On a question of de Groot and Nishiura

by

Vitalij A. Chatyrko (Linköping) and Yasunao Hattori (Matsue)

Abstract. Let $Z_n = [0,1]^{n+1} \setminus (0,1)^n \times \{0\}$. Then cmp $Z_n < \text{def } Z_n$ for $n \ge 5$. This is the answer to a question posed by de Groot and Nishiura [GN] for $n \ge 5$.

1. Introduction. A regular space X is called *rim-compact* if there exists a base \mathcal{B} for the open sets of X such that the boundary Bd U is compact for each U in \mathcal{B} .

In 1942 de Groot (cf. [AN]) proved the following:

(*) A separable metrizable space X is rim-compact if and only if there is a metrizable compactification Y of X such that $ind(Y \setminus X) \leq 0$.

In an attempt to generalize (*), de Groot introduced two notions, the small inductive compactness degree cmp and the compactness definiency def (we will recall the definitions in Section 2 and Section 3 respectively). It is known that cmp $X \leq \text{def } X$ for every separable metrizable space X. The well known conjecture of de Groot (see for example [GN]) was that the two invariants coincided in the class of separable metrizable spaces. As a way to either disprove or support the conjecture, de Groot and Nishiura [GN, p. 213] posed the following

QUESTION 1.1. Let

$$Z_n = [0,1]^{n+1} \setminus (0,1)^n \times \{0\}.$$

Is it true that $\operatorname{cmp} Z_n \ge n$ for $n \ge 3$?

In the cited article, de Groot and Nishiura proved that def $Z_n = n$ for every $n \ge 1$, and that cmp $Z_i = i$ for i = 1, 2.

In [P1] R. Pol constructed a space $P \subset \mathbb{R}^4$ such that $\operatorname{cmp} P = 1 < \operatorname{def} P = 2$. The space P is a modification of an example given by Lux-

²⁰⁰⁰ Mathematics Subject Classification: Primary 54F45.

Key words and phrases: small inductive compactness degree, large inductive compactness degree, compactness deficiency.

emburg [L] of a compactum with noncoinciding transfinite inductive dimensions. After that, some other counterexamples to de Groot's conjecture were constructed by Hart (cf. [AN]), Kimura [K], Levin and Segal [LS]. However, Question 1.1 remained open (see also [P2, Question 418] and [AN, Problem 3, p. 71]).

One of our main results in this paper is the following.

THEOREM 1.1. Let $n \leq 2^m - 1$ for some integer m. Then $\operatorname{cmp} Z_n \leq m + 1$. In particular, $\operatorname{cmp} Z_n < \operatorname{def} Z_n$ for $n \geq 5$.

This is an answer to Question 1.1 for $n \ge 5$. Our paper is based on a construction of compacta with noncoinciding transfinite inductive dimensions given in [Ch]. Our terminology follows [E] and [AN].

2. Finite sum theorem for \mathcal{P} -ind. In this section, all topological spaces are assumed to be regular T_1 and all classes of topological spaces considered are assumed to be nonempty and to contain any space homeomorphic to a closed subspace of one of their members. The letter \mathcal{P} is used to denote such classes.

Recall the definition of the small inductive dimension modulo \mathcal{P} , \mathcal{P} -ind. Let X be a space.

(i) \mathcal{P} -ind X = -1 iff $X \in \mathcal{P}$.

(ii) \mathcal{P} -ind $X \leq n \ (\geq 0)$ if each point in X has arbitrarily small neighbourhoods V with \mathcal{P} -ind Bd $V \leq n-1$.

(iii) \mathcal{P} -ind X = n if \mathcal{P} -ind $X \le n$ and \mathcal{P} -ind X > n - 1.

(iv) \mathcal{P} -ind $X = \infty$ if \mathcal{P} -ind X > n for $n = -1, 0, 1, \dots$

It is clear that if $\mathcal{P} = \{\emptyset\}$ then \mathcal{P} -ind $X = \operatorname{ind} X$. If \mathcal{P} is the class of compact spaces then \mathcal{P} -ind $X = \operatorname{cmp} X$.

The following properties of \mathcal{P} -ind will be used in the paper.

(1) If A is closed in X then \mathcal{P} -ind $A \leq \mathcal{P}$ -ind X.

(2) If \mathcal{P} -ind $X \leq n \geq 0$ and U is open in X then \mathcal{P} -ind $U \leq n$.

(3) If $X = O_1 \cup O_2$, where O_i is open in X, i = 1, 2, and $\max\{\mathcal{P}\text{-ind} O_1, \mathcal{P}\text{-ind} O_2\} \le n \ge 0$, then $\mathcal{P}\text{-ind} X \le n$.

(4) \mathcal{P} -ind $X \leq n \geq 0$ iff for each point p and each closed set G in X with $p \notin G$ there is a partition S in X between p and G such that \mathcal{P} -ind $S \leq n-1$.

The following statement is implicitly contained in the proofs of [Ch, Theorem 3.9] and [ChK, Theorem 2].

LEMMA 2.1. Let X be a normal space such that $X = X_1 \cup X_2$, where each X_i is closed in X, and A, B be two closed disjoint subsets of X such that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset$, i = 1, 2. Choose a partition C_1 in X_1 between $A \cap X_1$ and $B \cap X_1$ such that $X_1 \setminus C_1 = U_1 \cup V_1$, where U_1, V_1 are open in X_1 and disjoint, and $A \cap X_1 \subset U_1$, $B \cap X_1 \subset V_1$. Choose also a partition C_2 in X_2 between $A \cap X_2$ and $((C_1 \cup V_1) \cup B) \cap X_2$ such that $X_2 \setminus C_2 = U_2 \cup V_2$, where U_2, V_2 are open in X_2 and disjoint, and $A \cap X_2 \subset U_2$, $(C_1 \cup V_1) \cup B) \cap X_2 \subset V_2$. Then the set

$$C = X \setminus \left(\left((U_1 \setminus X_2) \cup U_2 \right) \cup \left(V_1 \cup \left(V_2 \setminus X_1 \right) \right) \right)$$

is a partition in X between A and B such that $C \subset C_1 \cup C_2 \cup (X_1 \cap X_2)$.

Moreover, if X is a regular T_1 -space then the same statement is valid for a pair of closed subsets of X where one of the sets is a point.

The following theorem and corollary are generalizations of [ChK, Theorem 2] and [Ch, Corollary 3.10(a)] respectively. Although one might show them similarly to [ChK] and [Ch], we give the proofs for the convenience of the reader.

THEOREM 2.1. Let X be a space such that $X = X_1 \cup X_2$, where X_i is closed in X and \mathcal{P} -ind $X_i \leq n \geq 0$ for every i = 1, 2. Then \mathcal{P} -ind $X \leq n+1$. Moreover, if X is normal then for any closed subsets A and B of X there exists a partition C in X between A and B such that \mathcal{P} -ind $C \leq n$.

Proof. Let $x \in X$. If $x \in X_1 \setminus X_2$ or $x \in X_2 \setminus X_1$ then x has arbitrarily small open neighbourhoods U with \mathcal{P} -ind Bd $U \leq n-1$.

Let now $x \in X_1 \cap X_2$ and B be a closed subset of X such that $x \notin B$ and $B \cap X_i \neq \emptyset$, i = 1, 2. Denote the point x by A. Choose partitions C_1 and C_2 as in Lemma 2.1. Then $Y = C_1 \cup C_2 \cup (X_1 \cap X_2) = Y_1 \cup Y_2$, where $Y_i = C_i \cup (X_1 \cap X_2)$. Moreover Int $Y_1 \cup$ Int $Y_2 = Y$ and \mathcal{P} -ind $Y_i \leq n$ (recall that $Y_i \subset X_i$). So by properties (1)–(3) of \mathcal{P} -ind Y we have \mathcal{P} -ind $Y \leq n$. By Lemma 2.1, there exists a partition C in X between A and B such that $C \subset Y$. Now just observe that \mathcal{P} -ind $C \leq n$.

COROLLARY 2.1. Let X be a space and $q \ge 0$ be an integer. If $X = \bigcup_{k=1}^{n+1} X_k$, where each X_k is closed in X, $0 \le n \le 2^m - 1$ for some integer m and $\max\{\mathcal{P}\text{-}\mathrm{ind}\,X_k\} \le q$, then $\mathcal{P}\text{-}\mathrm{ind}\,X \le q+m$. In particular, if $\operatorname{cmp} X_k = 0$ for $k = 1, \ldots, n+1$, then $\operatorname{cmp} X \le m$.

Proof. Let $n = 2^m - 1$. For every integer j such that $1 \leq j \leq 2^{m-1}$ put $X_j^{(1)} = X_{2j-1} \cup X_{2j}$. By Theorem 2.1, we have \mathcal{P} -ind $X_j^{(1)} \leq q+1$. For every integer p such that $1 \leq p \leq 2^{m-2}$ put $X_p^{(2)} = X_{2p-1}^{(1)} \cup X_{2p}^{(1)}$. By Theorem 2.1, we have \mathcal{P} -ind $X_p^{(2)} \leq q+2$ and so on. Observe that $X = X_1^{(m)}$. It is clear that \mathcal{P} -ind $X \leq q+m$.

To every normal space X one assigns the *large inductive compactness* degree Cmp as follows (cf. [AN]):

(i) For n = -1 or 0, $\operatorname{Cmp} X = n$ iff $\operatorname{cmp} X = n$.

(ii) $\operatorname{Cmp} X \leq n \geq 1$ if for each pair of disjoint closed subsets A and B of X there exists a partition C in X such that $\operatorname{Cmp} C \leq n-1$.

(iii) $\operatorname{Cmp} X = n$ if $\operatorname{Cmp} X \le n$ and $\operatorname{Cmp} X > n - 1$.

(iv) $\operatorname{Cmp} X = \infty$ if $\operatorname{Cmp} X > n$ for every natural number n.

It is clear that Cmp has the following properties:

1. If A is closed in X, then $\operatorname{Cmp} A \leq \operatorname{Cmp} X$.

2. If $X = X_1 \oplus X_2$, then $\operatorname{Cmp} X = \max{\operatorname{Cmp} X_1, \operatorname{Cmp} X_2}$.

COROLLARY 2.2. Let X be a normal space such that $X = X_1 \cup X_2$, where X_i is closed in X and $\operatorname{Cmp} X_i \leq 0$ for every i. Then $\operatorname{Cmp} X \leq 1$. Moreover, if $\operatorname{Cmp}(X_1 \cap X_2) = -1$, then $\operatorname{Cmp} X \leq 0$; if $\operatorname{Cmp} X_1 = -1$, then $\operatorname{Cmp} X = \operatorname{Cmp} X_2$.

Proof. Observe that $\operatorname{Cmp} X_i = \operatorname{cmp} X_i \leq 0$ for every *i*. By Theorem 2.1, for any closed subsets *A* and *B* of *X* there exists a partition *C* in *X* between *A* and *B* such that $\operatorname{cmp} C = \operatorname{Cmp} C \leq 0$. So $\operatorname{Cmp} X \leq 1$. If $\operatorname{Cmp}(X_1 \cap X_2) = -1$, then (again by Theorem 2.1) there exists a base \mathcal{B} for the open sets of *X* such that the boundary Bd *U* is compact for each $U \in \mathcal{B}$.

Now we are ready to prove the following theorem.

THEOREM 2.2. Let X be a normal space such that $X = X_1 \cup X_2$, where X_i is closed for i = 1, 2. Then

$$\operatorname{Cmp} X \leq \max\{\operatorname{Cmp} X_1, \operatorname{Cmp} X_2\} + \operatorname{Cmp}(X_1 \cap X_2) + 1$$
$$\leq \operatorname{Cmp} X_1 + \operatorname{Cmp} X_2 + 1.$$

Proof. Put $\operatorname{Cmp}(X_1 \cap X_2) = k$ and $\max\{\operatorname{Cmp} X_1, \operatorname{Cmp} X_2\} = m$. Observe that $k \leq m$. Let k = -1. First we prove the theorem for any $m \geq -1$ (k = -1). By Corollary 2.2 the statement is valid for m = -1 and m = 0. Assume that it holds for m . Put <math>m = p. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset$, i = 1, 2. Choose partitions C_i , i = 1, 2, as in Lemma 2.1 such that $\max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq p - 1$. Set $Y_1 = C_1 \cup C_2$ (recall that C_1 and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\operatorname{Cmp}(Y_1 \cap Y_2) = -1$, $\operatorname{Cmp} Y_1 = \max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq p - 1$ and $\max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} \leq p - 1$. By the inductive assumption,

$$\operatorname{Cmp} Y \le \max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} + \operatorname{Cmp}(Y_1 \cap Y_2) + 1 \\ \le -1 + (p-1) + 1 = p - 1.$$

By Lemma 2.1, there is a partition C in X between A and B such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq p = k + m + 1$.

Assume that the assertion is valid for any pair (k, m) with $k < q \ge 0$ and $k \le m$. Put k = q. Consider the case $m = k \ge 0$. If k = m = 0, then $\operatorname{Cmp} X_i \le 0$ for every i = 1, 2, and by Corollary 2.2, $\operatorname{Cmp} X \le 1 = k + m + 1$. Let $k = m = q \ge 1$. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \ne \emptyset$ and $B \cap X_i \ne \emptyset$, i = 1, 2. Choose partitions C_i , i = 1, 2, as in Lemma 2.1 such that $\max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq q - 1$. Write $Y_1 = C_1 \cup C_2$ (C_1 and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\operatorname{Cmp} Y_1 = \max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq q - 1$, $\operatorname{Cmp}(Y_1 \cap Y_2) \leq \min\{q, q - 1\} = q - 1 < q$ and $\max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} \leq q$. By the inductive assumption,

$$\operatorname{Cmp} Y \le \max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} + \operatorname{Cmp}(Y_1 \cap Y_2) + 1$$
$$\le q + (q-1) + 1 = 2q.$$

By Lemma 2.1, there is a partition C in X between A and B such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq 2q + 1 = k + m + 1$.

Assume that the assertion is valid for any m with $k \leq m$ <math>(k = q). Put m = p. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset$, i = 1, 2. Choose partitions C_i , i = 1, 2, as in Lemma 2.1 such that max{Cmp C_1 , Cmp C_2 } $\leq p - 1$. Set $Y_1 = C_1 \cup C_2$ (C_1 and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that Cmp $Y_1 = \max{\text{Cmp } C_1, \text{Cmp } C_2} \leq p - 1$, Cmp $(Y_1 \cap Y_2) \leq \min{q, p - 1} = q$ and max{Cmp $Y_1, \text{Cmp } Y_2$ } $\leq p - 1$. By the inductive assumption,

 $\operatorname{Cmp} Y \le \max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} + \operatorname{Cmp}(Y_1 \cap Y_2) + 1$ $\le q + (p-1) + 1 = q + p.$

By Lemma 2.1 there is a partition C in X between A and B such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq q + p + 1 = k + m + 1$.

COROLLARY 2.3. Let X be a normal space with $\operatorname{Cmp} X = n \ge 1$. Then

(a) X cannot be represented as a union of n closed subsets P_1, \ldots, P_n with Cmp $P_i \leq 0$ for each i.

Suppose now that $X = \bigcup_{i=1}^{n+1} Z_i$, where each Z_i is closed and $\operatorname{Cmp} Z_i \leq 0$ for every $i = 1, \ldots, n+1$. Then:

(b) $\operatorname{Cmp}(Z_1 \cup \ldots \cup Z_{k+1}) = k$ for any k with $0 \le k \le n$.

(c) $\operatorname{Cmp}((Z_1 \cup \ldots \cup Z_{1+i}) \cap (Z_{i+2} \cup \ldots \cup Z_{i+j+2})) = \min\{i, j\}$ for any nonnegative integers i, j such that $i + j + 1 \leq n$.

Proof. (a) Suppose that $X = \bigcup_{i=1}^{n} P_i$, where P_i is a closed subset of X with $\operatorname{Cmp} P_i \leq 0$ for each i. Applying Theorem 2.2 n-1 times we get $\operatorname{Cmp}(\bigcup_{i=1}^{n} P_i) \leq n-1$. This is a contradiction.

(b) By Theorem 2.2, we have $\operatorname{Cmp}(Z_1 \cup \ldots \cup Z_{k+1}) \leq k$. If $\operatorname{Cmp}(Z_1 \cup \ldots \cup Z_{k+1}) < k$ then we apply Theorem 2.2 to the union $(Z_1 \cup \ldots \cup Z_{k+1}) \cup (Z_{k+2} \cup \ldots \cup Z_{n+1})$ to get again $\operatorname{Cmp}(\bigcup_{i=1}^{n+1} Z_i) \leq n-1$.

(c) Apply (b) and Theorem 2.2.

REMARK 2.1. The estimates from Corollary 2.2 and Theorem 2.2 cannot be improved (see Corollary 3.3).

3. Spaces with $cmp \neq def$ ($cmp \neq Cmp$). The deficiency def is defined in the following way: For a separable metrizable space X,

def $X = \min\{ \operatorname{ind}(Y \setminus X) : Y \text{ is a metrizable compactification of } X \}.$

In this section, the concept of *B*-special decomposition introduced in [Ch] is essential. A decomposition $X = F \cup \bigcup_{i=1}^{\infty} E_i$ of a metric space X into disjoint sets is called *B*-special if E_i is clopen in X and $\lim_{i\to\infty} \delta(E_i) = 0$, where $\delta(A)$ is the diameter of A.

The following proposition is easily obtained by use of [Ch, Lemma 2.3].

PROPOSITION 3.1. Let $X = F \cup \bigcup_{i=1}^{\infty} E_i$ be a *B*-special decomposition of a metric space X and $n \ge 0$ be an integer. If $\max\{\mathcal{P} \text{-ind } F, \mathcal{P} \text{-ind } E_i\} \le n$, then $\mathcal{P} \text{-ind } X \le n$.

Let $\{x_i\}_{i=1}^{\infty}$ be a sequence of real numbers such that $0 < x_{i+1} < x_i \leq 1$ for all i and $\lim_{i\to\infty} x_i = 0$. Put

$$C^n = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [x_{2i}, x_{2i-1}]) \subset I^{n+1}.$$

THEOREM 3.1. (a) There are closed subsets X_1, \ldots, X_{n+1} of C^n such that $C^n = \bigcup_{k=1}^{n+1} X_k$ and $\operatorname{cmp} X_k = 0$ for each $k = 1, \ldots, n+1$.

(b) def $C^n = \operatorname{Cmp} C^n = n$ (= Comp C^n) (see [AN] for the definition of Comp).

(c) Let m be an integer such that $0 \le n \le 2^m - 1$. Then $\operatorname{cmp} C^n \le m$. In particular, $\operatorname{cmp} C^n < \operatorname{Cmp} C^n = \operatorname{def} C^n$ for $n \ge 3$.

Proof. (a) For every *i* choose finite systems B_k^i , k = 1, ..., n + 1, consisting of disjoint compact subsets of I^n with diameter < 1/i such that $I^n = \bigcup_{k=1}^{n+1} (\bigcup B_k^i)$. We put

$$X_k = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} \left(\left(\bigcup B_k^i\right) \times [x_{2i}, x_{2i-1}] \right)$$

for every k = 1, ..., n + 1. Observe that the space X_k admits a *B*-special decomposition into compact subsets and, by Proposition 3.1, cmp $X_k = 0$ for every k = 1, ..., n + 1.

(b) It is enough to prove that $\operatorname{Comp} C^n \geq n$, i.e. there exist n pairs $(F_1, G_1), \ldots, (F_n, G_n)$ of disjoint compact subsets of C^n such that for any partitions S_i in X between F_i and G_i , $i = 1, \ldots, n$, the intersection $S_1 \cap \ldots \cap S_n$ is not compact. (Recall that for every separable metrizable space W we have $\operatorname{Comp} W \leq \operatorname{Cmp} W \leq \operatorname{def} W$ (cf. [AN]) and evidently $\operatorname{def} C^n \leq n$.) For example, such pairs are $((\{0\} \times I^n) \cap C^n, (\{1\} \times I^n) \cap C^n), \ldots, ((I^{n-1} \times \{0\} \times [0,1]) \cap C^n, (I^{n-1} \times \{1\} \times [0,1]) \cap C^n)$.

Moreover, for any partition C in C^n between the sets $(\{0\} \times I^n) \cap C^n$ and $(\{1\} \times I^n) \cap C^n$, we have Comp $C \ge n - 1$.

(c) Apply Corollary 2.1 (the particular case) and the statement (a).

Now we are ready to show Theorem 1.1.

Proof of Theorem 1.1. Decompose the space Z_n , $n \ge 3$, into the union of two closed subsets Z_n^1 and Z_n^2 (each homeomorphic to C^n), where

$$Z_n^1 = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [1/(2i+1), 1/(2i)]),$$
$$Z_n^2 = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [1/(2i), 1/(2i-1)]).$$

Let *m* be the integer such that $0 \le n \le 2^m - 1$. It follows from Theorem 3.1(c) that $\operatorname{cmp} Z_n^i \le m$ for i = 1, 2. Thus, by Theorem 2.1, we have $\operatorname{cmp} Z_n \le m + 1$.

COROLLARY 3.1. (a) $\operatorname{cmp} C^2 = \operatorname{cmp}(C^2 \times [0, 1]) = 2.$ (b) $\operatorname{cmp} C^3 = 2.$

Proof. (a) Recall that for any partition C in C^2 between $(\{0\} \times I^2) \cap C^2$ and $(\{1\} \times I^2) \cap C^2$, we have Comp $C \ge 1$, and hence cmp $C \ge 1$. This yields cmp $C^2 = 2$ (and even cmp $Z_2 = 2$). Observe that the space $C^2 \times \mathbb{R}$ can be considered as an open subset of C^3 . So by property (2) of \mathcal{P} -ind and Theorem 3.1(c), cmp $(C^2 \times I) = \operatorname{cmp}(C^2 \times \mathbb{R}) \le \operatorname{cmp} C^3 \le 2$. On the other hand, cmp $(C^2 \times I) \ge \operatorname{cmp} C^2 = 2$.

(b) Just observe that C^2 can be considered as a closed subspace of C^3 .

The following question is discussed in [AN, Problem 6, p. 71].

QUESTION 3.1. For any k and m with 0 < k < m, does there exist a separable metrizable space X such that cmp X = k and def X = m?

We partially answer the question as follows:

COROLLARY 3.2. Let m be an integer and $l(m) = [\log_2(m)] + 1$. Then for every k with $m \ge k \ge l(m)$ there exists a separable metrizable space X such that cmp X = k and def X = m.

Proof. Observe that $l(m) = \min\{p : m \leq 2^p - 1\}$. Consider the space $Y = \mathbb{Q}' \times I^k$, where $\mathbb{Q}' = \mathbb{Q} \times I$, \mathbb{Q} is the space of rational numbers and k is as in the theorem. Recall from [AN] that $\operatorname{cmp} Y = \operatorname{def} Y = k$. The required space X is the sum $Y \oplus C^m$.

REMARK 3.1. Observe that $\lim_{m\to\infty} (m-l(m)) = \infty$ (see also [K]).

Let C^n be the space defined above and X_1, \ldots, X_{n+1} be the closed subsets of C^n described in Theorem 3.1. It follows from Theorem 3.1(a) and Corollary 2.3 that $\operatorname{Cmp}(X_1 \cup \ldots \cup X_{k+1}) = k$ for each k with $0 \le k \le n$. However, we do not know the value of the deficiency of $X_1 \cup \ldots \cup X_{k+1}$. So we can ask the following.

QUESTION 3.2. Is it true that $def(X_1 \cup \ldots \cup X_{k+1}) = k$ for $1 \le k < n$?

The question might be interesting when we consider a problem posed by Aarts and Nishiura [AN, Problem 6, p. 71]: Exhibit a separable metrizable space X such that cmp X < Cmp X < def X. If Question 3.2 had a negative answer for example for the case of n = 4 and k = 3, then we would have $\text{def}(X_1 \cup X_2 \cup X_3 \cup X_4) = 4$. We put $Y = X_1 \cup X_2 \cup X_3 \cup X_4$. Then, by the argument above, Cmp Y = 3. On the other hand, by Theorem 3.1(a) and Corollary 2.1, cmp $Y \leq 2$. Hence cmp Y < Cmp Y < def Y. Even if Question 3.2 had an affirmative answer, then one gets an interesting counterpart of Corollary 3.3 (see below) for def.

Now we will obtain a complement to Theorem 2.2 showing the exactness of the theorem's estimates.

COROLLARY 3.3. For any integer $n \ge 1$ there exists a compact space $X_n \ (= C^n)$ with $\operatorname{Cmp} X_n = n$ such that for any nonnegative integers p, q with p + q = n - 1 there exist closed subsets $X_n^{(p)}$ and $X_n^{(q)}$ of X_n such that $X_n = X_n^{(p)} \cup X_n^{(q)}$, $\operatorname{Cmp} X_n^{(p)} = p$, $\operatorname{Cmp} X_n^{(q)} = q$ and $\operatorname{Cmp}(X_n^{(p)} \cap X_n^{(q)}) = \min\{p, q\}$.

Proof. Let $n \geq 1$, C^n be the space defined at the beginning of this section, and X_1, \ldots, X_{n+1} be the closed subsets of C^n described in Theorem 3.1. We put $X^{(p)} = X_1 \cup \ldots \cup X_{p+1}$ and $X^{(q)} = X_{p+2} \cup \ldots \cup X_{n+1}$. By Theorem 3.1(b), it follows that $\operatorname{Cmp} C^n = n$. By Corollary 2.3(b), we have $\operatorname{Cmp} X^{(p)} = p$ and $\operatorname{Cmp} X^{(q)} = q$. Furthermore, it follows from Corollary 2.3(c) that $\operatorname{Cmp}(X^{(p)} \cap X^{(q)}) = \min\{p,q\}$.

References

- [AN] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.
- [Ch] V. A. Chatyrko, On finite sum theorems for transfinite inductive dimensions, Fund. Math. 162 (1999), 91–98.
- [ChK] V. A. Chatyrko and K. L. Kozlov, On (transfinite) small inductive dimension of products, Comment. Math. Univ. Carolin. 41 (2000), 597–603.
- [GN] J. de Groot and T. Nishiura, Inductive compactness as a generalization of semicompactness, Fund. Math. 58 (1966), 201–218.
- [E] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann, Lemgo, 1995.
- [K] T. Kimura, The gap between cmp X and def X can be arbitrarily large, Proc. Amer. Math. Soc. 102 (1988), 1077–1080.
- [LS] M. Levin and J. Segal, A subspace of \mathbb{R}^3 for which $\operatorname{Cmp} \neq \operatorname{def}$, Topology Appl. 95 (1999), 165–168.

- [L] L. A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297–1300 (in Russian).
- [P1] R. Pol, A counterexample to J. de Groot's conjecture cmp = def, Bull. Acad. Polon. Sci. 30 (1982), 461–464.
- [P2] —, Questions in dimension theory, in: J. van Mill and G. M. Reed (eds.), Open Problems in Topology, North-Holland, Amsterdam, 1990, 279–291.

Department of Mathematics Linköping University 581 83 Linköping, Sweden E-mail: vitja@mai.liu.se Department of Mathematics Shimane University Matsue, Shimane, 690-8504 Japan E-mail: hattori@math.shimane-u.ac.jp

Received 8 January 2001