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On Todorcevic orderings

by

Bohuslav Balcar, Tomáš Pazák and Egbert Thümmel (Praha)

Abstract. The Todorcevic ordering T(X) consists of all finite families of convergent
sequences in a given topological space X. Such an ordering was defined for the special
case of the real line by S. Todorcevic (1991) as an example of a Borel ordering satisfying
ccc that is not σ-finite cc and even need not have the Knaster property. We are interested
in properties of T(X) where the space X is taken as a parameter. Conditions on X are
given which ensure the countable chain condition and its stronger versions for T(X). We
study the properties of T(X) as a forcing notion and the homogeneity of the generated
complete Boolean algebra.

1. Introduction. In this paper, we will describe a general method of
constructing an ordering from a topological space. When we look at orderings
from the point of view of the forcing method, the orderings satisfying the
countable chain condition (ccc) are of special interest. Our method will yield
mostly such orderings. The ordering is obtained in the following way. For
any topological space we can consider the set of finite unions of converging
sequences such that limit points are outside of this union. This set is ordered
by reverse inclusion. We obtain an ordering which was considered first by
Todorcevic [Tod91] for the special case of the real numbers. Some ideas of
the construction can already be found in the Galvin–Hajnal example (see
[CN82]).

For technical reasons, we slightly modify Todorcevic’s original definition
as follows.

Definition 1.1. For a topological space X, the Todorcevic ordering
T(X) is the set of all partial functions p from X to {0, 1} such that the
domain of p is the union of a finite set and a finite union of sets which are
each a convergent sequence including the limit point; in the latter case p
assigns to each point of the sequence value 0 and to the limit point value 1;
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formally (throughout this paper we follow the standard set-theoretic nota-
tion, see e.g. [JechST]),

T(X) =
{
p : X → {0, 1} : dom(p) = X0 ∪̇X1 ∪̇ · · · ∪̇Xn, where

(i) |X0| < ω (with p�X0 arbitrary) and
(ii) for each 1 ≤ i ≤ n, Xi is a convergent sequence including

its limit point xi with p(xi) = 1 and p(x) = 0 for all
x ∈ Xi \ {xi}

}
.

The set is ordered by inverse extension, i.e. p ≤ q if p ⊇ q.
The set supp(p) = p−1(1) is called the support of p.

The topological space is a parameter for the ordering T(X).
It is clear from the definition that the domain dom(p) of each element p

of T(X) is at most countable and compact, and the support of p is finite.
The fact that a set A = {xi}i<ω is converging to the point x is denoted by
A → x or xi → x. Since our ordering was defined in terms of convergent
sequences, we are interested only in sequential spaces, i.e. spaces with the
topology determined by its countable converging sequences. Any topological
space has a sequential modification, that is, the given space with the topol-
ogy generated by all its convergent sequences. For a topological space and
its sequential modification we obtain the same Todorcevic ordering. So we
make the general assumption that all topological spaces in this paper will be
sequential spaces with the unique limit property, i.e. (1) a set Z ⊆ X is closed
if and only if xi ∈ Z and xi → x implies x ∈ Z, and (2) xi → x and xi → y
implies x = y. Such spaces are necessarily T1.

We here make the following remark. Given a topological space X, we
consider the set of all countable and compact subsets with only finitely many
accumulation points and order this set by extensions which do not change
isolated points into accumulation points. In the case of a Hausdorff space
without isolated points this ordered set can be densely embedded into the
order T(X). Note also that in this case this is the separative quotient of
Todorcevic’s original definition in [Tod91].

Concerning the ordered set T(X), we use the standard terminology. By
p ⊥ r we denote the fact that p and r are orthogonal, i.e. there is no q ∈ T(X)
such that q ≤ p, r. Conversely, p ‖ r means that p and r are not orthogonal.
A set of pairwise orthogonal elements is called an antichain. An ordered set
is said to satisfy the κ-cc if it contains no antichain of size κ. The ω1-chain
condition is also called the countable chain condition (ccc). By T(X)�p =
{q ∈ T(X) : q ≤ p} we denote the restriction of T(X) to p.

We observe that the ordering T(X) is separative, i.e. for any p, q ∈ T(X)
with p < q there is an r < q such that r ⊥ p. Any separative ordering
can be densely embedded in a complete Boolean algebra which is uniquely
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determined up to isomorphism. Let B(X) be this complete Boolean algebra
obtained from T(X).

Our set-theoretic terminology is standard. By A ⊆∗ B (A =∗ B resp.)
we denote the fact that |A \B| < ω (|A4B| < ω resp.)

An embedding of an ordering Q into an ordering P is called regular if
maximal antichains are mapped to maximal antichains. A criterion for a
mapping ρ from a separative order Q to P to be a regular embedding is the
following:

(1) q1 ≤ q2 implies ρ(q1) ≤ ρ(q2),
(2) q1 ⊥ q2 implies ρ(q1) ⊥ ρ(q2),
(3) for all r ∈ P there is q ∈ Q such that there is no q′ ∈ Q with q′ ≤ q

and ρ(q′) ⊥ r.
We conclude this section with a basic and useful fact.

Lemma 1.2. If Y is a closed subspace of X then T(Y ) is a regular sub-
order of T(X).

Proof. We have to check point (3) of the criterion of regularity. Let r be
in T(X). Then q = r�Y is as required, and q ∈ T(Y ) since Y was assumed
to be closed.

We remark that for the same reason, T(Y )�(p�Y ) is a regular suborder
of T(X)�p for any p ∈ T(X).

2. The countable chain condition. The orderings T(X) are interest-
ing as examples of ccc orderings. It will turn out that T(X) is ccc for most X,
but still it can happen that T(X) is not ccc. We are going to make this more
precise. First we note that T(X) is in any case ω2-cc. We look now at the
ccc for T(X). It would be convenient to have an easy criterion in terms of
X for T(X) to be ccc. We will give a necessary condition and a sufficient
condition on X for T(X) to be ccc, both easily verifiable.

Definition 2.1.

(1) We say that a space X satisfies condition 1 if

(∀x ∈ X)(∀M ∈ [X]ω1)(∃M ′ ∈ [M ]ω1)(∀A ∈ [M ′]ω) (A9 x).

(2) We say that X satisfies condition 2 if

(∀x ∈ X)(∀M ∈ [X]ω1)(∃A ∈ [M ]ω) (A9 x).

It is clear that condition 1 is stronger than condition 2. We observe that
condition 2 is satisfied if and only if it is not possible to embed the one-point
compactification of an uncountable discrete set into the space (in the context
of sequential spaces with the unique limit property). Conditions 1 and 2 are
rather similar, but they are not the same. As is known [Sim80], there exists
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a maximal almost disjoint system A in [ω1]ω and its partition A = A0 ∪̇ A1

such that for any uncountable M ⊆ ω1 the restriction of neither A0 nor
A1 to M is a maximal antichain. We can then define a sequential space
X = ω1 ∪ {x} where ω1 is discrete and A ∈ [ω1]ω converges to x for all
A ∈ A0. This space satisfies condition 2 but not condition 1.

We will now relate conditions 1 and 2 for a space X to the fact that T(X)
is ccc:

Theorem 2.2.

(a) Condition 1 for a space X implies that T(X) is ccc.
(b) If T(X) is ccc then condition 2 holds for X.
(c) (PFA) The ordering T(X) is ccc if and only if condition 2 holds for X.

Proof. (a) Suppose that {pα}α<ω1 is an uncountable antichain in T(X).
We may assume that {supp(pα)}α<ω1 is a ∆-system with kernel ∆ = {xk}k<k̄
and all elements have the same size k̄+ n̄. That means that supp(pα) has the
form {xk}k<k̄∪{xαn}n<n̄. Moreover, we can assume (after inductive selection)
that dom(pβ) ∩ supp(pα) = ∆ for β < α.

It now follows from the definition of T(X) and the fact that the pα’s
are orthogonal that for any β < α < ω1 we can find an x ∈ X such that
pβ(x) = 1 and pα(x) = 0. This x is therefore equal to an xβn(β,α) for some
n(β, α) < n̄.

Applying condition 1 to xk and {xαn}α<ω1 for some k < k̄ and n < n̄,
we obtain an uncountable S ⊆ ω1 such that for no A ∈ [S]ω does {xαn}α∈A
converge to xk. After repeating this procedure k̄× n̄ times for all k < k̄ and
n < n̄, we get an S ∈ [ω1]ω1 such that no countable subset of {xαn}α∈S, n<n̄
converges to any xk. For any α ∈ S and A ∈ [S]ω with α > sup(A) we see
therefore that {xβn(β,α)}β∈A is a finite union of sequences converging to some
xαn, n < n̄. In order to simplify notation, we assume S = ω1.

Let us now consider the first ω + n̄ + 1 elements of the antichain. By a
pigeon-hole principle, there are different n1, n2 ≤ n̄ and A ∈ [ω]ω such that
n(i, ω + n1) = n(i, ω + n2) =: n(i) for all i ∈ A. But then we can find an
A′ ∈ [A]ω such that {xin(i)}i∈A′ converges to some xω+n1

n and simultaneously
to some xω+n2

n′ , contradicting the unique limit property.
(b) Let x andM = {xα}α<ω1 be such that condition 2 is violated. Define

pα ∈ T(X) by pα(x) = pα(xα) = 1 and pα(xβ) = 0 for β < α. We have
{xβ}β<α → x by assumption, hence pα ∈ T(X). Also pβ ⊥ pα for β < α
since pβ(xβ) = 1 and pα(xβ) = 0. The set {pα}α<ω1 is an uncountable
antichain in T(X).

(c) Let {pα}α<ω1 be an uncountable subset of T(X) and proceed as in
the first paragraph of the proof of (a) to obtain pairwise different {xk}k<k̄,
{xαn}α<ω1,n<n̄.
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For any n < n̄ and k < k̄ we consider the ideal Ink generated by all finite
subsets of ω1 and all sets A ∈ [ω1]ω for which there is some α < ω1 with
α > sup(A) such that {xβn}β∈A ⊆ dom(pα) and {xβn}β∈A converges to xk.
Since the domain of pα is finite or a finite union of converging sequences, this
ideal is in fact ω1-generated. We can now apply the following dichotomy for
ω1-generated ideals which holds under PFA [Tod11, Theorem 62]: There is
an S ∈ [ω1]ω1 such that either [S]ω ⊆ Ink or [S]ω ∩ Ink = ∅. In the first case
we would violate condition 2 with x = xk and M = {xαn}α∈S , so the second
case must hold. After repeating this procedure k̄× n̄ times for all k < k̄ and
n < n̄, we get an S1 ∈ [S]ω1 such that dom(pα)∩ {xβn}β∈S1, n<n̄ is finite or a
finite union of sequences converging to some xαn, n < n̄, for any α ∈ S1.

We can again apply the dichotomy for ω1-generated ideals, now to the
ideal In generated by all finite subsets of S1 and all sets A ∈ [S1]ω for which
there is some α < ω1 with α > sup(A) and n′ < n̄ such that {xβn}β∈A ⊆
dom(pα) and {xβn}β∈A converges to xαn′ . We obtain an S2 ∈ [S1]ω1 such that

either [S2]ω ⊆ In or [S2]ω ∩ In = ∅.

Assume the first alternative holds true. We proceed by induction on i < ω
to find Ai ∈ [S2]ω, ni < n̄, and αi ∈ S2 with αi ≥ sup(Ai) such that
{xβn}β∈Ai converges to xαini and αi < min(Ai+1). Let α = supi<ω(αi). Then
{xβn}β∈S2∩α is not a finite union of converging sequences, so S2 ∩ α /∈ In, a
contradiction, and the second alternative must hold. Again, we can repeat
the procedure n̄ times and obtain an S3 ∈ [S2]ω1 such that for all α ∈ S3

the set dom(pα)∩{xβn}β∈S3, n<n̄ does not contain a converging sequence, i.e.
it is finite. Using the pressing down lemma, we find an S4 ∈ [S3]ω1 such
that even dom(pα) ∩ {xβn}β∈S4, n<n̄ ⊆ supp(pα). That means that no pair
pα, pβ with α, β ∈ S4 is orthogonal, so the starting set {pα}α<ω1 was not an
antichain.

Assertion (c) of the preceding theorem cannot be proved absolutely, as
stated by the following theorem.

Theorem 2.3. In the Cohen extension there is a space X satisfying con-
dition 2, but T(X) is not ccc.

Proof. Let {eα : α → ω}α<ω1 be a coherent sequence of injective map-
pings, i.e. eα�β =∗ eβ for β < α, and let r : ω −→ 2 be a Cohen real. Define
aα = {β < α : r ◦ eα(β) = 1}. This is also a coherent sequence, i.e. aα ⊆ α
and aα∩β =∗ aβ for β < α. If S is an uncountable subset of ω1 in the Cohen
extension then it has an uncountable subset S′ from the ground model. Let
α < ω1 be such that |S′ ∩ α| = ω. An easy density argument shows that
|S′ ∩ aα| = |S′ ∩ α \ aα| = ω. Therefore in the extension,
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~ There exists a coherent sequence {aα}α<ω1 with the property that for
any S ∈ [ω1]ω1 there is an α < ω such that

|S ∩ aα| = |S ∩ α \ aα| = ω.

We now define a topological space X in the following way. On the set
X = ω1∪{x0, x1} consider the sequential topology generated by aα → x0 and
α\aα → x1 for all α < ω1. This topology has the unique limit property since
{aα}α<ω1 was assumed to be a coherent sequence. Property (~) implies that
X satisfies condition 2. Namely, the topology is discrete on ω1, so the only
candidates for a counterexample to condition 2 are x0 or x1 and S ∈ [ω1]ω1 .
But any such S contains a sequence converging to x0 as well as a sequence
converging to x1.

On the other hand, if we define pα∈T(X) by pα(x0)=pα(x1)=pα(α)=1
and pα(β) = 0 for β < α then pα(β) = 0 6= 1 = pβ(β), i.e. we have found an
uncountable antichain, witnessing that T(X) is not ccc.

We remark that the requirement (~) was enough to prove Lemma 2.3. It
is called Galvin’s principle and it is also true under the assumption ♣ (club
principle) [Gal77]. Theorem 2.3 therefore also holds under ♣ (for definition
see e.g. [Fre84]).

Condition 1 is quite weak. It is satisfied for example by all first countable
spaces (and therefore for all metric spaces) and for all countable spaces and
for all linear ordered spaces (even non-sequential). As a corollary we infer
that all those spaces generate Todorcevic orderings which satisfy ccc.

We apply the proof of Theorem 2.2 to obtain the following:
Theorem 2.4. Suppose that X satisfies condition 1 and let Q be a ccc

ordering. Then T(X)×Q is ccc.
Proof. Let 〈pα, qα〉α<ω1

be an antichain of length ω1. We proceed as in
the proof of Theorem 2.2(a) to thin out {pα}α<ω1 up to the application of
condition 1 which results in the set S. Since Q is ccc, there exists a q ∈ Q
such that {qα}α>γ, α∈S is predense under q for any γ < ω1. Let G be a generic
ultrafilter on Q with q ∈ G. It follows that the set S′ = {α ∈ S : qα ∈ G}
is uncountable. Consider the family {pα}α∈S′ in V [G]. We repeat the rest of
the proof of Theorem 2.2(a) in V [G] to obtain α0, α1 ∈ S′ such that pα0 and
pα1 are not orthogonal, therefore 〈pα0 , qα0〉 and 〈pα1 , qα1〉 are not orthogonal
either, a contradiction.

The assertion of Theorem 2.4 is of course true if T(X) has the Knaster
property. But the Knaster property does not follow from condition 1 for X
(see Theorem 3.6).

3. Properties stronger than ccc. We have shown that T(X) is ccc
in most cases. So we can ask whether it also has stronger properties. We
consider the following notions:
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Definition 3.1. An ordering P is called

(i) σ-centered if P =
⋃
n∈ω Pn, each Pn being centered, i.e. any finite

subset has a lower bound;
(ii) σ-linked if P =

⋃
n∈ω Pn, each Pn being linked, i.e. any two elements

have a lower bound;
(iii) σ-bounded cc if P =

⋃
n∈ω Pn, each Pn being n + 2-cc, i.e. there is

no antichain of size n+ 2;
(iv) σ-finite cc if P =

⋃
n∈ω Pn, each Pn being ω-cc, i.e. there is no

antichain of infinite size;
(v) Knaster property if any uncountable set X ⊆ P has a linked un-

countable subset.

These notions are all stronger than ccc and form a hierarchy from stronger
to weaker ones.

We will consider several spaces X and analyse the place of T(X) in this
hierarchy of properties.

First we observe the following:

Theorem 3.2. If X is countable then T(X) is σ-centered.

Proof. T(X) =
⋃
F∈[X]<ω{p : supp(p) = F}.

It is obvious that any linked subset of T(X) is centered. Therefore T(X)
is σ-centered if and only if it is σ-linked.

If X is discrete then T(X) contains only functions with a finite domain.
This ordering is σ-bounded cc. But if |X| is larger than continuum then
T(X) is not σ-linked.

A linear ordered topological space X such that T(X) is σ-finite cc but
not σ-bounded cc is constructed in [Thü14]; its Borel version has been con-
structed lately in [Tod14]. This solves a problem of Horn and Tarski [HT48].

We now turn to spaces X such that T(X) is not σ-finite cc. Let ω1 be
equipped with the order topology. Any subspaceX of ω1 satisfies condition 1,
which means that T(X) is ccc by Theorem 2.2.

Theorem 3.3.

(i) If X ⊆ ω1 is stationary, then T(X) is not σ-finite cc.
(ii) If X ⊂ ω1 is nonstationary, then T(X) is σ-centered, hence σ-finite

cc.

Proof. (i) This proof is inspired by the proof of Theorem 3.5. Let X ⊂ ω1

be stationary. Suppose that T(X) is σ-finite cc, i.e. T(X) =
⋃
i∈ω Pi, where

each Pi is finite-cc. We can assume that the Pi’s are disjoint.
For p ∈ T(X) and Q ⊆ T(X) we define α(p) = max(supp(p)) and α(Q) =

sup{α(p) : p ∈ Q}. We say that a set Q is good if there is an increasing
sequence 〈αi〉i<ω: such that for any i < ω:
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(1) Q ∩ Pi is an antichain,
(2) α(p) > αi for all p ∈ Q ∩ Pi,
(3) Q ∩ Pi is maximal with respect to (1)–(2),
(4) αi+1 > α(Q ∩ Pi).

An ordinal α < ω1 is called reachable if there is a good set Q such that
α = α(Q). (Since for any i < ω and β < ω1 there are j > i and p ∈ Pj such
that α(p) > β, it follows that there are infinitely many i such that Q∩Pi 6= ∅
and therefore α = supi<ω{αi} for the corresponding increasing sequence.)

We claim that the set of reachable ordinals is closed and unbounded
in ω1. To show that it is unbounded, let α < ω1 be given and put α0 = α.
We choose by induction antichains Qi ⊆ Pi such that α(p) > αi for all
p ∈ Qi and Qi is maximal with respect to this property. Since Pi is finite-cc,
we have α(Qi) < ω1. Set αi+1 = α(

⋃
j≤iQj) + 1. Then 〈αi〉i<ω witnesses

that Q =
⋃
i<ω Qi is good and α(Q) > α is reachable.

It remains to show that the set of all reachable ordinals is also closed.
Let 〈αk : k < ω〉 be an increasing sequence of reachable ordinals and let Qk
be a good set witnessing together with the increasing sequence 〈αki 〉i<ω that
αk is reachable, αk = α(Qk). We find an increasing sequence 〈i(k) : k < ω〉
such that αk+1

i(k) > αk. For i with i(k) ≤ i < i(k + 1) we set Qi = Qk+1 ∩ Pi
and αi = αk+1

i . Finally, let Q =
⋃
i<ω Qi. Then 〈αi〉i<ω witnesses that Q is

good and supk<ω{αk} = supi<ω{αi} = α(Q) is reachable.
Now assume that X ⊂ ω1 is stationary. Since the set of reachable ordinals

is closed and unbounded, there is a reachable ordinal α ∈ X and a good set
Q witnessing that. Define an element r ∈ T(X) by r(α(p)) = 0 for all p ∈ Q
and r(α) = 1. Since the Pi’s are finite-cc, the set Q∩Pi will be finite and the
only accumulation point of {α(p) : p ∈ Q} is α, so r was defined correctly.
Such an r will be orthogonal to all p ∈ Q, but it has to be in some Pi, so
Q∩Pi is not maximal in the sense of (3), henceQ is not good, a contradiction.

(ii) Suppose X ⊂ ω1 is nonstationary and C ⊂ ω1 is a club disjoint
from X.

By the Hewitt–Marczewski–Pondiczery theorem, the topological space
ω1ω, the product of ω1 many copies of the discrete countable space, is sep-
arable. Hence there is a countable F ⊂ ω1ω such that for each g : K → ω
with K ⊂ C finite, there is an f ∈ F such that g ⊂ f .

For each α ∈ ω1 let α+
C denote the successor of α in C. For every α ∈ C,

T(X ∩ [α, α+
C)) is a σ-centered ordering, because the set [α, α+

C) is countable
(Theorem 3.2). Hence let

T(X ∩ [α, α+
C)) =

⋃
i

Pi(α),

where Pi(α) is a centered family for all i ∈ ω and α ∈ C.
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We claim that T(X) =
⋃
f∈F Pf , where

Pf =
{
p ∈ T(X) : (∃Z ∈ [C ∪ {0}]<ω) (dom(p) ⊆

⋃
α∈Z [α, α+

C)) &

(∀α ∈ Z) (p�[α, α+
C) ∈ Pf(α)(α))

}
is a centered family.

Since for all α and i ∈ ω the family Pi(α) is centered, we immediately see
that each Pf is centered. To prove that T(X) =

⋃
f∈F Pf , take an arbitrary

p ∈ T(X) and suppose that its domain dom(p) intersects infinitely many
intervals [α, α+

C). Then there is an increasing sequence

α0 < β0 < α+
0 < α1 < β1 < α+

1 < · · · , βi ∈ X, αi ∈ C.
It follows that supαn = supβi, but since C is closed, we have supαi ∈ C,
which contradicts the fact that supβi ∈ dom(p) ⊆ X and X ∩ C = ∅.

Theorem 3.4. If X ⊂ ω1, then the Todorcevic ordering T(X) has the
Knaster property.

Proof. Let {pα : α < ω1} ⊂ T(X). Without loss of generality one
can suppose that the supp(pα)’s are pairwise different and {supp(pα) :
α < ω1} form a ∆-system with kernel ∆ such that max(supp(pβ) \ ∆) ≤
min(supp(pα) \ ∆) for β < α. Finally, we shrink the system so that Y =⋃
α<ω1

supp(pα) is a nonstationary subset of ω1. Let C ⊂ ω1 be a club dis-
joint from Y . We have pα ⊥ pβ if and only if pα�Y ⊥ pβ�Y . So we can assume
dom(pα) ⊆ Y for all α < ω1. Following the proof of the previous theorem we
see that {pα : α < ω1} is σ-centered, hence it contains a centered subfamily
of size ℵ1, which completes the proof.

We mention still another example of a space X such that T(X) is not
σ-finite cc. Any metric space X satisfies trivially condition 1, so T(X) is ccc
by Theorem 3.2(a).

Theorem 3.5 ([Tod91]). If X is an uncountable separable metric space
then T(X) is not σ-finite cc.

Proof. Assume for contradiction that T(X) =
⋃
i<ω Pi where each Pi is

finite-cc. Let D = {xi}i<ω be dense in X. For any i, k < ω we choose a
maximal antichain Qki in {p ∈ Pi : supp(p) ∩ B1/i(xk) 6= ∅}. Since Pi is
finite-cc, Qki will be finite and

Z =
⋃
i,k<ω

⋃
{supp(p) ∩B1/i(xk) : p ∈ Qki }

will be countable. Let x ∈ X \ Z and choose for all i a k(i) such that
x ∈ B1/i(xk(i)). Consider

Zx =
⋃
i<ω

⋃
{supp(p) ∩B1/i(xk(i)) : p ∈ Qk(i)

i }.
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Then Zx is finite or a sequence with limit x and x /∈ Z ⊃ Zx. Define q ∈ T(X)
by q(x) = 1 and q[Zx] = 0. There is an i such that q ∈ Pi. But for all
p ∈ Qk(i)

i we have p ⊥ q, i.e. Qk(i)
i is not maximal. This contradiction proves

the theorem.

The Knaster property is consistently the same as ccc (under MA(ω1)).
But it is also consistently strictly stronger than ccc. Let N be the Baire
space ωω with the standard topology and let b be the minimal size of an
unbounded set in the ordering (ωω,≤∗).

Theorem 3.6 ([Tod91]). (b = ω1) T(N ) does not have the Knaster
property.

Proof. We have to construct an uncountable subset of T(N ) without an
uncountable linked subset. Let {fα}α<ω1 witness b.

Fix a coherent sequence of injections eα : α→ ω, α < ω1, i.e. eα�β =∗ eβ
for all β < α. Define

Fα = {β < α : eα(β) < fα(∆(fα, fβ))}

where ∆(fα, fβ) denotes the minimal n < ω such that fα(n) 6= fβ(n). Since
eα is an injection, for one special α and ∆(fα, fβ) the inequality eα(β) <
fα(∆(fα, fβ)) can hold only for a finite number of β < α. It follows that if Fα
is infinite then {fβ}β∈Fα converges to fα. We can therefore define pα ∈ T(N )
by pα(fα) = 1 and pα(fβ) = 0 if β ∈ Fα. We claim that {pα}α<ω1 witnesses
that T(N ) does not have the Knaster property. Indeed, let H ∈ [ω1]ω1 . Find
D ∈ [H]ω such that {fα}α∈D is dense in {fα}α∈H . We have eα�D =∗ eβ�D
for all α, β > supD. Hence we can choose K ∈ [H]ω1 with inf(K) > sup(D)
such that eα�D = eβ�D for all α, β ∈ K. We then set e = eα�D. If there
were no n < ω, t ∈ nω such that

(1) |{fα(n) : α ∈ K & fα ⊃ t}| = ω

then, as can be seen by induction, we would have |{fα(n) : α ∈ K}| < ω
for all n < ω and we could define g(n) = max{fα(n) : α ∈ K}. But this
g would be an upper bound for {fα}α∈K . This contradicts the fact that
{fα}α<ω1 is unbounded in ≤∗ and K is cofinal in ω1. We can therefore find
a t such that (1) holds. Since {fα}α∈D is dense in {fα}α∈H , there must be
some γ ∈ D such that fγ ⊃ t. From the choice of t we infer that there
must be an α ∈ K such that fα ⊃ t and fα(n) > max(e(γ), fγ(n)). But
then eα(γ) = e(γ) < fα(n) = fα(∆(fα, fγ)), hence γ ∈ Fα and therefore
pγ(fγ) = 1 and pα(fγ) = 0, i.e. pα ⊥ pγ . We have proved that {fα}α<ω1 has
no uncountable linked subset.

We observe that the proof of Theorem 2.2(c) shows indeed more, namely
that under the dichotomy for ω1-generated ideals, condition 2 for the space
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X implies that T(X) has the Knaster property. This is in contrast to The-
orem 3.6 since N is a metric space and therefore satisfies condition 2 (even
condition 1). As a corollary we conclude that the dichotomy for ω1-generated
ideals implies b > ω1.

If we want to have an example of a space X such that T(X) is not
ccc it is enough to deny condition 2—the easiest example is the one-point
compactification of a discrete uncountable set.

3.1. Exhaustive functions. For the sake of completeness, let us con-
clude this section with some notions equivalent to σ-finite cc and σ-bounded
cc orderings. Those equivalents appear in [Paz07], but otherwise remain un-
published.

Definition 3.7. Let P be an ordering and B be a Boolean algebra.
(i) A real function f : P→ R is called exhaustive if limn→∞ f(an) = 0

for each disjoint sequence 〈an : n ∈ ω〉 ∈ Pω.
(ii) A real function f : P→ R is called uniformly exhaustive if for each

positive ε > 0 there is a k ∈ ω such that |{n ∈ ω : |f(an)| ≥ ε}| ≤ k
for every disjoint sequence 〈an : n ∈ ω〉 ∈ Pω.

(iii) A nonnegative real function f : B → R is called a supermeasure if
f(a ∨ b) ≥ f(a) + f(b) for all orthogonal a, b ∈ B.

Theorem 3.8.
(i) An ordering P carries a strictly positive exhaustive function if and

only if P is σ-finite cc.
(ii) An ordering P carries a strictly positive uniformly exhaustive func-

tion if and only if P is σ-bounded cc.
(iii) A Boolean algebra B carries a strictly positive supermeasure if and

only if B is σ-bounded cc.

Proof. Let f be a strictly positive exhaustive function (strictly positive
uniformly exhaustive function resp.) on P. Set Pn = {x ∈ P : f(x) ≥
1/(n+ 1)} for n ∈ ω. Part (i): Then Pn is ω-cc and {Pn : n ∈ ω} wit-
nesses that P is σ-finite cc. Part (ii): Similarly, Pn is kn-cc for some kn and
after a suitable renumbering, {Pn : n ∈ ω} witnesses that P is σ-bounded cc.

In the opposite direction, let {Pn : n ∈ ω} witness that P is σ-finite
cc (σ-bounded cc resp.). Put f(a) = max{1/(n+1) : a ∈ Pn} for a ∈ P.
Then f is a strictly positive exhaustive function (strictly positive uniformly
exhaustive function resp.) on P. (We remark that we could assume the Pn
are upward closed, so the resulting functions will be even monotone.)

Concerning (iii), one direction follows from (ii) since every supermeasure
is a uniformly exhaustive function. Let now B be σ-bounded cc, so B+ car-
ries a strictly positive uniformly exhaustive function by (ii). For positive n
set Xn = {x ∈ B+ : 1/n ≤ f(x) < 1/(n − 1)}. Denote by kn the maximal
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size of a subset of Xn with pairwise orthogonal elements. Then kn <∞ since
f is uniformly exhaustive. For x ∈ Xn set φ(x) = 1/kn · 2n and φ(0) = 0.
Define µ(a) = sup{

∑m
i=1 φ(xi) : {x1, . . . , xm} is a set of pairwise orthog-

onal elements xi ≤ a}; this is everywhere finite and is a strictly positive
supermeasure.

4. T(X) as a forcing notion. We are interested in the question which
forcing notions are contained in the forcing T(X), especially which standard
reals are added by T(X).

First we look at Cohen forcing. For our purposes we define Cohen forcing
Cω (κ Cohen reals Cκ respectively) as the set of functions f from ω (from κ
respectively) to {0, 1} with finite domain, ordered by extension.

Lemma 4.1. If X is the discrete space of size κ ≥ ω then T(X) is equal
to the forcing notion Cκ.

Proof. Since X does not contain nontrivial converging sequences, T(X)
consists of all functions from X to {0, 1} with finite domain.

This lemma and Lemma 1.2 imply the following.

Theorem 4.2. If X contains a closed discrete subset of size κ ≥ ω then
T(X) adds κ many Cohen reals.

But for every reasonable space X, the forcing T(X) adds at least one
Cohen real, as becomes clear from the following lemma:

Lemma 4.3. Let X = {xi}i<ω ∪ {x} be a convergent sequence with limit
point x.

(a) The algebra B(X) is isomorphic to the Cartesian product of the com-
pletion of Cohen forcing Cω and the power set of the natural numbers,
P(ω).

(b) If p ∈ T(X) with dom(p) = x and p(x) = 0 then T(X)�p is isomor-
phic to Cω.

Theorem 4.4. If X has infinitely many accumulation points then T(X)
adds a Cohen real.

Proof. For a given p ∈ T(X) fix a converging sequence {xi}i<ω with limit
x /∈ supp(p). We can also assume xi /∈ dom(p) for all i < ω. If necessary,
extend p to p′ by p′(x) = 0. Then Y = {xi}i<ω ∪ {x} is closed and Lemmas
1.2 and 4.3 imply the assertion of the theorem.

We turn now to another kind of generic reals. Hechler forcing is the
canonical way of adding a dominating function.

Definition 4.5. Hechler forcing is the set D={〈f, n〉 : f ∈ ωω & n<ω}
with the ordering 〈f1, n1〉 ≤ 〈f2, n2〉 if f1 ≥ f2, n1 ≥ n2, and f1�n2 = f2�n2.
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The following theorem is formulated for X = R, but the reader can easily
verify that the same proof works for many topological spaces.

Theorem 4.6. T(R) adds a Hechler real.

Proof. Let p ∈ T(R). Of course, dom(p) is nowhere dense, so there is
a closed interval disjoint from it. We can assume without loss of generality
dom(p) ∩ [0, 2] = ∅. Define p′ ≤ p by p′(0) = 1 and p′

(
1

k+1

)
= 0 for k < ω.

We now define an embedding ρ of Hechler forcing into T(R)�p′. Let

x(k,m) =
1

k + 1
+

1

k2 + k + 1

1

m+ 1

and define s = ρ(〈f, n〉) by s(x(k,m)) = 0 for k < ω and m < f(k);
s(x(k,m)) = 1 for k < n and m = f(k); s( 1

k+1) = 0 for k < ω; and
s(0) = 1. Clearly s ∈ T(R). We show the regularity of this embedding by
the criterion of Section 1. Points (1) and (2) are satisfied. To prove (3),
we fix r ∈ T(R)�p′. Set n = max{k : (∃m) (r(x(k,m)) = 1)} + 1 and
f(k) = min{m : r(x(k,m)) = 1} if such an m exists, and f(k) = max{m :
x(k,m) ∈ dom(r)} + 1 otherwise. The latter must exist since r

(
1

k+1

)
= 0

and {x(k,m)}m<ω → 1
k+1 . For all 〈f

′, n′〉 ≤ 〈f, n〉 we have ρ(〈f ′, n′〉) ‖ r.
We turn now to another important property of the algebra B(X). A

Boolean algebra is said to be σ-completely generated by a subset if the small-
est σ-complete subalgebra containing this subset is the Boolean algebra itself.

Theorem 4.7. If X is separable then the algebra B(X) contains a dense
σ-complete subalgebra σ-completely generated by a countable set.

Proof. Let D be a countable dense subset of X. For x ∈ X define p0
x, p

1
x ∈

T(X) by dom(p0
x) = dom(p1

x) = {x} and p0
x(x) = 0, p1

x(x) = 1. Let A be the
σ-complete subalgebra of B(X) generated by {p0

x : x ∈ D}. Note that for
every x ∈ X such that there are xi ∈ D with xi → x we have

p1
x =

∨
j<ω

∧
i>j

p0
xi ,

hence p1
x ∈ A. Since X is sequential and D is dense, we can iterate this

argument and get p1
x ∈ A for all x ∈ X. Since p0

x and p1
x are complements,

we have p0
x, p

1
x ∈ A for all x ∈ X. From

p =
∧
{p0
x : p(x) = 0} ∧

∧
{p1
x : p(x) = 1}

for any p ∈ T(X) it follows that T(X) ⊆ A, and therefore A is dense in
B(X).

We remark that all such Boolean algebras (σ-complete Boolean algebras
σ-completely generated by a countable set) are of the form Borel(R)/I for
a σ-complete ideal I, and the forcing extension is determined by one real
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number. If B(X) is ccc (which holds in most cases—Theorem 2.2) then B(X)
itself is σ-completely generated by a countable set.

In Section 2 we showed that T(X) is usually ccc. We ask now whether
the forcing can be interesting also in the opposite case.

Theorem 4.8. If T(X) does not satisfy ccc then there is a p ∈ T(X)
such that p 
 ω1 is collapsed.

Proof. Suppose that {pα}α<ω1 is an uncountable antichain in T(X). We
proceed as in the proof of Theorem 2.2(a). That means that we can as-
sume that {supp(pα)}α<ω1 is a ∆-system with kernel ∆ = {xk}k<k̄ and
all elements have the same size k̄ + n̄. The set supp(pα) has the form
{xk}k<k̄∪{xαn}n<n̄ and dom(pβ)∩supp(pα) = ∆ for β < α. Define p ∈ T(X)
with dom(p) = {xk}k<k̄ by p(xk) = 1. Let p ∈ G be generic, and in V [G] for
fG =

⋃
G set

K = {α < ωV1 : (∀n < n̄) (fG(xαn) = 1)}.
We show that p forces that ω1 is collapsed by proving that (a) K is un-
bounded in ωV1 , and (b) K is of type ω.

(a) For any α < ω1 and q ≤ p there are q′ ≤ q and α′ ≥ α such that
q′ 
 α′ ∈ K, namely α′ > sup{β : (∃n < n̄) (xβn ∈ dom(q))} and q′(xα′

n ) = 1
for n < n̄.

(b) We show that |K ∩ α| < ω for all α < ωV1 . For any q ≤ p there is
a q′ ≤ q such that q′ 
 |K ∩ α| < ω, namely let α′ ≥ α with α′ > sup{β :

(∃n < n̄) (xβn ∈ dom(q))} and q′(x) = pα′(x) for x ∈ dom(pα′) \ dom(q).
Then q′ ∈ T(X). As in the proof of Theorem 2.2(a), we conclude that for any
β < α we can find n < n̄ such that pα′(xnβ) = 0. It follows that q′(xnβ) = 0 if
xβn /∈ supp(q). The assertion holds now since β /∈ K for all β < α such that
xβn /∈ supp(q).

We have found in V [G] a countable cofinal subset K of ωV1 , so ω1 is
collapsed.

5. Boolean algebras. We will now examine the special case T(B),
where B is a σ-complete Boolean algebra understood as a topological space
with the canonical sequential topology τs defined in the following way: For a
given sequence {αi : i < ω}, let lim inf(ai) =

∨
j<ω

∧
i>j ai and lim sup(ai) =∧

j<ω

∨
i>j ai. Define the algebraic limit lim(ai)=a if lim inf(ai)=lim sup(ai)

= a and let A ⊆ B be closed if and only if ai ∈ A and lim(ai) = a imply
a ∈ A. This is a sequential T1-topology with the unique limit property. It
follows from the definition that the limit of any countable antichain is 0.
More on this topology can be found in [Vla69], [Vla02] and [BGJ98].

If B is an infinite σ-complete Boolean algebra then we can find a maximal
antichain of size ω in it. Such a maximal antichain σ-completely generates
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a regular subalgebra A which is isomorphic to P(ω) and is of course closed
in (B, τs). It is known that (P (ω), τs) is isomorphic to the Cantor cube 2ω

(see [BGJ98]). Therefore 2ω embeds into (B, τs) for any infinite σ-complete
Boolean algebra B. Lemma 1.2 and Theorem 3.5 now imply the following
theorem:

Theorem 5.1. T((B, τs)) is not σ-finite cc for any infinite σ-complete
Boolean algebra B.

We are especially interested in the connection between ccc for B and for
T((B, τs)). First we note the following.

Theorem 5.2. Condition 1 for (B, τs) implies that B has the Knaster
property.

Proof. Assume for contradiction that B does not have the Knaster prop-
erty, i.e. there is anM ∈ [B]ω1 such that noM ′ ∈ [M ]ω1 is linked; that means
any M ′ ∈ [M ]ω1 contains an orthogonal pair. The theorem of Dushnik and
Miller implies now that any set M ′ ∈ [M ]ω1 contains a subset A ∈ [M ′]ω of
pairwise orthogonal elements. Of course, such an A converges algebraically
and therefore also topologically to 0. But this means that condition 1 is
violated for 0 and M .

We remark that many ccc σ-complete algebras will satisfy condition 1, for
example the Boolean algebras of Cohen forcing (because it has a countable
dense subset) and Random forcing (the sequential topology of this algebra
is in fact generated by the canonical metric). But for Hechler forcing it is
undecidable in ZFC whether its sequential topology satisfies condition 1 or
not.

Similarly to Theorem 5.2, condition 2 for (B, τs) implies that B is ccc: If
D were an uncountable antichain in B then condition 2 is violated by x = 0
and M = D. From Theorems 2.2(b) and 4.8 we now infer the following:

Theorem 5.3. If the σ-complete Boolean algebra B is not ccc then the
forcing notion T((B, τs)) collapses ω1.

If B is ccc then in most cases T((B, τs)) is also ccc, but there is an
example where this is not true:

Example 5.4 (A complete ccc Boolean algebra such that T((B, τs)) is
not ccc). Define

P = {p : ω1 → {0, 1} : o.t.(dom(p)) < ω × ω & |supp(p)| < ω}.

Here supp(p) = p−1(1) is used in the same sense as above, and o.t. denotes
order type.

Let B be the Boolean completion of P.
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1. B is ccc. Suppose an uncountable antichain in B is given. We can
assume that it is of the form {pα}α<ω1 ⊆ P. We argue as in 2.2(a) and
improve the antichain by selection. Since in the definition of the elements
of P the domain does not depend on the support, we can assume that the
kernel of the ∆-system is empty. We obtain {xαn}α<ω1, n<n̄ such that without
loss of generality supp(pα) = {xαn}n<n̄ and supp(pα) ∩ dom(pβ) = ∅ for all
β < α < ω1. Moreover, we can assume that xβn < xαn′ for β < α and n, n′ < n̄.
Then for all α < ω × ω we have pα ⊥ pω×ω, so there is an n(α) < n̄ such
that pω×ω(xαn(α)) = 0. But this implies that the order type of dom(pω×ω) is
at least ω × ω, a contradiction.

2. T(B) is not ccc. This follows from Theorem 2.2(b) and the fact that
(B, τs) does not satisfy condition 2: Let qα ∈ P with dom(qα) = {α} and
qα(α) = 1 and let A ∈ [ω1]ω with o.t.(A) < ω × ω. For any p ∈ P we
define p′ ≤ p by p′(α) = 0 for all α ∈ A \ dom(p). Then o.t.(dom(p′)) <
ω × ω, i.e. p′ ∈ P. But for all α ∈ A \ supp(p) we have p′ ⊥ qα since
p′(α) = 0 6= 1 = qα(α), therefore p′ ⊥ lim supα∈A(qα). It follows that
lim supα∈A(qα) = 0 and therefore limα∈A(qα) = 0. But from this we conclude
that for any B ∈ [ω1]ω the sequence {qα}α∈B converges topologically to 0
since for all C ∈ [B]ω there is aD ∈ [C]ω such that o.t.(D) = ω, which means
that {qα}α∈D converges even algebraically to 0. We have proved that x = 0
and M = {qα}α<ω1 witnesses that (B, τs) does not satisfy condition 2.

The troubles from Example 5.4 lead to the following modification of
the definition of condition 2 where topological convergence is replaced by
algebraic convergence. Note that we can, instead of a and M , also consider
0 and M 4 a. Note also that limA = 0 if and only if lim supA = 0.

Definition 5.5. We say that a Boolean algebra B satisfies condition
2(alg) if

(∀M ∈ [B+]ω1)(∃A ∈ [M ]ω) (lim supA 6= 0).

We are now able to prove the following.

Theorem 5.6. The σ-complete Boolean algebra B satisfies ccc if and
only if it satisfies condition 2(alg).

Proof. (→) LetM = {aα}α<ω1 be such that condition 2(alg) is violated.
This means that lim sup{aβ}β<α = 0 for any α < ω1 . We find for any α
a β(α) < α such that āα := aα \

∨
{aβ : β(α) < β < α} 6= 0. By the

pressing down lemma there must be a β̄ < ω1 and a stationary set S such
that β(α) = β̄ for all α ∈ S. But the antichain {āα}α∈S witnesses now that
B is not ccc.

(←) As noted above, if M is an uncountable antichain in B then
limA = 0 for any countable subset A, i.e. condition 2(alg) is violated.
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This suggests that in the case of Boolean algebras the definition of the
operator T should also be modified by using algebraic convergence instead
of the topological one. In general, it could be useful to modify the operator
T for any space with some kind of convergence.

6. Homogeneity. A complete Boolean algebra B is called homogeneous
if for all a, b ∈ B \ {0, 1} there exists an automorphism φ : B → B such that
φ(a) = b; it is called weakly homogeneous if for all a, b ∈ B \ {0, 1} there
exists an automorphism φ : B → B such that φ(a) and b are not orthogonal.
The main aim of this section is to show that for many topological spaces
X the Boolean algebra B(X) is homogeneous. The product of many copies
of a homogeneous complete Boolean algebra need not be homogeneous, but
it is always weakly homogeneous. The theorem of Koppelberg and Solovay
(see [Mon89, Vol. 2, Chap. 18]) says more. A complete Boolean algebra is
weakly homogeneous if and only if it is isomorphic to a product Cκ of a
homogeneous complete Boolean algebra C. From this we get the following
corollary:

Theorem 6.1. An infinite weakly homogeneous ccc complete Boolean
algebra is homogeneous.

Proof. Let B be weakly homogeneous. By the Koppelberg–Solovay theo-
rem there is a homogeneous complete Boolean algebra C such that B ∼= Cκ.
The ccc implies κ ≤ ω. If C is finite, then B is the algebra 2ω and therefore
homogeneous. Otherwise, since C is homogeneous and complete, we have
C ∼= Cκ, therefore B ∼= C, and B is homogeneous.

We will apply this to the algebra B(X). The following lemma and theorem
are formulated for the open unit interval X = (0, 1), but it is clear that the
proof goes through for many topological spaces X.

Lemma 6.2. B((0, 1)) is weakly homogeneous.

Proof. Since T(X) is a dense subset of B(X), it is enough to prove the
criterion of weak homogeneity for p, q ∈ T((0, 1)). We find a homeomor-
phism ψ : (0, 1) → (0, 1) such that ψ[dom(p)] ∩ dom(q) = ∅. The induced
isomorphism φ : T((0, 1)) → T((0, 1)) with φ(r)(x) = r(ψ−1(x)) can be
extended to an automorphism on B((0, 1)) which is a witness of weak ho-
mogeneity, since dom(φ(p))∩ dom(q) = ∅ and therefore φ(p), q ≥ φ(p)∪ q ∈
T((0, 1)).

By Theorem 2.2(a), B((0, 1)) is ccc, hence by Theorems 6.1 and 6.2 we
get:

Theorem 6.3. B((0, 1)) is homogeneous.
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The topological space X determines the order T(X) and therefore also
the complete Boolean algebra B(X). We investigate the question to what
extent this can be reversed.

Theorem 6.4. The orderings T(X) and T(Y ) are order isomorphic if
and only if the sequential spaces X and Y are homeomorphic.

Proof. We reconstruct X from T(X). Two elements p0, p1 ∈ T(X) are
said to be complements if p0 ⊥ p1 and both p0 and p1 are maximal under the
unique biggest element of the ordering (the empty condition). Note that the
only complements are pairs of the form dom(p0) = dom(p1) = {x} for some
x ∈ X and p0(x) = 0 and p1(x) = 1. We denote this unique x by ρ({p0, p1}).
Let X̄ = {{p0, p1} : p0 and p1 are complements} and define a topology on
X̄ as the strongest topology such that {p0, p1} ∈ cl{{p0

i , p
1
i } : i < ω}, where

all {p0
i , p

1
i }’s are different from {p0, p1}, whenever there exists χ : ω+ 1→ 2

such that

(1) {pχ(i)
i }i<ω ∪ {pχ(ω+1)} has an infimum,

(2) {pχ(i)
i }i<ω ∪ {p1−χ(ω+1)} has no infimum.

We claim that the bijection ρ : X̄ → X is a homeomorphism. Indeed, if
Z ⊂ X̄ is not closed, then there are {p0, p1} /∈ Z, {p0

i , p
1
i } ∈ Z, and χ

such that (1) and (2) hold. But then ρ({p0, p1}) will be an accumulation
point of {ρ({p0

i , p
1
i })}i<ω, i.e. ρ[Z] is not closed in X. Conversely, if Y ⊂ X

is not closed, then there are x /∈ Y and xi ∈ Y such that xi → x. But
then conditions (1) and (2) are met for the corresponding {p0, p1} = ρ−1(x),
{p0
i , p

1
i } = ρ−1(xi) and χ with χ(i) = 0 and χ(ω + 1) = 1, hence ρ−1[Y ] is

not closed in X̄.

We will see now that the same does not hold for the generated complete
Boolean algebra B(X), i.e. we will construct nonhomeomorphic X, Y such
that B(X) ∼= B(Y ). The arguments of the proof of Lemma 6.2 do not apply
to the closed unit interval X = [0, 1]. But we will see that even the following
holds:

Theorem 6.5. The algebras B((0, 1)) and B([0, 1]) generated from the
open and the closed unit interval are isomorphic.

Proof. For any p ∈ B([0, 1]) we will construct an r ≤ p and a q ∈ B((0, 1))
such that B([0, 1])�r ∼= B((0, 1))�q. The latter is isomorphic to B((0, 1)) by
homogeneity. We obtain a maximal antichain R (which is countable by ccc—
this follows again from 2.2(a)) such that B([0, 1])�r ∼= B((0, 1)) for any r ∈ R.
Hence B([0, 1]) ∼=

∏
r∈R B([0, 1])�r ∼= B((0, 1))|R| ∼= B((0, 1)), where the last

equality follows again from homogeneity.
So, let us construct the r, q as required. We can suppose that p ∈ T([0, 1]).

Case 1: 0, 1 /∈ supp(p). Let r ≤ p with r(0) = r(1) = 0 and q = p�(0, 1).
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Case 2: 0 /∈ supp(p) and 1 ∈ supp(p) (or vice versa). We find a sequence
xi ↗ 1 such that xi /∈ supp(p) and x0 = 0. Define r ≤ p by r(xi) = 0. Fix
homeomorphisms

ψ2i : (x2i, x2i+1)→
(

1

2
− 1

i+ 2
,
1

2
− 1

i+ 3

)
,

ψ2i+1 : (x2i+1, x2i+2)→
(

1

2
+

1

i+ 3
,
1

2
+

1

i+ 2

)
and set ψ =

⋃
j<ω ψj . Let q(1/2) = 1 and q(1/2 − 1/i) = q(1/2 + 1/i) = 0

for i > 2 and q(ψ(x)) = p(x) for x ∈ dom(p) \ {0, 1}. Then r and q are as
required, as witnessed by ψ.

Case 3: 0, 1 ∈ supp(p). Choose x ∈ (0, 1) \ dom(p). Let r ≤ p with r(x)
= 0. Fix homeomorphisms ψ1 : (0, x) → (1/2, 1) and ψ2 : (x, 1) → (0, 1/2)
and set ψ = ψ1 ∪ ψ2. Let q(1/2) = 1 and q(ψ(x)) = p(x) for x ∈ dom(p) \
{0, 1}. Once more, ψ witnesses that r and q are as required.

Theorem 6.5 shows that topologically different spaces, like compact and
noncompact spaces, can yield isomorphic Boolean algebras. This leads to the
following consideration. None of the properties discussed so far distinguishes
B(X) for other pairs of simple spaces, such as the open unit interval and its
square. It is not clear to us whether the corresponding Boolean algebras are
isomorphic or not (compare [Paz07]). This raises a more general question:
Which properties besides those from Definition 3.1 are able to distinguish
between the Boolean algebras of the form B(X)?
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