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Estimation of the Szlenk index of reflexive Banach spaces
using generalized Baernstein spaces
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Ryan Causey (College Station, TX)

Abstract. For each ordinal α < ω1, we prove the existence of a separable, reflexive
Banach space W with a basis so that Sz(W ), Sz(W ∗) ≤ ωα+1 which is universal for the
class of separable, reflexive Banach spaces X satisfying Sz(X), Sz(X∗) ≤ ωα.

1. Introduction. The relatively new tool of weakly null trees has pro-
duced a number of recent results in Banach space theory. In particular,
trees have facilitated the solution of questions concerning realizing a given
Banach space as a subspace or quotient of a Banach space with a coordi-
nate system (a process which we call “coordinatization”) through a strong
connection between trees and embedding into Banach spaces with an FDD
which has prescribed properties. For example, Johnson and Zheng completely
characterized when a separable reflexive space embeds into a reflexive space
with unconditional basis [7] and when a separable Banach space embeds
into a Banach space with shrinking, unconditional basis [8] using the UTP
and w∗UTP, respectively. Odell and Schlumprecht demonstrated that for
1 < p < ∞, a separable, reflexive space embeds into a Banach space which
is the `p sum of finite-dimensional spaces if and only if every normalized,
weakly null tree has a branch equivalent to the `p unit vector basis [10]. In
a spirit which we continue, Odell and Schlumprecht established a strong con-
nection between tree estimates and embeddings into Banach spaces with the
corresponding block estimates (the relevant notions are defined in Section 2).
These coordinatization results provide an avenue for the proof of the existence
of universal Banach spaces for classes of spaces with certain tree estimates.

Our results follow the methods of Odell, Schlumprecht, and Zsák [13]
and Freeman, Odell, Schlumprecht, and Zsák [5] who used Tsirelson spaces
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in their constructions. In [5], the objects of study were Banach spaces with
separable dual, while in [13], the objects were separable, reflexive spaces.
The former proved both a coordinatization result and a universality result
concerning the classes of separable Banach spaces with Szlenk index not
exceeding ωαω, while the latter proved a coordinatization result and a uni-
versality result concerning the classes of separable, reflexive Banach spaces
X such that the Szlenk indices of both X and X∗ do not exceed ωαω. In [4],
results analogous to those of [5] were established using Schreier spaces. These
results allowed finer gradations by working instead with the classes of sep-
arable Banach spaces with Szlenk index not exceeding ωα for a countable
ordinal α.

Two-sided estimates were not possible with Schreier spaces, which are
c0-saturated. To establish two-sided estimates, we introduce a generalization
of the so-called Baernstein space, which we denote Xp

α, and which is itself a
generalization of Schreier’s original space. The details of the construction are
given in Section 3. This allows us to improve the results of [13] by making
finer gradations, as in [4].

In Section 4, we define the Szlenk index, originally used by Szlenk to prove
the non-existence of a separable, reflexive Banach space which is universal
for the class of separable, reflexive Banach spaces. We also recall several
results concerning the Szlenk index which connect it to tree estimates.

Finally, we present the proofs of the main results in Section 5.
Our connection between the Szlenk index and tree estimates is summa-

rized in

Theorem 1.1. If X is a separable, reflexive Banach space, α < ω1 is
such that Sz(X), Sz(X∗) ≤ ωα, and 1 < p ≤ 2, then X satisfies subsequential
((Xp

α)∗, X
p
α)-tree estimates.

A major idea behind Theorem 1.1 is the comparison of normalized
block sequences in two Banach spaces to make a comparison of the Szlenk
indices of the two spaces. For this comparison, we establish the follow-
ing coordinatization result, which connects tree estimates with block esti-
mates.

Theorem 1.2. Let U, V be reflexive Banach spaces with normalized,
1-unconditional bases (un), (vn), respectively, so that (un) satisfies subsequen-
tial U -upper block estimates in U , (vn) satisfies subsequential V -lower block
estimates in V , and every normalized block sequence of (vn) is dominated
by every normalized block sequence of (un). Then if X is a separable, reflex-
ive Banach space which satisfies subsequential (V,U)-tree estimates, then X
embeds into a reflexive Banach space Z with FDD E satisfying subsequential
(V,U)-block estimates in Z.
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Finally, we employ a theorem of Johnson, Rosenthal, and Zippin from [6]
to deduce the existence of a universal space with a basis. To do so, we define
for each α < ω1 the class

Cα = {X : X separable, reflexive, Sz(X), Sz(X∗) ≤ ωα}.
Theorem 1.3. Let α < ω1. There exists a separable, reflexive space W

in Cα+1 with a basis which is universal for the class Cα.
This is a strengthening of Theorem C of [13], which proved the above

result in the case that α = βω for some β < ω1.

2. Definitions and notation. If Z is a Banach space and E = (En)
is a collection of finite-dimensional subspaces of Z, we say E is a finite-
dimensional decomposition, or FDD, for Z if for each z ∈ Z there exists a
unique sequence (zn) such that zn ∈ En and z =

∑∞
n=1 zn. If E is an FDD for

a Banach space Z, for n ∈ N we denote the nth coordinate projection by PEn .
More precisely, for z ∈ Z, if z =

∑∞
n=1 zn for zn ∈ En, then PEn z = zn. For

a finite A ⊂ N, we let PEA =
∑

n∈A P
E
n . We define the projection constant

K = K(E,Z) to be

K = K(E,Z) = sup
m≤n
‖PE[m,n]‖.

This is finite by the principle of uniform boundedness. We call E a bimono-
tone FDD for a Banach space Z if K(E,Z) = 1. If Z has an FDD, we can
always endow Z with an equivalent norm which makes E a bimonotone FDD.
We let suppE z = {n : PEn z 6= 0}, and call this set the support of z. If E is a
basis, or if no confusion is possible, we write supp z in place of suppE z. We
denote by c00(

⊕
En) the collection of vectors in Z with finite support. We

note that c00(
⊕
En) is dense in any space for which E is an FDD.

We denote by Z(∗) the closed span of c00(
⊕
E∗n) in Z∗ and note that

E∗ = (E∗n) is an FDD for Z(∗) with K(E∗, Z∗) ≤ K(E,Z). We consider E∗n
with the norm it inherits as a subspace of Z∗ and not with the norm it inherits
as the dual of En. These norms may be different if E is not bimonotone. If
Z(∗) = Z∗, we say that E is a shrinking FDD for Z. We say that E is a
boundedly complete FDD if for each sequence (zn) with zn ∈ En such that
supN∈N ‖

∑N
n=1 zn‖ < ∞,

∑∞
n=1 zn converges in Z. A Banach space Z with

FDD E is reflexive if and only if the FDD is both shrinking and boundedly
complete.

If Z is a Banach space with FDD E = (En) and V is a Banach space with
a normalized, 1-unconditional basis (vn), we define the space ZV = ZV (E)
to be the completion of c00(

⊕∞
n=1En) endowed with the norm

‖z‖ZV = sup
{∥∥∥ ∞∑

k=1

‖PE[kn−1,kn)
z‖Zvkn−1

∥∥∥
V
: 1 ≤ k0 < k1 < · · ·

}
.
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The norm above depends upon the FDD E, but when no confusion is possi-
ble, we will write ZV in place of ZV (E). For convenience, we will write Zp
in place of Z`p .

If U is a Banach space and (un) is a basis for U , we say (un) is R-right
dominant if for each pair of subsequences of the natural numbers (mn), (kn)
with mn ≤ kn for all n, (umn) is R-dominated by (ukn). If B = (bn) is a sub-
sequence of the natural numbers, we let UB = [ubn ]. If Z is a Banach space
with FDD E, and U is a Banach space with a normalized, 1-unconditional
basis (un), we say E satisfies subsequential C-U -upper (respectively, lower)
block estimates in Z if each normalized block sequence (zn) is C-dominated
by (respectively, C-dominates) (umn), where mn = min suppE zn. If U, V
are Banach spaces with normalized, 1-unconditional bases (un), (vn), respec-
tively, we say X satisfies subsequential K-(V,U)-block estimates in Z if it
satisfies subsequential K-V -lower block estimates in Z and K-U -upper block
estimates in Z.

We next recall a coordinate-free version of subsequential upper and lower
estimates. For ` ∈ N, we define

T` = {(n1, . . . , n`) : n1 < · · · < n`, ni ∈ N}

and

T∞ =
∞⋃
`=1

T`, T even
∞ =

∞⋃
`=1

T2`.

An even tree in a Banach space X is a family (xt)t∈T even
∞ in X. Sequences

of the form (x(t,k))k>k2n−1 , where n ∈ N and t = (k1, . . . , k2n−1) ∈ T∞, are
called nodes. A sequence of the form (k2n−1, x(k1,...,k2n))

∞
n=1, with k1 < k2

< · · · , is called a branch of the tree. An even tree is called weakly null if
every node is a weakly null sequence. If X is a dual space, an even tree is
called w∗-null if every node is w∗-null. If X has an FDD E = (En), a tree is
called a block even tree of E if every node is a block sequence of E.

If T ⊂ T even
∞ is closed under taking restrictions so that for each t ∈ T∪{∅}

and for eachm ∈ N the set {n ∈ N : (t,m, n) ∈ T} is either empty or infinite,
and if the latter occurs for infinitely many values of m, then we call (xt)t∈T
a full subtree. Such a tree can be relabeled to a family indexed by T even

∞ and
such that the branches of (xt)t∈T are branches of (xt)t∈T even

∞ and that the
nodes of (xt)t∈T are subsequences of the nodes of (xt)t∈T even

∞ .
Let U be a Banach space with a normalized, 1-unconditional basis (un)

and C ≥ 1. Let X be an infinite-dimensional Banach space. We say that X
satisfies subsequential C-U -upper tree estimates if every normalized, weakly
null even tree (xt)t∈T even

∞ in X has a branch (k2n−1, x(k1,...,k2n)) such that
(x(k1,...,k2n))n is C-dominated by (uk2n−1)n. We say X satisfies subsequen-
tial C-U -lower tree estimates if every normalized, weakly null even tree
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(xt)t∈T even
∞ in X has a branch (k2n−1, x(k1,...,k2n)) such that (x(k1,...,k2n))n

C-dominates (vk2n−1). We say that X satisfies subsequential U -upper (re-
spectively, lower) tree estimates if it satisfies C-U -upper (respectively, lower)
tree estimates for some C ≥ 1. If U, V are Banach spaces with normalized,
1-unconditional bases, we say X satisfies subsequential C-(V,U)-tree esti-
mates if it satisfies subsequential C-V -lower tree estimates and C-U -upper
tree estimates.

We let A(V,U) denote the class of all separable, reflexive Banach spaces
which satisfy subsequential (V,U)-tree estimates.

A simple perturbation argument yields the following.

Lemma 2.1. Let U be a Banach space with a normalized, 1-unconditional
basis (un), and let Z be a Banach space with FDD E = (En) satisfying
subsequential C-U -upper (respectively, lower) block estimates in Z. Assume
also that for each n ∈ N, En 6= {0}. If (zn) is a normalized block sequence
in Z and (kn) ⊂ N is strictly increasing such that

kn ≤ min suppE zn ≤ max suppE zn < kn+1,

then (zn) is C-dominated by (respectively, C-dominates) (ukn).

Another simple but technical lemma involves the preservation of upper
block estimates. We postpone the proof until Section 4.

Lemma 2.2. Let U, V be Banach spaces with normalized, 1-unconditional
bases (un), (vn), respectively, so that every normalized block sequence in (un)
dominates every normalized block sequence in (vn). If Z is a Banach space
with FDD E which satisfies subsequential U -upper block estimates in Z, then
E satisfies subsequential U -upper block estimates in ZV (E).

3. Schreier families, Schreier and Baernstein spaces. Throughout,
we will assume subsets of N are written in increasing order. Let [N]<ω denote
the set of all finite subsets of N, and [N]ω the set of all infinite subsets of N. We
identify subsets ofN in the natural way with strictly increasing sequences inN.
We write E < F if maxE < minF . By convention, min ∅ = ω, max ∅ = 0.
We consider the families [N]ω, [N]<ω as being ordered by extension. That is,
the predecessors of an element are its initial segments, and we write E � F
if E is an initial segment of F . A family F ⊂ [N]<ω is called hereditary if,
whenever E ∈ F and F ⊂ E, F ∈ F . We associate a set F with the function
1F in {0, 1}N, topologized with the product topology. We then endow [N]<ω
with the topology induced by this association. We note that a hereditary
family is compact if and only if it contains no strictly ascending chains.

Given two (finite or infinite) subsequences (kn), (`n) ⊂ N of the same
length, we say (`n) is a spread of (kn) if kn ≤ `n for all n ∈ N. We call a
family F ⊂ [N]<ω spreading if it contains all spreads of its elements.
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We construct the Schreier families with more specific properties than is
usually done. Let

S0 = {∅} ∪ {{n} : n ∈ N}.
Assuming that for α < ω1, Sα has been defined, let

Sα+1 =
{ n⋃
k=1

Ek : Ek ∈ Sα, E1 < · · · < En, n ≤ minE1

}
.

Assume that α < ω1 is a limit ordinal. Assume also that for each 0 ≤ β < α,
Sβ has been defined, and for each limit ordinal λ < α, there exists a sequence
λn ↑ λ such that Sλ = {E : ∃n ≤ minE, E ∈ Sλn+1}. An easy induction
argument shows that for any β < γ < α there exists a non-negative integer
m such that Sβ ⊂ Sγ+m. Choose some sequence βn ↑ α. We can recursively
choose non-negative integers mn so that

Sβn+mn+1 ⊂ Sβn+1+mn+1 .

We let αn = βn +mn, so αn ↑ α. Therefore we have Sαn+1 ⊂ Sαn+1 . We let

Sα = {E : ∃n ≤ minE, E ∈ Sαn+1}.

The families above depend on the choices we make of αn ↑ α for limit
ordinals α, but it is known that regardless of these choices, Sα is spreading,
hereditary, and compact.

Next, we recall the Repeated Averages Hierarchy as defined in [2]. For
a partially ordered set P , we write MAX(P ) to denote the collection of
maximal elements. For each I ∈ [N]ω, 0 ≤ α < ω1, we define a sequence
(xα,In )n to be a convex blocking of the canonical c00 basis, denoted (en),
which has the properties:

(i) (xα,In )n is a convex blocking of (ein),
(ii) I =

⋃∞
n=1 suppx

α,I
n ,

(iii) suppxα,In ∈ MAX(Sα) for each n.

For I ∈ [N]ω, write I = (in). We let x0,In = ein . If (x
α,I
n ) has been defined

to have the properties above, we let

xα+1,I
1 = i−11

i1∑
j=1

xα,Ij .

Suppose that xα+1,I
n has been defined for 1 ≤ n < N to be a convex

blocking of (ein),
⋃N−1
n=1 supp(xα+1,I

n ) is an initial segment of I, supp(xα+1,I
n )

is in MAX(Sα+1) for each n, and

xα+1,I
n =

1

sn

pn∑
j=pn−1+1

xα,Ij for some 0 = p0 < · · · < pN−1,
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where sn = min supp(xα+1,I
n ). Then let sN = min supp(xα,IpN−1+1), let

pN = pN−1 + sN , and let

xα+1,I
N =

1

sN

pN∑
j=pN−1+1

xα,Ij .

Finally, assume that for a limit ordinal α < ω1, (x
β,I′
n ) has been defined

for all β < α and all I ′ ∈ [N]ω. Let αn ↑ α be the ordinals used to define Sα.
Let m1 = min I and xα,I1 = x

αm1+1,I
1 . Given xα,In for 1 ≤ n < N with the

same assumptions as in the successor case, let IN = I \
⋃N−1
n=1 supp(xα,In ),

mN = min IN , and x
α,I
N = x

αmN+1,IN
1 .

For our next lemma, we define a convenient notation. If x ∈ c00 and
E ⊂ N, we let Ex be the sequence defined by Ex(n) = 1E(n)xn.

Lemma 3.1. If I = (in) ∈ [N]ω is such that 3in ≤ in+1 and E ∈ Sα, then∥∥∥E( ∞∑
n=1

xα,In

)∥∥∥
1
≤ 2.

Proof. By induction. Since Sα is hereditary for each α, it suffices to
consider E ⊂ I. If α = 0, the claim is clear, since ∅ 6= E ∈ S0 means E is a
singleton, and (x0,In ) = (ein).

Next, assume the claim holds for the ordinal α. Let E =
⋃m
k=1Ek ∈ Sα+1,

Ek ∈ Sα. Letmn = min supp(xα+1,I
n ). If the set {n : supp(xα+1,I

n )∩E 6= ∅} is
empty, then the claim is trivial. Suppose this set is non-empty, and let N be
its minimum. Then m ≤ minE ≤ mN+1/3, and inductively, m ≤ mN+n/3

n

for each n ≥ 1. Since there exists a sequence 0 = p0 < p1 < · · · with

supp(xα+1,I
n ) = m−1n

pn∑
j=pn−1+1

xα,Ij ,

our inductive hypothesis gives, for each j ≤ m,

‖Ejxα+1,I
n ‖1 ≤ 2/mn.

Then ∥∥∥E( ∞∑
n=1

xα,In

)∥∥∥
1
≤ ‖xα,IN ‖1 +

∞∑
n=1

m∑
j=1

‖Ejxα,IN+n‖1

≤ 1 +
∞∑
n=1

2m

mN+n
≤ 1 + 2

∞∑
n=1

3−n = 2.

Finally, let α < ω1 be a limit ordinal and assume the claim holds for
all β < α. Let αn ↑ α be the ordinals used to define Sα. If E ∈ Sα, let
N = min{n : supp(xα,In )∩E 6= ∅}. Let m = minE, mn = min suppxα,In . For



160 R. Causey

each n ≥ 1,m < mN+n. Since E ∈ Sα, it follows that E ∈ Sαm+1 ⊂ SαmN+n
.

As

xα,IN+n = x
αmN+n

+1,I

1 = m−1N+n

pn+mN+n∑
k=pn

x
αmN+n

,I

k

for some pn, the inductive hypothesis implies

‖Exα,IN+n‖1 ≤ 2/mN+n ≤ 2/3n.

As in the successor ordinal case,∥∥∥E( ∞∑
n=1

xα,In

)∥∥∥
1
≤ ‖xα,IN ‖1 +

∞∑
n=1

‖Exα,IN+n‖1 ≤ 1 + 2

∞∑
n=1

3−n = 2.

We finally define the spaces which we will use to prove our theorems, as
well as deduce some of their properties. For α < ω1, we define the norm ‖·‖α
on c00 by

‖x‖α = sup
E∈Sα

‖Ex‖1.

The completion of c00 under this norm is known as the Schreier space of
order α, and denoted Xα. We see that the canonical basis (en) of c00 be-
comes a normalized, 1-unconditional basis for Xα. We note also that the
canonical basis is shrinking in Xα (this follows, for example, from [9], where
it was shown that Xα contains no copy of `1). We will consider spaces of
the form Xp

α = (Xα)
`p , as defined in Section 2. The space X2

1 was intro-
duced by Baernstein, and the generalizations Xp

1 were studied by Seifert [3].
For this reason, we refer here to Xp

α as the Baernstein space of order α and
parameter p.

We note that for x ∈ c00,

‖x‖Xp
α
= sup

{(∑
j

(∑
i∈Ej

|xi|
)p)1/p

: E1 < E2 < · · · , Ej ∈ Sα
}

= sup{‖(‖Ejx‖1)j‖`p : E1 < E2 < · · · , Ej ∈ Sα},

with the appropriate modification to the first line if p = ∞. The same is
true if the suprema run over all finite sequences E1 < · · · < En, Ej ∈ Sα.
We collect some relevant facts about the unit vector basis (en) of X

p
α in the

following lemma.

Lemma 3.2. Fix α < ω1 and 1 < p < ∞. Then the unit vector basis
(en) of Xp

α is shrinking, boundedly complete, right dominant, and satisfies
subsequential Xp

α-upper block estimates in Xp
α.

Proof. Since the unit vector basis of Xα is shrinking, it is shrinking
and boundedly complete in Xp

α by [12, Lemma 8 and Corollary 7]. There-
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fore Xp
α is reflexive and the coordinate functionals (e∗n) form a normalized,

1-unconditional basis for (Xp
α)∗.

Take (mn), (kn) such that mn ≤ kn. Fix an ∈ c00. Let x =
∑
anemn and

y =
∑
anekn . There exists a sequence E1 < E2 < · · · with Ej ∈ Sα for each

j such that
‖x‖p

Xp
α
=
∑
j

(∑
i∈Ij

|ai|
)p
,

where Ij = {i : mi ∈ Ej}. Let Mj = {mi : i ∈ Ij}. Then Mj ⊂ Ej , and we
can assume Mj = Ej . Let Kj = {ki : i ∈ Ij}. Then Kj is a spread of Mj ,
and thus Kj ∈ Sα. Clearly, we also have K1 < K2 < · · · and

‖y‖p
Xp
α
≥
∑
j

(∑
i∈Ij

|ai|
)p

= ‖x‖p
Xp
α
.

Therefore (en) is 1-right dominant in Xp
α.

Next, take E1 < E2 < · · · , Ej ∈ Sα, and (zn) a normalized block sequence
in Xp

α with mn = min supp zn. We can write zn = wn + xn + yn, where
(wn), (xn), (yn) are subnormalized and such that the support of each wn
or yn intersects at most one Ej , and for each j there exists at most one n
such that Ej ∩ suppxn 6= ∅. Let

J = {j ∈ N : Ej ∩ supp zn 6= ∅ for some n}.
By [4, Proposition 3.1], there exists a sequence (Fj)j∈J of successive sets
such that Fj ∈ Sα for each j ∈ J and∥∥∥Ej(∑ anxn

)∥∥∥
1
≤ 2
∥∥∥Fj(∑ anemn

)∥∥∥
1
.

This means(∑
j

∥∥∥Ej(∑
n

anxn

)∥∥∥p
1

)1/p
≤ 2
(∑

j

∥∥∥Fj(∑
n

anemn

)∥∥∥p
1

)1/p
≤ 2
∥∥∥ ∞∑
n=1

anemn

∥∥∥
Xp
α

.

Moreover, since for each n there exists at most one jn such that Ej ∩
suppwn 6= ∅, and since the unit vector basis of Xp

α clearly 1-dominates
the unit vector basis of `p, we deduce (with the unindexed sums taken over
all n such that there exists some j with Ej ∩ suppwn 6= ∅) that∑

j

∥∥∥Ej(∑
k

akwk

)∥∥∥p
1
=
∑∥∥∥Ejn(∑

k

akwk

)∥∥∥p
1
=
∑
|an|p‖Ejnwn‖

p
1

≤
∑
|an|p‖wn‖pXα ≤

∑
|an|p ≤

∥∥∥ ∞∑
n=1

anemn

∥∥∥p
Xp
α

.
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Similarly, ∑
j

∥∥∥Ej(∑
n

anyn

)∥∥∥p
1
≤
∥∥∥ ∞∑
n=1

anemn

∥∥∥p
Xp
α

.

Therefore(∑
j

∥∥∥Ej(∑ anzn

)∥∥∥p
1

)1/p
≤
(∑

j

∥∥∥Ej(∑ anwn

)∥∥∥p
1

)1/p
+
(∑

j

∥∥∥Ej(∑ anxn

)∥∥∥p
1

)1/p
+
(∑

j

∥∥∥Ej(∑ anyn

)∥∥∥p
1

)1/p
≤ 4
∥∥∥∑ anemn

∥∥∥
Xp
α

.

Since E1 < E2 < · · · was arbitrary, we deduce that (en) satisfies subsequen-
tial 4-Xp

α-upper block estimates in Xp
α.

We conclude this section with the following extension of Lemma 3.1.

Lemma 3.3. Fix 1 ≤ p <∞. If I = (in) ∈ [N]ω is such that in+1 ≥ 3in,
α < ω1, and (xα,In ) is the sequence of repeated averages, then (xα,In ) as a
sequence in Xp

α is 5-equivalent to the unit vector basis of `p.

Proof. Since ‖xα,In ‖1 = 1 and suppxα,In ∈ Sα, the sequence of repeated
averages is a normalized block sequence in Xp

α. Consequently, it 1-dominates
the unit vector basis of `p. Fix E1 < E2 < · · · , so that Ej ∈ Sα for each j. Fix
(an) ∈ c00. Let z =

∑
anx

α,I
n . We can assume Ej ⊂ I for each j by replacing

Ej with Ej ∩ I without changing the value of
∑
‖Ejz‖p1. As before, we can

decompose xα,In = wn + xn + yn so that (wn), (xn), (yn) are subnormalized
block sequences, for each n, suppwn meets Ej for at most one j, supp yn
meets Ej for at most one j, and for each j, Ej meets suppxn for at most
one n. Let Jn = {j : Ej ∩ suppxn 6= ∅}, and note that J1 < J2 < · · · . Let
x =

∑
anxn. Then∑

j

‖Ejx‖p1 =
∞∑
n=1

|an|p
∑
j∈Jn

‖Ejxn‖p1 ≤
∞∑
n=1

|an|p‖xn‖pXp
α
≤
∞∑
n=1

|an|p.

Next, let Nj = {n : Ej ∩ suppwn 6= ∅}, w =
∑
anwn. Note that N1 <

N2 < · · · . By Lemma 3.1,

‖Ejw‖1 ≤ 2 max
n∈Nj

|an| ≤ 2
(∑
n∈Nj

|an|p
)1/p

.
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Therefore ∑
j

‖Ejw‖p1 ≤ 2p
∑
j

∑
n∈Nj

|an|p ≤ 2p
∑
n

|an|p.

Similarly, if y =
∑
anyn, then∑

j

‖Ejy‖p1 ≤ 2p
∑
|an|p.

Therefore

‖z‖Xp
α
≤ ‖w‖Xp

α
+ ‖x‖Xp

α
+ ‖y‖Xp

α
≤ 5
(∑

|an|p
)1/p

.

4. Ordinal indices. First, we recall the Szlenk index of a separable
Banach space. Let X be a Banach space, and K be a weak∗ compact subset
of X∗. For ε > 0, we define

(K)′ε = {z ∈ K : for all w∗-neighborhoods U of z, diam(U ∩K) > ε}.
It is easily verified that (K)′ε is also weak∗ compact. We let

P0(K, ε) = K, Pα+1(K, ε) = (Pα(K, ε))
′
ε, α < ω1,

and
Pα(K, ε) =

⋂
β<α

Pβ(K, ε), α < ω1, α a limit ordinal.

If there exists some α < ω1 so that Pα(K, ε) = ∅, we define

η(K, ε) = min{α : Pα(K) = ∅}.
Otherwise, we set η(K, ε) = ω1. Then we define the Szlenk index of a Banach
space X, denoted Sz(X), to be

Sz(X) = sup
ε>0

η(BX∗ , ε).

The Szlenk index is one of several slicing indices. The following two facts
come from [15]:

(1) For a Banach space X, Sz(X) < ω1 if and only if X∗ is separable.
(2) If X embeds isomorphically into Y , then Sz(X) ≤ Sz(Y ).

The above definition of the index is, in some cases, intractable. A connection
between weak indices and the Szlenk index has been very useful in compu-
tations. For this, we will be concerned with a specific type of tree.

For a Banach space X and ρ ∈ (0, 1], we let

HXρ =
{
(xn) ∈ S<ωX :

∥∥∥∑ anxn

∥∥∥ ≥ ρ∑ an, ∀(an) ⊂ R+
}
.

We will compute the Szlenk index of Baernstein spaces by combining several
facts about the Szlenk index.
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Theorem 4.1 ([1, Theorems 3.22, 4.2], [13, Proposition 5]). If X is a
Banach space such that X∗ is separable, there exists some ordinal α < ω1 so
that Sz(X) = ωα. Moreover for any α < ω1, Sz(X) > ωα if and only if there
exist ρ ∈ (0, 1] and (xE)E∈Sα\{∅} ⊂ SX such that for each E ∈ Sα\MAX(Sα),
(xE∪{n})n>E is weakly null and for each branch E1 ≺ · · · ≺ En of Sα \ {∅},
(xEi)

n
i=1 ∈ HXρ .

With this, we can prove the following.

Proposition 4.2. For α < ω1 and p ∈ (1,∞), Sz(Xp
α) = ωα+1.

Proof. Let (en) denote the unit vector basis of Xp
α. For E ∈ Sα \ {∅},

let xE = emaxE . If E1, . . . , En is a branch of Sα, then (xEi)
n
i=1 = (ei)i∈En .

Clearly ∥∥∥ n∑
i=1

aixEi

∥∥∥
Xp
α

=
∑
i∈E

ai for ai ≥ 0.

Since the basis is normalized and shrinking, we deduce that for E ∈ Sα \
MAX(Sα), (xE∪{n})n>E = (en)n>E is weakly null. Then Theorem 4.1 guar-
antees Sz(Xp

α) > ωα. We must therefore only show that Sz(Xp
α) ≤ ωα+1.

Suppose not. By Theorem 4.1, there must exist some normalized tree
(xE)E∈Sα+1\{∅} ⊂ HX

p
α

ρ withxE∪{n} →
w

0. By standard perturbation and prun-
ing arguments, we can assume this tree is a block tree. For E ∈ Sα+1 \{∅}, let
m(E) = min suppxE . Because the basis is normalized, shrinking, and satisfies
subsequential 4-Xp

α-upper block estimates in Xp
α, we can replace ρ with ρ/4

and replace the tree (xE)E∈Sα+1\{∅} with (em(E))E∈Sα+1\{∅} while maintaining
the two properties mentioned above. Choose i1 so large that 5i

1/p
1 < (ρ/16)i1.

Next, choose i2 < · · · < iN such that in > 3in−1 and m({i1, . . . , in−1}) < in
for eachn = 2, . . . , N andE = {i1, . . . , iN} ∈ MAX(Sα+1). SinceSα+1 is com-
pact, it can contain no strictly increasing infinite chain, so such a setmust exist.

Since in ≤ m({i1, . . . , in}) < in+1, the sequence (ein)
N
n=1 4-dominates

(em({i1,...,in}))
N
i=1. This follows from an application of Lemma 2.1 after we

recall that (en) satisfies subsequential 4-Xp
α-upper block estimates in Xp

α.
Therefore for any an ≥ 0,

(4.1)
∥∥∥ N∑
n=1

anein

∥∥∥
Xp
α

≥ 1

4

∥∥∥ N∑
n=1

anem({i1,...,in})

∥∥∥
Xp
α

≥ ρ

16

∑
an.

Since E ∈ Sα+1, minE = i1, and E ∈ MAX(Sα+1), there exist unique
En ∈ Sα with E1 < · · · < Ei1 and E =

⋃i1
n=1En. Let I = E∪{3kiN : k ∈ N}.

Then in+1 ≥ 3in for each n. If (xα,In ) is the sequence of repeated averages,
then suppxα,In = En for 1 ≤ n ≤ i1. Let aj be such that xα,In =

∑
j∈En ajej .
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Then
∑

j∈En aj = 1, so

(4.2)
i1∑
n=1

∑
j∈En

aj = i1.

But by Lemma 3.3,

(4.3)
∥∥∥ i1∑
n=1

∑
j∈En

ajej

∥∥∥
Xp
α

=
∥∥∥ i1∑
n=1

xα,In

∥∥∥
Xp
α

≤ 5
∥∥∥ i1∑
n=1

en

∥∥∥
`p

= 5i
1/p
1 .

Combining (4.1)–(4.3), we deduce that

5i1/p ≥
∥∥∥ i1∑
n=1

∑
j∈En

ajeij

∥∥∥
Xp
α

≥ ρ

16

i1∑
n=1

∑
j∈En

aj =
ρ

16
i1.

But this contradicts our choice of i1, and completes the proof.

5. Main theorems. Throughout this section, ZV (∗) will denote Z(V (∗)).

Proof of Lemma 2.2. First, we observe that if every normalized block
of (vn) is dominated by every normalized block of (un), then there exists C
such that every normalized block of (vn) is C-dominated by every normalized
block of (un). By replacing C with a larger constant if necessary, we may
also assume that E satisfies subsequential C-U -upper block estimates in Z.
We may assume that E is bimonotone in Z, since renorming Z to make E
bimonotone will have the consequence of equivalently renorming ZV (E).

Fix (an) ∈ c00 and let u =
∑

n anun. Fix 1 ≤ k0 < k1 < · · · . Let N =
{n ∈ N : P[kn−1,kn)u 6= 0}. For n ∈ N , let xn = P[kn−1,kn)u, yn = xn/‖xn‖,
and cn = ‖xn‖. Then u =

∑
n∈N cnyn. Moreover,∥∥∥∑

n

‖P[kn−1,kn)u‖Uvkn−1

∥∥∥
V
=
∥∥∥∑
n∈N
‖P[kn−1,kn)u‖Uvkn−1

∥∥∥
V

=
∥∥∥∑
n∈N

cnvkn−1

∥∥∥
V
≤ C

∥∥∥∑
n∈N

cnyn

∥∥∥
U
= C‖u‖.

This means the U - and UV (un)-norms are C-equivalent on c00.
Fix a normalized block sequence (zn) in ZV (E). Let mn = min ranE(zn).

Fix (an) ∈ c00 and let z =
∑
anzn. Choose 1 ≤ k1 < · · · < kN so that

‖z‖ZV (E) =
∥∥∥ N∑
i=1

‖PE[ki−1,ki)
z‖Zvki−1

∥∥∥
V
.

For n ∈ N, let

In = {i ≤ N : [ki−1, ki) ⊂ [min ranE(zn),min ranE(zn+1))}.
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Let I = {1, . . . , N} \
⋃
n In. For each i ∈ I, let

Ji = {n ∈ N : [ki−1, ki) ∩ ranE(zn) 6= ∅}.

Note that the (In)n∈N are pairwise disjoint. The (Ji)i∈I need not be pairwise
disjoint, but if I = I ′ ∪ I ′′ is a partition of I so that neither I ′ nor I ′′
contains consecutive elements of I, then (Ji)i∈I′ are pairwise disjoint, and
so are (Ji)i∈I′′ . We have

‖z‖ZV (E) ≤
∥∥∥∑
i/∈I

‖PE[ki−1,ki)
z‖Zvki−1

∥∥∥
V
+
∥∥∥∑
i∈I
‖PE[ki−1,ki)

z‖Zvki−1

∥∥∥
V

≤
∥∥∥∑

n

∑
i∈In

an‖PE[ki−1,ki)
zn‖Zvki−1

∥∥∥
V

+
∥∥∥∑
i∈I′

∥∥∥PE[ki−1,ki)

(∑
n∈Ji

anzn

)∥∥∥
Z
vki−1

∥∥∥
V

+
∥∥∥∑
i∈I′′

∥∥∥PE[ki−1,ki)

(∑
n∈Ji

anzn

)∥∥∥
Z
vki−1

∥∥∥
V
.

We will bound each term by a multiple of ‖
∑
anumn‖U . Let

yn =
∑
i∈In

‖PE[ki−1,ki)
zn‖Zvki−1

.

Then ‖yn‖V ≤ ‖zn‖ZV (E) ≤ 1. Hence∥∥∥∑
n

∑
i∈In

an‖PE[ki−1,ki)
zn‖Zvki−1

∥∥∥
V
=
∥∥∥∑ anyn

∥∥∥
V
≤ C

∥∥∥∑ anumn

∥∥∥
U
.

Moreover, by bimonotonicity and the fact that E satisfies subsequential
C-U -upper block estimates in U , we can use Proposition 2.1 to deduce that
for each i ∈ I,∥∥∥PE[ki−1,ki)

(∑
n∈Ji

anzn

)∥∥∥
Z
≤
∥∥∥∑
n∈Ji

anzn

∥∥∥
Z
≤
∥∥∥∑
n∈Ji

anumn

∥∥∥
U
.

Then∥∥∥∑
i∈I′

∥∥∥PE[ki−1,ki)

(∑
n∈Ji

anzn

)∥∥∥
Z
vki−1

∥∥∥
V
≤ C

∥∥∥∑
i∈I′

∥∥∥∑
n∈Ji

anumn

∥∥∥
U
vki−1

∥∥∥
V

≤ C
∥∥∥∑
i∈I′

∑
n∈Ji

anumn

∥∥∥
UV (un)

≤ C2
∥∥∥∑ anumn

∥∥∥
U
.

A similar estimate holds for the sum over I ′′.

Our first major theorem generalizes [12, Theorem 15].
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Theorem 5.1. Let U, V be reflexive Banach spaces with normalized,
1-unconditional bases (un), (vn), respectively, so that (un) is right dominant
and satisfies subsequential U -upper block estimates in U , (vn) is left domi-
nant and satisfies subsequential V -lower block estimates in V , and so that
every normalized block sequence of (vn) is dominated by every normalized
block sequence of (un). If X is a separable, reflexive Banach space which
satisfies subsequential (V,U)-tree estimates, then X embeds into a reflexive
Banach space X̃ with bimonotone FDD E satisfying subsequential (V,U)-
block estimates.

Proof. Since X satisfies subsequential U -upper tree estimates, [12, Pro-
position 4] implies that X∗ satisfies subsequential U∗-lower tree estimates.
By [12, Theorem 12(b)], there exists a Banach space Y with bimonotone
shrinking FDD F and M ∈ [N]ω such that X∗ is a quotient of Z = Y U∗M (F ).
By [4, Lemma 2.11], F satisfies subsequential U∗M -lower block estimates in Z.
By [4, Lemma 2.13], the space W = Z⊕U∗N\M has a bimontone FDD G sat-
isfying subsequential U∗-lower block estimates. Then X∗ is a quotient of W ,
andW is reflexive by [12, Corollaries 7, 9]. By duality,X is a subspace ofW ∗,
which is reflexive with bimonotone FDD G∗ = (G∗n) satisfying subsequential
U -upper block estimates in W ∗.

By [12, Theorem 12(a)], there exists a blocking H of G∗ defined by
Hk =

⊕bk+1−1
i=bk

G∗i for some 1 = b1 < b2 < · · · and C ∈ [N]ω so that
X ↪→ (W ∗)VC (H). We deduce from the fact that G∗ satisfies subsequen-
tial U -upper block estimates in W ∗ that H satisfies subsequential UB-upper
block estimates in W ∗. Let ki = max{bi, ci}. Since (un) is right dominant,
H satisfies subsequential UK-upper block estimates in W ∗. Lemma 2.2 im-
plies thatH satisfies subsequential UK-upper block estimates in (W ∗)VC (H).
By [4, Lemma 2.11], H satisfies subsequential VC-lower block estimates
in (W ∗)VC (H), and since (vn) is left dominant, H satisfies subsequential
VK-lower block estimates in (W ∗)VC (H). By the proof of [12, Lemma 2], we
deduce that X̃ = (W ∗)VC (H)⊕VN\K has bimonotone FDD satisfying subse-
quential (V,U)-block estimates in X̃. Again, [12, Corollaries 7, 9] guarantee
that X̃ is reflexive, and this completes the proof.

The next theorem is a generalization of [12, Theorem 21], and an adap-
tation of [4, Theorem 5.4] to the present situation. Let us recall that if U, V
are Banach spaces with normalized, 1-unconditional bases, then A(V,U) de-
notes the class of separable, reflexive Banach spaces satisfying subsequential
(V,U)-tree estimates.

Theorem 5.2. Let U, V be Banach spaces with basis satisfying the hy-
potheses of Theorem 5.1. Then the class A(V,U) contains a reflexive universal
element with bimonotone FDD.
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Proof. Fix constants R,L,K so that (un) is R-right dominant and satis-
fies subsequential K-U -upper block estimates in U , and so that (vn) is L-left
dominant and satisfies subsequential K-V -lower block estimates in V .

By a result of Schechtman [14], there exists a Banach space W with bi-
montone FDD E = (En) with the property that any Banach space with
bimonotone FDD embeds almost isometrically into

⊕∞
n=1Ekn for some sub-

sequence (kn) of the natural numbers, and this subspace is 1-complemented
in W . More precisely, given a Banach space X with bimonotone FDD (Fi)
and ε > 0, there is a subsequence (Ekn) of (En) and a (1 + ε)-embedding
T : X →W such that T (Fn) = Ekn for all n ∈ N, and

∑∞
n=1 P

E
kn

is a norm-1
projection of W onto

⊕∞
n=1Ekn .

We next consider the space W0 = (W (∗))U
∗
(E∗). By [12, Corollary 7],

the sequence (E∗n) is a boundedly complete and bimonotone FDD for this
space. This means that W0 = (W

(∗)
0 )∗ and (E∗∗n ) = (En) is a shrinking,

bimonotone FDD for W (∗)
0 . Therefore W0 is naturally the dual of the space

Y = W
(∗)
0 with bimonotone shrinking FDD E. By duality and [4, Lemma

2.11], we deduce that E satisfies subsequential 2K-U -upper block estimates
in Y .

Let Z = Y V (E). By Lemma 2.2, E satisfies subsequential U -upper block
estimates in Z. By [4, Lemma 2.11], E satisfies subsequential V -lower block
estimates in Z. By [12, Corollary 7 and Lemma 8], E is a shrinking, bound-
edly complete FDD for Z. Therefore Z ∈ A(V,U). We see also that E is
bimonotone in Z. It remains to show the universality of Z for A(V,U).

Let D ≥ 1 and assume X satisfies subsequential D-(V,U)-tree estimates.
By Theorem 5.1, there exists a reflexive Banach space X̃ with bimonotone
FDD D satisfying subsequential (V,U)-block estimates in X̃ so that X em-
beds isomorphically into X̃. Thus it suffices to assume that X itself has a
bimonotone FDD F satisfying subsequential D1-(V,U)-block estimates and
show that X embeds into Z. We can find a subsequence (kn) of N and a
2-embedding T : X → W so that T (Fn) = Ekn for all n ∈ N and

∑
n P

E
kn

is a norm-1 projection of W onto
⊕

nEkn . It follows that (Ekn) satisfies
subsequential 2D1-(V,U)-estimates in W . By duality, (E∗kn) satisfies subse-
quential (U∗, V ∗)-estimates in W (∗). We will finally prove that the norms
‖ · ‖W , ‖ · ‖Y , ‖ · ‖Z are equivalent when restricted to c00(

⊕
nEkn).

Fix w∗ ∈ c00(
⊕

nEkn). We know that ‖w∗‖W (∗) ≤ ‖w∗‖Y ∗ . Choose
1 ≤ m0 < m1 < · · · < mN in N such that

‖w∗‖Y ∗ =
∥∥∥ N∑
n=1

‖PE∗[mn−1,mn)
w∗‖W (∗)u∗mn−1

∥∥∥
V
.

By discarding any mn such that PE∗[mn−1,mn)
w∗ = 0, we assume PE∗[mn−1,mn)

w∗
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6= 0 for each 1 ≤ n ≤ N without changing the sum. There exist j1 < · · · < jN
such thatmn > kjn= min suppE∗ P

E∗

[mn−1,mn)
w∗ ≥ mn−1 for each 1 ≤ n ≤ N .

Since (u∗n) satisfies subsequential K-lower block estimates in U∗ and is
R-left dominant, and since (E∗kn) satisfies subsequential 2D1-U∗-lower block
estimates in W (∗), we see that

‖w∗‖Y ∗ ≤ K
∥∥∥ N∑
n=1

‖PE∗[mn−1,mn)
w∗‖W (∗)u∗kjn−1

∥∥∥
(Up)∗

≤ KR
∥∥∥ N∑
n=1

‖PE∗[mn−1,mn)
w∗‖W (∗)u∗jn

∥∥∥
(Up)∗

≤ 2KRD1‖w∗‖W (∗) .

This shows ‖·‖W (∗) and ‖·‖Y ∗ are equivalent on c00(
∑

nE
∗
kn
). One easily

sees that
∑

n P
E∗
kn

, which defines a norm-1 projection of W (∗) onto
⊕

nE
∗
kn
,

is also a norm-1 projection of Y ∗ onto
⊕

nE
∗
kn
. It follows that

1

2KRD1
‖w‖W ≤ ‖w‖Y ≤ ‖w‖W

for all w ∈ c00(
∑

nEkn).
A very similar argument shows that ‖y‖Y ≤ ‖y‖Z ≤ 2KLD1‖y‖Y for

each y ∈ c00(
∑

nEkn). Therefore the map T : X → W becomes an
8K2RLD2

1-embedding of X into Z.

For our next theorem, we define, for an ordinal α < ω1,

Cα = {X : X separable, reflexive, Sz(X), Sz(X∗) ≤ ωα}.

Theorem 5.3. For any α < ω1 and p ∈ (1, 2], there exists a Banach
space Z ∈ Cα+1 with bimonotone FDD satisfying subsequential ((Xp

α)∗, X
p
α)-

block estimates such that if X ∈ Cα, then X is isomorphic to a subspace of Z.
Moreover, there exists W ∈ Cα+1 with a basis such that if X ∈ Cα, then X
is isomorphic to a subspace of W .

Proof. Let Z be the universal element of A((Xp
α)∗,X

p
α)

guaranteed by The-
orem 5.2. Then Z,Z∗ satisfy subsequential Xp

α-upper block estimates, and
Sz(Z), Sz(Z∗) ≤ Sz(Xp

α) = ωα+1 by [4, Corollary 4.5]. Therefore Z ∈ Cα+1.
By [6, Corollary 4.12], there exists a sequence of finite-dimensional spaces
(Hn) such that if D = (

⊕∞
n=1Hn)2, then W = Z ⊕2 D is reflexive and

has a basis. Since the FDD (Hn) satisfies `2-upper block estimates in D,
Sz(D) ≤ ω [11, Theorem 3]. From [13, Proposition 14],

Sz(W ) = max{Sz(Z), Sz(D)} ≤ ωα+1.

By the same reasononing, Sz(W ∗) = Sz(Z∗ ⊕2 D
∗) ≤ ωα+1. Therefore

W ∈ Cα+1.
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If X ∈ Cα, then [4, Theorem 1.1] implies that X,X∗ both satisfy sub-
sequential Xα-upper tree estimates, and therefore also Xp

α-upper tree esti-
mates. Then by [5, Lemma 2.7], X satisfies subsequential ((Xp

α)∗, X
p
α)-tree

estimates. As Z is universal, X embeds isomorphically in Z, and therefore
X embeds isomorphically into W .
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