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Maps into the torus and
minimal coincidence sets for homotopies

by

D. L. Gonçalves (São Paulo) and M. R. Kelly (New Orleans, LA)

Abstract. Let X,Y be manifolds of the same dimension. Given continuous mappings
fi, gi : X → Y , i = 0, 1, we consider the 1-parameter coincidence problem of finding
homotopies ft, gt, 0 ≤ t ≤ 1, such that the number of coincidence points for the pair
ft, gt is independent of t. When Y is the torus and f0, g0 are coincidence free we produce
coincidence free pairs f1, g1 such that no homotopy joining them is coincidence free at
each level. When X is also the torus we characterize the solution of the problem in terms
of the Lefschetz coincidence number.

0. Introduction. For a pair of maps (f, g) : X→Y denote by Coin(f, g)
the set {x ∈ X | f(x) = g(x)}. Assume X and Y to be compact manifolds of
the same dimension, in which case this set is generically a finite set of points.
Now suppose that (f1, g1), (f2, g2) are homotopic as a pair of maps, and
that #Coin(f1, g1) = #Coin(f2, g2) = MC[f1, g1], where MC[f, g] denotes
the mininal number of coincidence points occurring among all pairs (f ′, g′)
homotopic to (f, g). A natural question is the following: Can one find a
pair H,G of homotopies from f1 to f2 and g1 to g2, respectively, such that
#Coin(H(·, t), G(·, t)) = MC[f1, g1] for all t ∈ [0, 1]? We refer to this as the
minimal coincidence problem.

A variation of a special case of this question was raised by H. Schirmer
in [8], in particular, the fixed point problem, where we take X = Y , both
g1 and g2 are the identity and the homotopy G remains constant at the
identity. For self-maps of S1 it can be shown that the fixed point case has
an affirmative answer. On the other hand, M. Kelly [6] has provided ex-
amples of manifolds of all dimensions ≥ 2 and self-maps f1, f2 which are
homotopic, fixed point free but not freely homotopic, i.e. they cannot be
connected by a homotopy H which is fixed point free. It is not known
if these provide counterexamples to the minimal coincidence problem be-
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cause of the assumption that G is the identity in the fixed point prob-
lem.

In the paper [2] Dimovski and Geoghegan develop primary and secondary
geometric obstructions to removing circles of fixed points occurring in ho-
motopies when X is a PL manifold of dimension at least 4. They show
that the vanishing of the obstructions implies that fixed points can be re-
moved. For the examples in [6] the primary obstruction is nonzero. Results
in [2] were generalized by Jezierski in [5]. Later, Geoghegan and Nicas [3]
using Hochschild Homology gave a 1-parameter fixed point theory, analo-
gous to classical Nielsen theory, defined for finite CW complexes. For X a
PL manifold of dimension at least four this theory gives exactly the primary
obstruction of [2].

The purpose of this work is to study the minimal coincidence problem in
low dimensions. More specifically, we consider the setting where the target Y
is a torus of dimension either 1 or 2. We present several results. In particular,
when the domain and target are both the 2-torus, we see in Theorems 1.4
and 3.4 that the solution depends on the value of the Lefschetz coincidence
number Λ(f, g) of a given pair (f, g) of maps. It is shown in [1, Section 6]
that for the torus |Λ(f, g)| = MC[f, g]. Throughout this paper the letter T
will be used to denote the 2-dimensional torus.

Theorem 1.4. Let (f0, g0) : T → T be a pair of maps which is coin-
cidence free. Then there is a countable family of maps (fn, gn), each coin-
cidence free and homotopic to (f0, g0), so that for any two pairs of maps
(fm, gm), (fn, gn) in the family with m 6= n each homotopy between them
has coincidence points.

Theorem 3.4. Let (f1, g1), (f2, g2) : T → T be homotopic pairs of maps,
with |Λ(fi, gi)| = n for i = 1, 2 and n 6= 0. If #Coin(fi, gi) = n for i = 1, 2
then there is a pair of homotopies H,G between (f1, g1) and (f2, g2) such
that #Coin(H(·, t), G(·, t)) = n for all t ∈ [0, 1].

As a comparison we also consider the 1-dimensional situation. Here the
result is slightly different.

Theorem 4.2. Let (f1, g1), (f2, g2) : S1→S1 be homotopic pairs of maps,
each pair having |Λ(fi, gi)| coincidence points. Then there is a pair of homo-
topies H,G between (f1, g1) and (f2, g2) such that #Coin(H(·, t), G(·, t)) =
|Λ(fi, gi)| for all t ∈ [0, 1].

Remark. Because the torus admits a group structure, slightly stronger
versions of Theorems 3.4 and 4.2 can be proved. Namely, given an arbitrary
homotopy G one can always find a homotopy H such that the pair (H,G)
satisfies the conclusion of the theorems.
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The remainder of this paper is organized as follows. In Section 1 we
consider coincidence point free pairs of maps (f, g) : T → T . We first obtain
the result for the corresponding root problem for maps of degree zero. As
a consequence we prove the main result of the section, Theorem 1.4. In
Section 2 we consider coincidence point free pair of maps (f, g) : Sh → T for
maps from a closed surface of genus h > 1 to the torus. The main result is
Theorem 2.2. In Section 3 we consider the case of non-coincidence free self-
maps of the torus. The main result for coincidence is given in Theorem 3.4.
Finally, the parallel results in dimension one are proved in Section 4.

We conclude the introduction with the comment that an analog of these
results for higher-dimensional tori is unknown. Both, the algebra needed for
an analog of Theorem 1.4 seems more difficult, and the methods used to
prove 3.4 are restricted to dimension two.

1. Coincidence free self-maps on the torus. We begin by consider-
ing the particular case of roots, where coincidence free translates into maps
having degree equal to zero. Then, using the multplication on the torus, we
obtain the corresponding result for the general case of coincidence, and also
as a particular case, the fixed point case. Let 1 ∈ T denote the multiplicative
identity.

We start with one algebraic lemma regarding conjugate elements in a free
group. Let F (a, b) be the free group on two generators a, b, and B = [a, b],
the commutator of a and b.

Lemma 1.1. Let w ∈ F . Then wB2n and wB2m are not conjugate for
m,n being different integers.

Proof. Suppose that there exists ξ ∈ F such that wB2n = ξwB2mξ−1.
This implies that B2n−2m = B−2mw−1ξwB2mξ−1 = [B−2mw−1, ξ]. By [4]
we know that an even power of B cannot be written as a single commuta-
tor.

Proposition 1.2. Suppose f0 : T → T is such that 1 6∈ f0(T ). Then
there exist a countable family of maps fn, each homotopic to f0, such that
1 6∈ fn(T ) and for any two maps fm, fn in the family with m 6= n each
homotopy between them has a root at 1.

Proof. By hypothesis we have f0 : T → T with image missing 1. Let
1 ∈ T be the base point of T and let f0(1) = y0 be the base point of T \{1}.
Let e1, e2 ∈ π1(T, {1}) be the canonical generators and a, b ∈ π1(T \{1}, y0)
two generators of this free group. Set f0#(e1) = w1, f0#(e2) = w2. Since
[e1, e2] = 0, it follows that the commutator [w1, w2] is trivial in T \{1}. This
implies that there is a word w such that w1 = wr, w2 = ws. Now define
f0
n : S1 ∨S1 → T \ {1} as follows: f0

n(e1) = (wB2n)r and f0
n(e2) = (wB2n)s.
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The elements defined by the homotopy classes of the loops (wB2n)r and
(wB2n)s commute because these words are powers of the same word. So f 0

n

extends to a map f ′n : T → T \ {1}. Let fn denote the composition of f ′n
with the inclusion T \ {1} ⊂ T .

All of the maps fn are homotopic because in π1(T ) we have wr =
(wB2n)r and ws = (wB2n)s. We claim that f ′m, f

′
n are not homotopic when

m 6= n. Otherwise, the words (wB2m)r, (wB2n)r and (wB2m)s, (wB2n)s

are in the same conjugacy class. More precisely, there exists ξ such that
(wB2n)r = (ξwB2mξ−1)r and (wB2n)s = (ξwB2mξ−1)s. By [7], Ex. 3,
page 41, we must have (wB2n) = (ξwB2mξ−1). By Lemma 1.1, this is not
possible and the result follows.

The above result will be used to prove the analogous results in the fixed
point and coincidence cases.

Theorem 1.3. Let g0 : T → T be fixed point free. Then there is a count-
able family of maps gn, each fixed point free and homotopic to g0, so that
for any two maps gm, gn in the family with m 6= n each homotopy between
them has fixed points.

Proof. Let f0(x) = g0(x) ·x−1. This is a map f0 : T → T with 1 6∈ f0(T ).
Consider the family fn defined in Proposition 1.2. Let gn(x) = fn(x)·x. Then
certainly gn is fixed point free. Finally, gm and gn cannot be joined by a
fixed point free homotopy, otherwise fm and fn could be joined by a root
free homotopy.

Theorem 1.4. Let (f0, g0) : T → T be a pair of maps which is coin-
cidence free. Then there is a countable family of maps (fn, gn), each coin-
cidence free and homotopic to (f0, g0), so that for any two pairs of maps
(fm, gm), (fn, gn) in the family with m 6= n each homotopy between them
has coincidence points.

Proof. Let h0(x) = g0(x) · f0(x)−1. This is a map h0 : T → T with
1 6∈ h0(T ). Consider the family hn defined in Proposition 1.2. Let gn(x) =
hn(x) · f0(x) and fn = f0. Since hn(x) 6= 1 for all x we see that (fn, gn) is
coincidence free. Also, the pairs (fn, gn) and (fm, gm) cannot be joined by
a coincidence point free homotopy, otherwise hn and hm could be joined by
a root free homotopy.

2. Coincidence free maps from an orientable surface to the
torus. We now look at the situation when the domain for our maps is
the closed orientable surface of genus h ≥ 2, which we denote by Sh. As in
Section 1, we first consider the particular case of roots.

Proposition 2.1. Suppose f0 : Sh → T is such that 1 6∈ f0(Sh). Then
there exists a countable family of maps fn, each homotopic to f0, so that
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1 6∈ fn(Sh) and for any two maps fm, fn in the family with m 6= n each
homotopy between them has a root at 1.

Proof. Let e1, . . . , e2h be generators for π1(Sh, x0). Let wi = f0#(ei),
where each wi is a word in the free group π1(T \{1}, f(x0)) on 2 generators.
Since f0 is root free, the wi’s satisfy the equation [w1, w2] . . . [w2h−1, w2h]=1.
Let us assume that [w1, w2] 6= 1. If not, an argument similar to Proposi-
tion 1.2 can be used to construct the required maps. Let [w1, w2] be de-
noted by K. For each integer n define a map fn from Sh to T \ {1} such
that fn#(ei) = wi, i > 2, and fn#(ei) = KnwiK

−n, i = 1, 2. As maps into
T they are all homotopic for either of two reasons: because K belongs to
the kernel of π1(T \{1})→ π1(T ) or because π1(T ) is abelian. On the other
hand, we claim that any two such maps, as maps from Sh into T \ {1},
cannot be homotopic. The proof is completed by assuming fn and fm are
homotopic and deriving a contradiction.

Assume fn and fm are homotopic. Then the induced homomorphisms
on the fundamental groups are conjugate. Thus, there exists θ such that
fn#(ei) = θfm#(ei)θ−1 for all i. Now, θ = 1 is not possible because this
would imply KnwiK

−n = KmwiK
−m for i = 1, 2. So Km−n commutes

with wi for i = 1, 2. Hence there are subgroups H1 and H2 of rank one
which contain Km−n, w1 and Km−n, w2 respectively. But in a free group
the subgroup generated by H1 and H2 is also free and has rank at most
two. Because both contain the common nontrivial element Km−n, its rank
must be one. This implies that [w1, w2] = 1. So we must have θ 6= 1 and θ
commutes with each wi for i > 2. Therefore all the wi’s for i > 2 belong
to a single subgroup of rank one and it follows that [w2i−1, w2i] = 1 for
i = 2, . . . , h. But this implies that [w1, w2] = 1, which is a contradiction.

As a consequence of Proposition 2.1 we obtain the following theorem. Its
proof is the same as that of Theorem 1.4.

Theorem 2.2. Let (f0, g0) : Sh → T be a pair of maps which is coin-
cidence free. Then there is a countable family of maps (fn, gn), each coin-
cidence free and homotopic to (f0, g0), so that for any two pairs of maps
(fm, gm), (fn, gn) in the family with m 6= n each homotopy between them
has coincidence points.

We conclude this section with the comment that the extension of Propo-
sition 2.1 to the nonzero degree case, and hence Theorem 2.2 to the non-
coincidence free case, is apparently more subtle. A difficulty arises in the
method of proof given in Proposition 2.1 as soon as f−1

0 (1) 6= ∅, and also
the methods used in this section do not generally apply. This case provides
an interesting problem for further investigation into the study of the exis-
tence of minimal homotopies for coincidences in dimension two.
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3. Maps which are not coincidence free. In this section we consider
a pair of maps (f, g) : T → T where the pair cannot be made coincidence
free. As in Section 1, we recall that when the target is the torus, once we
obtain the results for the root case, the results for the coincidence problem
and for the fixed point problem follow. For the root problem we are now
concerned with the case when the degree is nonzero, and so our maps are
no longer root free. We first consider the case when the degree is ±1.

Lemma 3.1. Let f : T → T be a map of degree d, where d = ±1.
Suppose that y1, . . . , yl is a finite set of points in T such that f−1(yi) is a
single point for each i, and further , the local degree at each f−1(yi) is d.
Then we can deform f relative to f−1(y1), . . . , f−1(yl) to a homeomorphism
f ′ such that the homotopy H between f and f ′ satisfies #H(·, t)−1(yi) = 1
for all t ∈ [0, 1] and i = 1, . . . , l.

Proof. For simplicity of notation we assume i = 1 and set y = y1. The
proof for i > 1 is identical. Let N be a small neighborhood of y with N \ y
foliated by circles γt, 0 < t ≤ 1. Let M be a small neighborhood of f−1(y)
with M \f−1(y) foliated by δt. Since f−1(y) is a single point we can deform f
to a map g such that g−1(y) = f−1(y), g(δt) ⊂ γt for each t, and g(T \M) ⊂
T \ N . Also, since the local degree at f−1(y) is ±1 we can assume that g
is one-to-one on δ1. Moreover, there is a homotopy between g and f which
satisfies the conclusion in the lemma that the preimage of y is a single point
at each level of the homotopy.

Since deg(g) = ±1 it is well known (see for example Theorem 1.1 in [9])
that the relative map g : (T \ int(M), ∂M)→ (T \ int(N), ∂N) is homotopic,
rel boundary, to a map f ′ which is a homeomorphism. Extend to all of T
using the constant homotopy from M to N to obtain the desired f ′.

Proposition 3.2. Let f1, f2 : T→T be homotopic maps where |deg(fi)|
= n for i = 1, 2 and n 6= 0. If for some y ∈ T , #f−1

i (y) = n for i = 1, 2,
then there is a homotopy H between f1 and f2 such that #H(·, t)−1(y) = n
for all t ∈ [0, 1].

Proof. Consider the n-fold covering p : T ′ → T which corresponds to
the subgroup fi#(π1(T )). Let f̃1, f̃2 : T → T ′ be homotopic lifts of f1, f2

respectively. Then deg(f̃i) = d, with |d| = 1. By construction, for each i, the
n points in f−1

i (y) are mapped by f̃i one-to-one onto p−1(y). Moreover, as
the Nielsen root number of fi is n, the local degree at each such point is d.
Let Fi be homotopies which satisfy the conclusion of Lemma 3.1 with the
ends of Fi being f̃i and hi, where hi is a homeomorphism. Now, since h1, h2

are homotopic, they are isotopic. Putting together F1, F2 and the isotopy
yields a homotopy H̃ between f̃1 and f̃2 such that the composition p ◦ H̃
provides the required homotopy H.
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Remark. Proposition 3.2 in the case when the degree is ±1 also follows
from an algebraic result of Nielsen, which is Corollary N4 in Section 3.5
of [7].

As in the proofs of Theorems 1.3 and 1.4 the multiplicative structure of T
allows for root problems to be converted into fixed point and coincidence
problems. The results for fixed points and coincidences that correspond to
Proposition 3.2 are given below in Theorems 3.3 and 3.4. Let L(f) denote
the Lefschetz number of the map f , and Λ(f, g) the Lefschetz coincidence
number of the pair (f, g).

Theorem 3.3. Let g1, g2 : T → T be homotopic maps with |L(gi)| = n
for i = 1, 2 and n 6= 0. If #Fix(gi) = n for i = 1, 2, then there is a
homotopy H between g1 and g2 such that #Fix(H(·, t)) = n for all t ∈ [0, 1].

Proof. Consider the maps hi(x) = gi(x) · x−1. From [10] we know that
the degree of hi is n. The proof now follows from Proposition 3.2.

Theorem 3.4. Let (f1, g1), (f2, g2) : T → T be homotopic pairs of maps
with |Λ(fi, gi)| = n for i = 1, 2 and n 6= 0. If #Coin(fi, gi) = n for i = 1, 2
then there is a pair of homotopies H,G between (f1, g1) and (f2, g2) such
that #Coin(H(·, t), G(·, t)) = n for all t ∈ [0, 1].

4. Minimal coincidences in dimension one. In dimension one the
only closed manifold is the 1-torus, which of course is the 1-sphere S1.

Proposition 4.1. Let f1, f2 : S1 → S1 be homotopic maps. Suppose
that #f−1

i (y) = |deg(fi)| = n for i = 1, 2. Then there is a homotopy H
between f1 and f2 such that #H(·, t)−1(y) = n for all t ∈ [0, 1].

Proof. Although an elementary direct proof can be given, here we ob-
serve that when deg(fi) 6= 0 the proofs of 3.1 and 3.2 given in Section 3
apply to S1 as well. Thus we need only consider the case when deg(fi) = 0.
Suppose that #f−1

i (y) = 0 for i = 1, 2. Since S1 \ {y} is contractible we
can deform each fi to the constant map at some c ∈ S1 \ {y}. Moreover,
throughout the homotopy nothing is mapped to y, which establishes the
result.

As a consequence we have

Theorem 4.2. Let (f1, g1), (f2, g2) : S1→S1 be homotopic pairs of maps,
each pair having |Λ(fi, gi)| coincidence points. Then there is a pair of homo-
topies H,G between (f1, g1) and (f2, g2) such that #Coin(H(·, t), G(·, t)) =
|Λ(fi, gi)| for all t ∈ [0, 1].
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106 D. L. Gonçalves and M. R. Kelly

of this work. The second author would like to thank the IME at Universidade
de São Paulo for its hospitality during the preparation of this manuscript.

References
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