA : k ∈ N} and
{ak(F2\A) : k ∈ N} are both infinite pairwise disjoint families. If µ measured
both A+ and A− invariantly, it would measure A = A+ ∪A− invariantly.

It therefore suffices to find measures µ0 and µ1 such that µi(wZ) = i for
i = 0, 1 and w ∈ F2. Such measures are constructed by extending the families
{F2 \Zk : k ∈ Z} and {Zk : k ∈ Z}, each of which has the finite intersection
property, to ultrafilters, and regarding them as elements of Pr(F2).

Remark 5.1. It is not clear whether F2 can be replaced by an arbi-
trary non-amenable group in Theorem 1.4, even if one allows finitely many
invariantly measurable sets in place of two.

6. A criterion for non-amenability: unbalanced puzzles. The pur-
pose of this section is to prove Theorem 1.5. The following two simple propo-
sitions capture most of what is left to prove.

Proposition 6.1. Let G be a group, ε ≥ 0, and A be a finite subset
of G. If E ⊆ G, Y is ε-balanced, and B is a finite set such that

Y = {XE(g) : g ∈ B},
then there is a ν ∈ Pr(B) such that |aν(E)− a′ν(E)| ≤ ε for all a, a′ ∈ A.

Remark 6.2. Notice that a typical B satisfying the hypothesis of this
proposition may well be its own boundary in the Cayley graph, even if ε = 0.
This is again quite different from what is possible with Følner sets (even if
the Følner sets are allowed to be “weighted”).

Proof of Proposition 6.1. Let µ ∈ Pr(Y ) be such that

|µ({X ∈ Y : a ∈ X})− µ({X ∈ Y : a′ ∈ X})| ≤ ε
for all a, a′ ∈ A. By replacing B by a subset, we may assume that for each
b 6= b′ in B, XE(b) 6= XE(b

′). Define ν ∈ Pr(B) by ν({b}) = µ({XE(b)}).
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Now suppose that a ∈ A. Then

ν(a−1E) =
∑
{ν({b}) : b ∈ a−1E}

=
∑
{µ({XE(b)}) : ab ∈ E} = µ({X ∈ Y : a ∈ X}).

The conclusion now follows from our choice of µ.

Proposition 6.3. Let G be a group and A be a finite subset of G. If
E ⊆ G and there is a ν ∈ Pr(G) such that

|ν(a−1E)− ν(b−1E)| ≤ ε
for every a, b ∈ A, then

{X ∈XE : ν({g ∈ G : XE(g) = X}) > 0}
is ε-balanced (and in particular XE is ε-balanced).

Proof. Let G, A, E, and ν be given as in the statement of the proposition.
For each X in XE , define

µ({X}) = ν({g ∈ G : XE(g) = X}).
It is sufficient to show that if a is in A, then

∑
X3a µ({X}) = ν(a−1E). To

this end observe that∑
X3a

µ({X}) = ν({g ∈ G : a ∈ XE(g)})

= ν({g ∈ G : ag ∈ E}) = ν(a−1E).

Proof of Theorem 1.5. The implication (1)⇒(2) follows from Proposi-
tion 6.1 together with the equivalence of (1) and (4) in Theorem 1.3. The
implication (2)⇒(3) is given by Proposition 6.3.

Finally, in order to see the implication (3)⇒(1), suppose that G is amen-
able and A ⊆ G is finite. Let ε > 0 be such that if Y is a collection of
subsets of A which is ε-balanced, then Y is ε′-balanced for all ε′ > 0. This is
possible since the collection of all families of subsets of A is finite. Let B be
ε-Ramsey. It suffices to prove that B is ε′-Ramsey for each ε′ > 0 since it then
follows by compactness that B is 0-Ramsey. Suppose that E ⊆ B. By our
assumption on B, there is a ν ∈ Pr(B) such that Aν ⊆ Pr(B) and such that

|gν(E)− g′ν(E)| ≤ ε
for all g, g′ ∈ A. By Proposition 6.3,

Y = {XE(g) : (g ∈ B) ∧ (Ag ⊆ B)}
is ε-balanced. By assumption this collection is ε′-balanced for every ε′ > 0.
Therefore by Proposition 6.1, there is a ν in Pr(B) such that Aν ⊆ Pr(B) and

|gν(E)− g′ν(E)| ≤ ε′

for all g, g′ ∈ A.
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I will finish this section by mentioning an intriguing problem concerning
which unbalanced sets are required to witness the non-amenability of all
non-amenable groups.

Problem 6.4. Is there a finite list B of unbalanced families such that
any non-amenable group contains a realization of an isomorphic copy of an
element of B?

Here two unbalanced families are isomorphic if one is the setwise image
of the other under a bijection of the underlying sets.

7. Structural Ramsey theory and KPT theory. In this section
I will place the results of the present paper into the context of the theory of
Kechris, Pestov, and Todorcevic developed in [9] which equates the property
of extreme amenability of certain automorphism groups to structural Ram-
sey theory. First we will need to recall some notation and terminology from
[9]; further reading can be found there. A Fraïssé structure is a countable
relational structure A which is ultrahomogeneous—every finite partial auto-
morphism extends to an automorphism of the whole structure. If moreover
A includes a relation which is a linear order, then A is said to be a Fraïssé
order structure. Some notable examples of such structures are (Q,≤), the
random graph, and rational Urysohn space. If G is a countable group, then
we may also associate to G the Fraïssé structure G = (G;Rg : g ∈ G) where

Rg = {(a, b) ∈ G2 : ab−1 = g}.
Observe that the automorphisms of G are given by right translation and
therefore Aut(G) ' G. Since every automorphism of G is determined by
where it sends the identity, Aut(G) is discrete as a subgroup of the group of
all permutations of G equipped with the topology of pointwise convergence.

If A is a Fraïssé (order) structure, then Age(A) is the collection of fi-
nite substructures of A. A collection arising in this way is called a Fraïssé
(order) class. It should be noted that Fraïssé (order) classes have an intrinsic
axiomatization, although this will not be relevant for the present discussion.

If C is a Fraïssé class and B and A are structures in C , then let
(
B
A

)
denote the collection of all embeddings of A into B. Write C → (B)Ak if
whenever f :

(
C
A

)
→ k, there is a β in

(
C
B

)
such that f is constant on(

β
A

)
=
{
β ◦ α : α ∈

(
B
A

)}
. A Fraïssé class C has the Ramsey property if for

every A and B in C , there is a C in C such that C→ (B)A2 .
The main result of [9] is that, for a Fraïssé order structure A, Aut(A)

is extremely amenable if and only if Age(A) has the Ramsey property. The
power of this theorem comes from the rich literature on the Ramsey property
of Fraïssé classes. That the finite linear orders form a Ramsey class is just
a reformulation of the finite form of Ramsey’s theorem. More sophisticated
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examples are the classes of finite ordered graphs [13], [14], finite naturally
ordered Boolean algebras [7], finite ordered metric spaces [12], and finite-
dimensional naturally ordered vector spaces over a finite field [6]. The branch
of mathematics concerned with such results is known as structural Ramsey
theory.

If G is a countable group, the collection G of finite substructures of G
will never form a Ramsey class. One reason for this is the result of Veech [22]
asserting that a locally compact group can never be extremely amenable. In
the case of finitely generated groups, this can be seen explicitly: the failure
of the Ramsey property is witnessed by the function f :

(
G
e

)
→ 2 defined by

f(g) ≡ dS(e, g) mod 2

where S is a generating set for G, dS is the word metric, and e is {e} regarded
as a substructure of G. (Observe that

(
G
e

)
can naturally be identified with

the singletons in G.)
We can however modify the Ramsey property as follows. Let A and B

be substructures of a relational structure X with A being finite. Define
〈
B
A

〉
to be the collection of all finitely supported probability measures on

(
B
A

)
.

If f :
(
B
A

)
→ R, then f extends to an affine function defined on the vector

space generated by
(
B
A

)
; this extension will also be denoted by f . Extending

◦ bilinearly, we define
(
β
A

)
and

〈
β
A

〉
when β is in

〈
X
B

〉
.

Define C→ 〈B〉Ak to mean that whenever f :
(
C
A

)
→ k, there is a β ∈

〈
C
B

〉
such that if α, α′ ∈

〈
β
A

〉
,

|f(α)− f(α′)| ≤ 1/2.

It follows from the definitions that if A and B are finite subsets of a group
G, then B → 〈A〉e2 is equivalent to asserting that B is 1/2-Ramsey with
respect to A. Therefore, by Theorem 1.3 the amenability of G is equivalent
to the following convex Ramsey property of G : for every A and B in G there
is a C in G such that C → 〈B〉A2 . The purpose of the remainder of this
section is to prove the following generalization of Theorem 2.1 to the setting
of automorphism groups of Fraïssé structures.

Theorem 7.1. If X is a Fraïssé structure, then the following are equiv-
alent:

(1) For every A and B in Age(X), and every f :
(
X
A

)
→ {0, 1}, there is

a β in
〈
X
B

〉
such that for α, α′ ∈

〈
β
A

〉
, |f(α)− f(α′)| ≤ 1/2.

(2) Age(X) has the convex Ramsey property: for A and B in Age(X)
there is a C in Age(X) such that C→ 〈B〉A2 .

(3) There is a p < 1 such that for A and B in Age(X) there is a C in
Age(X) such that for every f :

(
C
A

)
→ [0, 1], there is a β in

〈
C
B

〉
such
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that for α, α′ ∈
〈
β
A

〉
,

|f(α)− f(α′)| ≤ p.

(4) For every A and B in Age(X), and every ε > 0, there is a C in
Age(X) such that for every f :

(
C
A

)
→ [0, 1], there is a β in

〈
C
B

〉
such

that for α, α′ ∈
〈
β
A

〉
,

|f(α)− f(α′)| ≤ ε.

(5) For every A and B in Age(X), every ε > 0, and n, there is a C in
Age(X) such that for every sequence fi (i < n) of functions from

(
C
A

)
to [0, 1], there is a β in

〈
C
B

〉
such that for every α in

〈
β
A

〉
,

|fi(α)− fi(α′)| ≤ ε.

(6) Aut(X) is amenable.

Remark 7.2. The equivalence of (5) and (6) was noticed by Todor Tsan-
kov, prior to the results of this paper. I would like to thank him for a helpful
conversation in which it became clear that the above theorem should be true.

Proof of Theorem 7.1. I will only prove the implications (1)⇒(2), (4)⇒(5),
(5)⇒(6), and (6)⇒(1). The remaining implications are only notationally
different from their counterparts in Theorem 2.1 and the implications which
will be proved will demonstrate how these notational adaptations are made.

To see (1)⇒(2), we will suppose that (2) is false and prove that (1) is
false. To this end, let A and B be given. Let X be the underlying set for
the structure X and let Xn (n < ∞) be an increasing sequence of finite
sets whose union is X. For each n, fix an fn :

(
Xn

A

)
→ 2 such that there is

no β ∈
〈
Xn

B

〉
such that for all α, α′ ∈

〈
β
A

〉
, |fn(α) − fn(α′)| ≤ 1/2. Find a

subsequence fnk
(k <∞) such that for every m, if k, k′ ≥ m, then

fnk
�

(
Xm
A

)
= fnk′ �

(
Xm
A

)
.

Define f :
(
X
A

)
→ {0, 1} by f(α) = fnk

(α) whenever the range of α is
contained in Xm and m ≤ k. If there were a β in

〈
X
B

〉
such that for all

α, α′ ∈
〈
β
A

〉
, |f(α)− f(α′)| ≤ 1/2, then such a β would be contained in

〈
Xm

B

〉
for some m. Then for any k > m, β would contradict our choice of fnk

.
In order to see the implication (4)⇒(5), let A, B, and ε > 0 be given.

Construct Ci (i ≤ n) such that C0 = B and for all i ≤ n, if f :
(
Ci
A

)
→ [0, 1],

there is a ν ∈
〈

Ci
Ci−1

〉
such that for all α, α′ ∈

〈
ν
A

〉
, |f(α)− f(α′)| ≤ ε. Define

βn = Cn and construct βi (i < n) by downward induction such that βi is
in
〈βi+1

Ci

〉
and if α, α′ ∈

〈
βi
A

〉
, then |fi(α) − fi(α′)| < ε. This is achieved by

applying our hypothesis on Ci+1 to the function f̃i :
(Ci+1

A

)
→ [0, 1] defined
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by f̃i(α) = fi(βi+1 ◦ α). If νi ∈
〈Ci+1

Ci

〉
is such that for all α, α′ ∈

〈Ci+1

A

〉
,

|f̃i(α)− f̃i(α′)| ≤ ε,

then βi = βi+1 ◦ νi is as desired. Since i < j < n implies
〈
βi
A

〉
⊆
〈βj
A

〉
, we see

that β = β0 satisfies the conclusion of (5).
Next we will prove (5)⇒(6). We will use the following characterization of

amenability of a topological group: G is amenable if and only if whenever G
acts continuously on a compact space K, K admits a (countably additive)
G-invariant Borel probability measure. So, fix a continuous action of Aut(X)
on a compact space K. Recall that the Borel probability measures form a
weak∗ compact subset of C(K)∗. Therefore it is sufficient to prove that for
every ε > 0, every sequence fi (i < n) of elements of C(K), and every
sequence gi (i < n) of elements of Aut(X), there is a finitely supported
measure ν on X such that for every i < n,

|fi(gi · ν))− fi(ν)| ≤ ε.
Let fi (i < n) and gi (i < n) be given and assume without loss of generality
that each fi maps into [0, 1].

By the compactness of K, there is an open neighborhood U of idX such
that if g is in U , then for all i < n,

|fi(g · ν)− fi(ν)| ≤ ε/2,
(Here we have extended the action linearly to an action of Aut(X) on the
finitely supported measures. Similarly, elements of C(K) are extended af-
finely to the finitely supported measures on K.) Therefore there is a finite
substructure A of X such that if g�A = idA, then g is in U . Let B be the
finite substructure of X with domain

B = A ∪
⋃
i<n

g−1i (A).

Let C be the finite substructure of X which satisfies the conclusion of (5)
with ε/2 in place of ε.

Fix an element x0 of K. Observe that if i < n and g and h are in Aut(X)
with g−1�A = h−1�A, then

|fi(g · x0)− fi(h · x0)| ≤ ε/2.
This is because otherwise gh−1 ∈ U and x = h · x0 would contradict our
choice of U .

For each f in C(K), define f̃ :
(
X
A

)
→ [0, 1] by

f̃(α) = inf{f(h · x0) : h ∈ Aut(X) ∧ h−1�A = α}.
By our choice of C, there is a β in

〈
C
B

〉
such that for all α, α′ ∈

〈
β
A

〉
and i < n,

|f̃i(α)− f̃i(α′)| ≤ ε/2.
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Let βj (j < m) be the elements of
(
C
B

)
such that for some choice of positive

λj (j < m), β =
∑

j<m λjβj . For each j < m, fix an hj ∈ Aut(X) such that
hj extends βj . This is possible since X is ultrahomogeneous. Finally, define

ν =
∑
j<m

λjδh−1
j ·x0

where δx denotes the point mass at x. Define αi = g−1i �A, observing that
αi ∈

(
B
A

)
. Now for each i < n,

|fi(gi · ν)− f(ν)| =
∣∣∣fi(gi∑

j<m

λj · δh−1
j ·x0

)
− fi

(∑
j<m

λjδh−1
j ·x0

)∣∣∣
=
∣∣∣fi(∑

j<m

λj(gi ◦ h−1j ) · δx0
)
− fi

(∑
j<m

λjh
−1
j · δx0

)∣∣∣
≤ |f̃i(β ◦ αi)− f̃i(β ◦ idA)|+ ε/2 ≤ ε,

which is what we needed to prove.
Finally, we will prove (6)⇒(1). To this end, let A and B be given and

let f0 :
(
X
A

)
→ 2 be arbitrary. Observe that 2(

X
A) is a compact space and that

Aut(X) acts continuously on 2(
X
A) on the left by g · f(α) = f(g−1 ◦α). Let Z

denote the orbit of f0 under this action and let K denote the closure of Z.
Since Aut(X) is amenable, there is a probability measure µ on K which is
invariant under the action. Since µ is invariant,

	
f(α) dµ(f) does not depend

on α ∈
(
X
A

)
; let r denote the constant value.

Since the collection of all probability measures on K whose support is
finite and contained in Z is dense, there are γj (j < m) in Aut(X) and
positive λj (j < m) such that, for each α ∈

(
B
A

)
,∣∣∣∑

j<m

λjf0(γj ◦ α)− r
∣∣∣ ≤ 1/4.

Now define βj = γj�B, β =
∑

j<m λjβj and observe that if α, α′ ∈
〈
B
A

〉
,

|f0(β ◦ α)− f0(β ◦ α′)| ≤ |f0(β ◦ α)− r|+ |f0(β ◦ α′)− r| ≤ 1/2.
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