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Abstract. We consider a combinatorial problem related to guessing the values of a
function at various points based on its values at certain other points, often presented by
way of a hat-problem metaphor: there are a number of players who will have colored hats
placed on their heads, and they wish to guess the colors of their own hats. A visibility
relation specifies who can see which hats. This paper focuses on the existence of minimal
predictors: strategies guaranteeing at least one player guesses correctly, regardless of how
the hats are colored. We first present some general results, in particular showing that
transitive visibility relations admit a minimal predictor exactly when they contain an
infinite chain, regardless of the number of colors. In the more interesting nontransitive
case, we focus on a particular nontransitive relation on ω that is elementary, yet reveals
unexpected phenomena not seen in the transitive case. For this relation, minimal predictors
always exist for two colors but never for ℵ2 colors. For ℵ0 colors, the existence of minimal
predictors is independent of ZFC plus a fixed value of the continuum, and turns out to be
closely related to certain cardinal invariants involving meager sets of reals.

1. Introduction. Our set-theoretic notation is fairly standard. If X
and Y are sets, then XY denotes the set of all functions from X to Y , and
X − Y is the set-theoretic difference of X and Y . We use [X]k to denote
the set of all k-element subsets of X, and [X]ω for the set of all countably
infinite subsets of X. If f is a function and A is a subset of the domain of f ,
then f |A is the restriction of f to the set A.

In very general terms, the class of problems we are interested in ask
how successfully one can predict an arbitrary function’s value at a given
point based on information about its values elsewhere. We explored this in
the topological context in [HT09] and with respect to functions of time in
[HT08b]. In the present paper, however, we rely heavily on the hat-problem
metaphor described in [HT08a], the generic version of which goes as follows.
A group of players is to have hats of various colors placed on their heads.
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Each player can see the hats of some of the other players, but not his or her
own. Except for a strategy session before the hats are placed, there is no
communication. The players are required to simultaneously submit a guess
of their own hat color.

For our purposes here, the specification of who can see whom will be
given by a directed graph V with no loops, called a visibility graph (or
visibility relation), with an edge from p to q indicating that p can see (the
hat worn by) q. We let V (p) = {q : pV q}, so V (p) is the set of players that
are visible to p. The set of colors will be a finite or infinite cardinal ν, and
a hat assignment is an element of P ν.

A strategy for a player p ∈ P is a function Sp : P ν → ν with the
property that if h and g are hat assignments with h|V (p) = g|V (p), then
Sp(h) = Sp(g). Thus, a strategy for player p provides him with a guess
for his hat color given a hat assignment h, and this guess depends only on
the hats that he can see. Notice that this guess is correct iff Sp(h) = h(p).
A predictor S is a sequence 〈Sp : p ∈ P 〉 where Sp is a strategy for player p.
That said, we will often regard a predictor as a function S : P ν → P ν, with
S(h)(p) = Sp(h).

Additionally, if we have a collection C of subsets of P then the notation

〈P, V 〉⇀ 〈C〉ν
denotes the assertion that if P is the set of players and V is the visibility
graph, then there exists a predictor ensuring that, for every hat assignment
with ν colors, the set of players who correctly guess their own hat color is
in the collection C. In specifying C, we use a cardinal κ itself to denote the
collection of subsets of P of cardinality at least κ, so 1 denotes the collection
of nonempty subsets of P , and ω denotes the collection of infinite subsets
of P . For visibility, we use Full to denote the complete directed graph with
no loops; this corresponds to full visibility subject to the constraint that no
one sees his or her own hat.

Our interest here is in the case where P is infinite. Early precursors
to such considerations date back at least to Fred Galvin’s work [Gal65] in
the mid-1960s and his initial application to provide a simple proof of a
theorem of Jerome Malitz dealing with a class of infinite-quantifier formulas
introduced by Leon Henkin. Later, Galvin and Karel Prikry [GP76] used
this same result in their investigations of Jonsson algebras. Other results
can be recast in terms of the hat-problem metaphor, including the work of
Andreas Blass [Bla94] on the so-called Specta-Eda number: the size of the
smallest subgroup G of Zω containing all unit vectors which still has the
property that every homomorphism h : G → Z annihilates almost all unit
vectors. These investigations by Blass were followed up in a series of papers
by Jörg Brendle and Saharon Shelah [Bre95, BS96, Bre03, BS03].
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More recently, Yuval Gabay and Michael O’Connor observed that with
full visibility there is a predictor guaranteeing at most finitely many er-
rors (a finite-error predictor), regardless of the set of players or colors; see
[HT08a]. In our notation, this says that for every set P and every cardinal ν,
we have 〈P,Full〉⇀ 〈F〉ν where F denotes the filter of cofinite subsets of P .
The predictor here is easy to describe. One defines an equivalence relation
≈ on P ν by f ≈ g if they only differ at finitely many points in P . By the
axiom of choice, there is a set C consisting of exactly one representative
from each equivalence class. The players fix such a set C, and under a hat
assignment h, each player guesses according to the unique g ∈ C with g ≈ h.

Rather than seeking finite-error predictors with full visibility, our interest
here lies at an opposite extreme. Specifically, we seek minimal predictors:
predictors that guarantee at least one correct guess. In sharp contrast to
earlier results, it turns out that the number of colors now plays a remarkably
prominent role. Fairly simple situations quickly lead to results independent
of ZFC and even ZFC with a fixed value of the continuum.

The rest of this paper is organized as follows. In Section 2, we begin
with the weakest theory of interest to us and exploit an infinite exponent
partition relation to show that even 〈ω,Full〉⇀ 〈1〉ω is not a theorem of ZF
+ DC. Because of this, we restrict all later considerations to ZFC. We also
show that finite visibility (i.e., each player sees finitely many other players)
is insufficient for the existence of minimal predictors, even for two colors,
except in fairly trivial cases.

In Section 3, we show that ZFC is sufficient to provide a very satisfying
answer to the question of when minimal predictors exist in the special case
in which the visibility relation is transitive. Namely, for transitive relations,
minimal predictors exist iff there is an infinite chain of visibility.

We turn next to nontransitive visibility relations and focus on a highly
nontransitive relation on ω wherein evens see higher-numbered odds and
odds see higher-numbered evens. We denote this directed graph by EO, for
“even-odd”. In Section 4 we show that, in ZFC, the relation 〈ω,EO〉 ⇀
〈1〉2 holds and the relation 〈ω,EO〉 ⇀ 〈1〉ω2 fails. We also show here that
〈ω,EO〉⇀ 〈1〉ω1 is a consequence of CH. We do not know if 〈ω,EO〉⇀ 〈1〉3
is provable in ZFC or if 〈ω,EO〉⇀ 〈1〉ω1 implies CH.

In Section 5, we consider the theory ZFC + 2ℵ0 = ℵ2 and prove that
〈ω,EO〉 ⇀ 〈1〉ω is independent of this theory. The positive result uses MA
and the negative one the addition of ℵ2 random reals and some surprising
connections with the ideal of meager sets of reals. We conclude in Section 6
by collecting together a number of open questions.

Before continuing, we make the following observation, which we use
twice.
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Proposition 1.1. If P = ω and V is a subrelation of the ordering <,
then 〈ω, V 〉⇀ 〈1〉ν iff 〈ω, V 〉⇀ 〈ω〉ν .

Proof. The right-to-left implication is trivial. For the left-to-right im-
plication, it suffices to show that any predictor failing to guarantee in-
finitely many correct guesses must actually fail to guarantee even one correct
guess. Let S be a predictor with a hat assignment f under which the set
C = {n ∈ ω : S(f)(n) = f(n)} of correct guesses is finite. If C = ∅, we
are done. Otherwise, let m = maxC. We will define a hat assignment f ′

that makes everyone wrong, by starting at m and working downward. Let
f ′(k) = f(k) for k > m. Then S(f ′)(m) is well-defined, and we can define
f ′(m) 6= S(f ′)(m); then S(f ′)(m − 1) is well-defined, and we can define
f ′(m − 1) 6= S(f ′)(m − 1), and so on. Eventually, we have defined f ′ such
that {n ∈ ω : S(f ′)(n) = f ′(n)} = ∅.

2. The need for AC and infinite visibility. In the further parts
of this paper, we seek combinations of set-theoretic axioms and visibility
assumptions adequate to yield positive results for minimal predictors. But
we begin with two negative results. The first asserts that ZF + DC is not a
sufficiently strong theory to yield a minimal predictor on ω with infinitely
many colors, even with full visibility. The second asserts that finite visibility
only suffices in fairly trivial situations even with two colors.

It was shown in [HT08a] that one cannot obtain the Gabay–O’Connor
theorem, even with two colors and P countable, without some nontrivial
version of the axiom of choice. On the other hand, with full visibility and
finitely many colors, there are trivial predictors ensuring that infinitely many
players guess correctly (e.g., with any set of players all of whom can see all
but finitely many of the other players, we can number the colors and have
each player guess that his hat color is the lowest-numbered color that he
sees occurring infinitely many times).

To prove that ZFC + DC is too weak to yield a minimal predictor with
infinitely many colors and full visibility, we need first to recall that the nota-
tion ω → (ω)ω2 means that for every function f : [ω]ω → 2, there exists an in-
finite set X such that f is constant on [X]ω. Similarly, the notation ω → [ω]ωω
means that for every function f : [ω]ω → ω, there exists an infinite set X and
a number n ∈ ω such that n /∈ f([X]ω). A. R. D. Mathias [Mat77] showed
that if ZFC plus the existence of a large cardinal is consistent, then so is ZF
+ DC together with the assertion that ω → (ω)ω2 . We only need the (appar-
ently) weaker assertion ω → [ω]ωω, and the following easy consequence of it.

Lemma 2.1. Assume ω → [ω]ωω. Then for every X ∈ [ω]ω and every
function f : [X]ω → ω, there exists an infinite set X ′ ⊆ X and a number
n ∈ X such that n < minX ′ and for every Y ∈ [X ′]ω, we have f(Y ) 6= n.
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Proof. Given f : [X]ω → ω, define g : [X]ω → X by setting g(Y ) = f(Y )
if f(Y ) ∈ X and g(Y ) = minX otherwise. Because ω → [ω]ωω, we can (by
identifying X with ω) choose X ′′ ∈ [X]ω and n ∈ X such that n /∈ g([X ′′]ω).
Letting X ′ = X ′′ − {0, . . . , n} works.

The following theorem is inspired by results in Galvin and Prikry’s 1976
paper [GP76].

Theorem 2.2. (ZF + DC) If ω → [ω]ωω holds, then 〈ω,Full〉 ⇀ 〈1〉ω
fails.

Proof. Assume that ω → [ω]ωω and that S = 〈Sn : n ∈ ω〉 is a predictor
for full visibility. We will inductively construct a sequence 〈(xn, Xn) : n ∈ ω〉
of pairs such that x0 < x1 < · · · and X0 ⊃ X1 ⊃ · · · and such that for each
n ∈ ω, the following hold:

(a) xn ∈ Xn and Xn ∈ [ω]ω.
(b) xn < min(Xn+1).
(c) For each Y ∈ [Xn+1]ω, if 〈y0, y1, . . .〉 is the increasing enumeration

of Y , then Sn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉) 6= xn for any value of ∗.
(Note that ∗ is irrelevant since player n cannot see his own hat.)

For such a sequence, no player guesses correctly under the hat assignment
〈x0, x1, . . .〉.

We begin with X0 = ω. Suppose now that n ≥ 0 and that we have
constructed Xn as well as xk for each k with 0 ≤ k < n. Let f : [Xn]ω → ω
be given by f(Y ) = Sn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉). By Lemma 2.1, we can
choose xn ∈ Xn and Xn+1 ∈ [Xn]ω such that xn < min(Xn+1) and for each
Y ∈ [Xn+1]ω, f(Y ) 6= xn. That is, for each Y ∈ [Xn+1]ω, if 〈y0, y1, . . .〉 is the
increasing enumeration of Y , then Sn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉) 6= xn.

We now return to ZFC and consider the necessity of infinite visibility (or
a cycle) for minimal predictors to exist. If two players can see each other,
then there definitely exists a minimal predictor with two colors: one player
guesses assuming the hats are the same color and the other guesses assuming
they are not. This easily generalizes to show that minimal predictors exist
with two colors whenever there is a cycle in the visibility graph [HT08a].
The following shows that for two colors, a cycle is the only way to get a
minimal predictor with finite visibility.

Theorem 2.3. With two colors and finite visibility on any set P , a
minimal predictor exists iff there exists a cycle in the visibility graph.

Proof. The case where P is finite was shown in [HT08a]. A trivial con-
sequence is that if there is a cycle, then there is a minimal predictor even if
P is infinite: just ignore all players and visibility outside the (finite) cycle.
Another consequence is that, with acyclic visibility, for any predictor and
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any finite subset F of players, there is a hat assignment under which every-
one in F guesses incorrectly: fix an arbitrary hat assignment for the players
outside F ; this induces a hat problem with finitely many players and acyclic
visibility, and we can then make everyone in F wrong by invoking the finite
case.

Now, suppose we have finite acyclic visibility. We will show that no min-
imal predictor exists. Fix a predictor S. For x ∈ P , let Dx = {f ∈ P 2 :
S(f)(x) 6= f(x)}, the set of hat assignments under which x guesses incor-
rectly, and let D = {Dx : x ∈ P}. We must show that

⋂
D 6= ∅. The above

observation that we can make any finite set of players wrong shows that D
has the finite intersection property. Put the usual product topology on P 2,
which is compact by Tychonoff’s theorem. Each Dx is closed, since mem-
bership in Dx depends only on the values of a function on the finite set
{x} ∪ V (x). We have now shown that D is a family of closed subsets of a
compact space, with the f.i.p., so

⋂
D 6= ∅.

3. The transitive case in ZFC. The following result rather com-
pletely characterizes those transitive visibility relations for which a minimal
predictor exists. The proof is essentially contained in [HT08b], but for the
sake of completeness, we include it here.

Theorem 3.1. For a transitive visibility relation V on a set P , regard-
less of the number of colors, the following are equivalent:

(1) There exists an infinite sequence 〈pi : i ∈ ω〉 of distinct players such
that pn sees pn+1 for every n ∈ ω.

(2) There exists an infinite set of players who have a finite-error predic-
tor among themselves.

(3) There exists a minimal predictor.

Proof. Assume (1) holds. Then, because of transitivity, each of the count-
ably many players in the sequence can see all but finitely many others in
the sequence. Hence, by the argument for the Gabay–O’Connor theorem in
the introduction, there is a finite-error predictor for this set of players, so
(2) holds. Of course, (2)⇒(3) is trivial. For the final implication, assume
(1) fails and that S is a predictor. We can define an increasing sequence
〈Bα : α < γ〉 of subsets of P by letting Bα consist of those players who only
see players in

⋃
{Bβ : β < α}. Notice that if P 6=

⋃
{Bβ : β < α}, then

Bα 6= ∅, since an infinite unsuccessful search for an element of Bα would
yield an infinite sequence of players of the type we are assuming does not
exist. With 〈Bα : α < γ〉 at hand, we can proceed by induction on α to de-
fine a hat assignment under which everyone in P guesses wrong when using
the predictor S.
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In ZF + DC, one can write a formula that expresses the existence of a
minimal predictor, and this formula is independent of ZF + DC for many
visibility relations and sets of colors. In ZFC, the formula that expresses the
existence of a minimal predictor in the transitive case is provably equivalent
to the formula that expresses the existence of an infinite chain of visibility.
However, that latter formula can still be independent of ZFC. For exam-
ple, the question of whether a computable subtree of ω<ω is well-founded
is Π1

1-complete, so there are going to be computable trees for which their
well-foundedness is independent of ZFC. These trees would induce transi-
tive visibility relations (let a node see all its descendants) for which the
existence of a predictor is independent of ZFC. So, the sense in which we
understand the transitive case is more a matter of mathematical practice
than any rigorous notion: our analysis of that case is complete in that we
have carried the problem to the doorstep of well-foundedness and dropped
it there.

4. The nontransitive case in ZFC and ZFC + CH. For some
kinds of hat problems, the results in the transitive case carry over to the
nontransitive case, but are just (apparently) harder to prove. For example,
in the transitive case with two or more colors, a finite-error predictor exists
iff there is no sequence xn of players such that xi cannot see xj for i ≤ j,
and the proof is fairly succinct; in the nontransitive case, the same holds
when there are countably many players (the uncountable case is open), but
the proof is more elaborate [Har10]. So, it would be natural to speculate
that the situation with minimal predictors is similar, and that Theorem 3.1
holds in the nontransitive case, but with a more complicated proof. How-
ever, it turns out that the nontransitive case is very unlike the transitive
case here, and that minimal predictors can exist without having an infinite
chain of visibility. More interestingly, the existence of minimal predictors can
now depend on the number of colors, in some cases yielding independence
results.

To exhibit these phenomena that distinguish the nontransitive case from
the transitive case, we consider in this section and the next the visibility
graph on ω in which evens see higher-numbered odds and odds see higher-
numbered evens. This directed graph is (essentially) isomorphic to the one
on P = 2× ω where (i,m) sees (j, n) iff i 6= j and m < n. In what follows,
we will freely switch back and forth between ω and 2 × ω, and we will let
EO denote the corresponding visibility relations.

The visibility relation EO is notable for having many infinite paths but
being highly nontransitive in the sense that when xEOy and yEOz we never
have xEOz. We refer to the visibility relation EO as the even-odd con-
text.
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Notationally, we will use P 0 for both the set of evens and {0} × ω, and
P 1 for both the set of odds and {1} × ω. Similarly, we will often think of
a hat assignment f as a pair (f0, f1) where f i specifies the hat assignment
for P i, and a predictor S as a pair (S0, S1) where Si : ων → ων tells us how
the players in P i guess (as a function of f1−i).

The existence of minimal predictors in the even-odd context is quite
dependent on the number of colors. The following result gives an outright
positive result in ZF, an outright negative result in ZFC, and an extreme
positive result under the additional assumption of CH.

Theorem 4.1.

(a) 〈ω,EO〉⇀ 〈1〉2.
(b) 〈ω,EO〉 X⇀ 〈1〉ω2.
(c) CH ` 〈ω,EO〉⇀ 〈1〉ω1.

Proof. For (a), let players in P 0 guess 1 iff they see infinitely many
players in P 1 with hat color 1; let players in P 1 guess 0 iff they see infinitely
many players in P 0 with hat color 1. If neither or both of P 0 and P 1 have
infinitely many players with color 1, then infinitely many players in P 0 will
be correct; otherwise infinitely many players in P 1 will be correct.

For (b), fix any predictor S = (S0, S1). For any ordinal α, let cα be the
function on ω that is constantly α. We intend to color P 0 with cβ for some
β ∈ ω1, and color P 1 with cγ for some γ ∈ ω2.

Since ω2 is regular, we can choose γ ∈ ω2 such that γ > S1
n(cα) for every

α ∈ ω1 and n ∈ ω. Now choose β ∈ ω1 such that β > S0
n(cγ) for every n ∈ ω

such that S0
n(cγ) ∈ ω1. Then, under the hat assignment (cβ, cγ), everyone

guesses incorrectly. (What is really going on in the above argument is that
given functions S0 : ω2 → ω1 and S1 : ω1 → ω2, there is a pair (β, γ) such
that β > S0(γ) and γ > S1(β): just choose γ above the supremum of S1,
and β above S0(γ).)

For (c), we only sketch the proof, as it will be a special case of more
general results in the next section. Using CH we fix a well-ordering � of
ωω1 of order type ω1. For any f ∈ ωω1, let f̂ be �-minimal such that f̂ and
f eventually agree in the sense that there exists an x ∈ ω such that for all
y > x, f̂(y) = f(y). Informally, the players’ strategies will be that for a hat
assignment (f0, f1), the players in P i, i = 0, 1, will assume f̂ i � f̂1−i and
guess according to a function that infinitely agrees with each g � f̂1−i; at
least one of those assumptions will turn out to be correct, yielding a minimal
predictor.

Considering EO as a relation on 2×ω, one can form analogous relations
on β×γ for other ordinals β, γ. Theorem 4.1 has extensions to these contexts;
these will be discussed elsewhere.
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5. The nontransitive case in ZFC + 2ℵ0 = ℵ2. Somewhat surpris-
ingly, there seems to be a close connection between the existence of minimal
predictors in the even-odd context and properties of the ideal of meager
sets of real numbers. In fact, our consistency results make use of two promi-
nent cardinal invariants; these and several others all lie between ℵ1 and 2ℵ0 ,
and the relationships between them are well understood; a summary can be
found in [Jec03, pp. 532–533] while [BJ95, Bar09, Mil81] provide detailed
accounts. We say that functions f, g ∈ ων infinitely agree if f ∩ g is infinite,
and only finitely agree if f ∩ g is finite.

Definition 5.1. With M denoting the ideal of meager subsets of R,

(a) cov(M) is the least cardinality of a subset of M whose union is R;
(b) non(M) is the least cardinality of a nonmeager set.

Lemma 5.2 ([BJ95, pp. 54–59]).

(a) cov(M) is the smallest size of a family F ⊆ ωω such that (∀g ∈ ωω)
(∃f ∈ F ) f and g only finitely agree.

(b) non(M) is the smallest size of a family F ⊆ ωω such that (∀g ∈ ωω)
(∃f ∈ F ) f and g infinitely agree.

The following definition and lemma are key to the positive results in the
even-odd context.

Definition 5.3. A family G ⊆ ων is agreeable if for any F ⊆ G with
|F | < |G|, there is a g ∈ G such that for each f ∈ F , g and f infinitely
agree.

Lemma 5.4. If ων is agreeable, then 〈ω,EO〉⇀ 〈1〉ν .

Proof. Let λ = |ων| and fix a well-ordering � of ων of order type λ. For
any f ∈ ων, let f̂ ∈ ων be �-minimal such that f̂ and f eventually agree.
As in the proof of Theorem 4.1(c), the players’ strategies will be that for a
hat assignment (f0, f1), the players in P i will assume f̂ i � f̂1−i and guess
according to a function that infinitely agrees with each g � f̂1−i; at least
one of those assumptions will turn out to be correct, yielding a minimal
predictor.

We define A : ων → ων as follows. For any f ∈ ων, we have |{g ∈ ων :
g � f̂}| < λ, so by the agreeability of ων, we can choose A(f) to infinitely
agree with each g � f̂ . Note that for a hat assignment (f0, f1), a player in P i

can only see the values of f1−i on a tail of ω, but this is enough information
to determine f̂1−i and hence A(f1−i). The predictor S is defined by letting
players in P i guess according to A(f1−i).

For any hat assignment (f0, f1), we have f̂0 � f̂1 or f̂1 � f̂0. Suppose
the former. Then A(f1) infinitely agrees with f̂0, and since f̂0 and f0 even-
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tually agree, A(f1) also infinitely agrees with f0, so infinitely many players
in P 0 guess correctly. Similarly, if f̂1 � f̂0, infinitely many players in P 1

guess correctly.

An immediate consequence of Lemma 5.4 is the formal proof (promised
in the last section) that CH ` 〈ω,EO〉⇀ 〈1〉ω1 because ωω1 is agreeable, as
the following argument shows. Note that under CH, |ωω1| = ℵ1. Take any
F ⊆ ωω1 with |F | < ℵ1. Since F is countable, we can produce a sequence of
functions f0, f1, . . . ∈ ωω1 in which each f ∈ F appears infinitely often. The
function g(n) = fn(n) infinitely agrees with every f ∈ F .

In fact, in models of ZFC + non(M) = 2ℵ0 = ℵ2, 〈ω,EO〉 ⇀ 〈1〉ω
is equivalent to a number of natural conditions, as the following theo-
rem shows. This establishes the independence of 〈ω,EO〉 ⇀ 〈1〉ω from
ZFC+non(M) = 2ℵ0 = ℵ2: adding ℵ2 random reals to a model of CH yields
a model in which cov(M) = ℵ1 +non(M) = 2ℵ0 = ℵ2 [Mil81, p. 109], and it
is well known that models of MA + 2ℵ0 = ℵ2 have cov(M) = non(M) = 2ℵ0
= ℵ2.

Theorem 5.5. Assume non(M) = 2ℵ0 = ℵ2. Then the following are
equivalent:

(1) cov(M) = ℵ2.
(2) MAℵ1(countable).
(3) ωω is agreeable.
(4) 〈ω,EO〉⇀ 〈1〉ω.

Proof. (1)⇔(2) can be found in [BJ95, p. 138].
(1)⇒(3) is an easy consequence of Lemma 5.2(a), but we offer a direct

argument of (2)⇒(3) for the sake of making the connection intuitively clear.
Let Q be the partial order of finite partial functions from ω to ω, ordered by
reverse inclusion, and note that Q is countable. Take any F ⊆ ωω with |F | <
|ωω| = ℵ2. For f ∈ F and n ∈ ω, let Df,n = {q ∈ Q : n ∈ dom(q) &
(∃k ≥ n) q(k) = f(k)}, which is dense in Q. Let D = {Df,n : f ∈ F, n ∈ ω}.
We have |D| ≤ ℵ1, so by MAℵ1(countable), there is a D-generic filter G ⊆ Q.
Letting g =

⋃
Q ∈ ωω, g infinitely agrees with each f ∈ F . Therefore, ωω is

agreeable.
(3)⇒(4) is immediate from Lemma 5.4.
(4)⇒(1). Supposing cov(M) = ℵ1, we will show 〈ω,EO〉 X⇀ 〈1〉ω. Let

F be as in Lemma 5.2(a), with |F | = ℵ1. Take any predictor S = (S0, S1).
We intend to color P 0 with some f0 ∈ F . Let F ′ = {S1(f) : f ∈ F}. Since
|F ′| ≤ ℵ1 < non(M), Lemma 5.2(b) gives us f1 ∈ ωω such that (∀f ∈ F ′)
f and f1 only finitely agree. By our choice of F , there exists f0 ∈ F such
that f0 only finitely agrees with S0(f1). Then S has only finitely many
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correct guesses under hat assignment f = (f0, f1), so 〈ω,EO〉 X⇀ 〈ω〉ω, and
by Proposition 1.1 it follows that 〈ω,EO〉 X⇀ 〈1〉ω.

6. Questions. We begin with a piece of terminology and an observation.

Definition 6.1. Say that 〈fα : α < ω1〉 ⊆ ων is a strongly agreeable
family in ων if (∀f ∈ ων)(∃α ∈ ω1)(∀β > α) f and fβ agree infinitely.

Theorem 6.2. The following are equivalent:

(1) There exists a strongly agreeable family in ωω1.
(2) 〈ω,EO〉⇀ 〈1〉ω1.

Proof. (1)⇒(2). Fix a strongly agreeable family 〈fα : α < ω1〉 in ωω1.
The predictor is as follows. For a hat assignment h = (h0, h1), the players
in P i choose αi such that (∀β ≥ αi) h1−i and fβ agree infinitely, and guess
according to fαi .

We must have α0 ≤ α1 or α1 ≤ α0. If α1−i ≤ αi, then since hi agrees
infinitely with fβ for β ≥ α1−i, hi agrees infinitely with fαi , so infinitely
many players in P i guess correctly.

(2)⇒(1). Suppose there is no strongly agreeable family in ωω1. Fix any
predictor S = (S0, S1). Let cα be as in the proof of Theorem 4.1. Let fα =
S1(cα). Since 〈fα : α < ω1〉 is not a strongly agreeable family, we can
choose g ∈ ωω1 such that (∀α ∈ ω1)(∃β > α) g only finitely agrees with fβ.
In particular, there exists β > supS0(g) such that g only finitely agrees
with fβ. Then, under the hat assignment (cβ, g), no player in P 0 guesses
correctly since β > supS0(g), and only finitely many players in P 1 guess
correctly since g only finitely agrees with fβ = S1(cβ). This establishes
〈ω,EO〉 X⇀ 〈ω〉ω1 , so 〈ω,EO〉 X⇀ 〈1〉ω1 by Proposition 1.1.

Theorem 6.2 might be of use in settling the following.

Question 6.3. Does 〈ω,EO〉⇀ 〈1〉ω1 imply CH?

As we mentioned earlier, we are also unable to settle the following.

Question 6.4. Can one prove in ZFC that 〈ω,EO〉⇀ 〈1〉3?

We suspect, but have not proven, an affirmative answer to the follow-
ing.

Question 6.5. If V is a visibility relation on a set X with no infinite
chain of visibility, must there exist κ such that 〈X,V 〉 X⇀ 〈1〉κ?

In our discussion of the necessity of some nontrivial version of the ax-
iom of choice in producing minimal predictors on ω with full visibility,
it was crucial that the number of colors was infinite. As we pointed out
there, with finitely many colors, there are minimal predictors even if each
player sees only the hats of higher-numbered players (thus avoiding the
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trivial solutions using cycles). The particular predictor we described had
the players guess the least color they see occurring infinitely often. Even
with two colors, this predictor is not “neutral” in the sense of respecting
permutations of the set of colors; that is, a neutral predictor S satisfies
S(σ ◦ f) = σ ◦ S(f) where σ is any such permutation. This suggests the
following.

Question 6.6. Can one prove in ZF + DC that there exists a neutral
minimal predictor when P = ω and each player sees only the hats of higher-
numbered players? If not, is the predictor described above essentially the
only one that can be produced in ZF + DC?

Finally, how much visibility is needed for a minimal predictor to exist?
Of course, this depends on the model, so we could ask two questions: how
much visibility is needed for a minimal predictor to exist under CH? How
much is needed in the model where we have added ℵ2 random reals?
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