
FUNDAMENTA
MATHEMATICAE

172 (2002)

On a question of de Groot and Nishiura

by

Vitalij A. Chatyrko (Linköping) and Yasunao Hattori (Matsue)

Abstract. Let Zn = [0, 1]n+1 \ (0, 1)n × {0}. Then cmpZn < def Zn for n ≥ 5. This
is the answer to a question posed by de Groot and Nishiura [GN] for n ≥ 5.

1. Introduction. A regular spaceX is called rim-compact if there exists
a base B for the open sets of X such that the boundary BdU is compact
for each U in B.

In 1942 de Groot (cf. [AN]) proved the following:

(∗) A separable metrizable space X is rim-compact if and only if there is
a metrizable compactification Y of X such that ind(Y \X) ≤ 0.

In an attempt to generalize (∗), de Groot introduced two notions, the
small inductive compactness degree cmp and the compactness definiency def
(we will recall the definitions in Section 2 and Section 3 respectively). It is
known that cmpX ≤ def X for every separable metrizable space X. The
well known conjecture of de Groot (see for example [GN]) was that the two
invariants coincided in the class of separable metrizable spaces. As a way
to either disprove or support the conjecture, de Groot and Nishiura [GN,
p. 213] posed the following

Question 1.1. Let

Zn = [0, 1]n+1 \ (0, 1)n × {0}.
Is it true that cmpZn ≥ n for n ≥ 3?

In the cited article, de Groot and Nishiura proved that def Zn = n for
every n ≥ 1, and that cmpZi = i for i = 1, 2.

In [P1] R. Pol constructed a space P ⊂ R4 such that cmpP = 1 <
def P = 2. The space P is a modification of an example given by Lux-
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emburg [L] of a compactum with noncoinciding transfinite inductive dimen-
sions. After that, some other counterexamples to de Groot’s conjecture were
constructed by Hart (cf. [AN]), Kimura [K], Levin and Segal [LS]. However,
Question 1.1 remained open (see also [P2, Question 418] and [AN, Prob-
lem 3, p. 71]).

One of our main results in this paper is the following.

Theorem 1.1. Let n ≤ 2m − 1 for some integer m. Then cmpZn ≤
m+ 1. In particular , cmpZn < def Zn for n ≥ 5.

This is an answer to Question 1.1 for n ≥ 5. Our paper is based on a con-
struction of compacta with noncoinciding transfinite inductive dimensions
given in [Ch]. Our terminology follows [E] and [AN].

2. Finite sum theorem for P-ind. In this section, all topological
spaces are assumed to be regular T1 and all classes of topological spaces
considered are assumed to be nonempty and to contain any space homeo-
morphic to a closed subspace of one of their members. The letter P is used
to denote such classes.

Recall the definition of the small inductive dimension modulo P, P-ind.
Let X be a space.

(i) P-indX = −1 iff X ∈ P.
(ii) P-indX ≤ n (≥ 0) if each point in X has arbitrarily small neigh-

bourhoods V with P-ind BdV ≤ n− 1.
(iii) P-indX = n if P-indX ≤ n and P-indX > n− 1.
(iv) P-indX =∞ if P-indX > n for n = −1, 0, 1, . . .

It is clear that if P = {∅} then P-indX = indX. If P is the class of
compact spaces then P-indX = cmpX.

The following properties of P-ind will be used in the paper.

(1) If A is closed in X then P-indA ≤ P-indX.
(2) If P-indX ≤ n ≥ 0 and U is open in X then P-indU ≤ n.
(3) If X = O1 ∪O2, where Oi is open in X, i = 1, 2, and max{P-indO1,

P-indO2} ≤ n ≥ 0, then P-indX ≤ n.
(4) P-indX ≤ n ≥ 0 iff for each point p and each closed set G in X with

p 6∈ G there is a partition S in X between p and G such that P-indS ≤ n−1.

The following statement is implicitly contained in the proofs of [Ch,
Theorem 3.9] and [ChK, Theorem 2].

Lemma 2.1. Let X be a normal space such that X = X1 ∪ X2, where
each Xi is closed in X, and A,B be two closed disjoint subsets of X such
that A ∩ Xi 6= ∅ and B ∩ Xi 6= ∅, i = 1, 2. Choose a partition C1 in X1
between A ∩ X1 and B ∩ X1 such that X1 \ C1 = U1 ∪ V1, where U1, V1

are open in X1 and disjoint , and A ∩X1 ⊂ U1, B ∩X1 ⊂ V1. Choose also
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a partition C2 in X2 between A ∩ X2 and ((C1 ∪ V1) ∪ B) ∩ X2 such that
X2\C2 = U2∪V2, where U2, V2 are open in X2 and disjoint , and A∩X2 ⊂ U2,
(C1 ∪ V1) ∪B) ∩X2 ⊂ V2. Then the set

C = X \ (((U1 \X2) ∪ U2) ∪ (V1 ∪ (V2 \X1)))

is a partition in X between A and B such that C ⊂ C1 ∪ C2 ∪ (X1 ∩X2).
Moreover , if X is a regular T1-space then the same statement is valid for

a pair of closed subsets of X where one of the sets is a point.

The following theorem and corollary are generalizations of [ChK, The-
orem 2] and [Ch, Corollary 3.10(a)] respectively. Although one might show
them similarly to [ChK] and [Ch], we give the proofs for the convenience of
the reader.

Theorem 2.1. Let X be a space such that X = X1 ∪ X2, where Xi is
closed in X and P-indXi ≤ n ≥ 0 for every i = 1, 2. Then P-indX ≤ n+1.
Moreover , if X is normal then for any closed subsets A and B of X there
exists a partition C in X between A and B such that P-indC ≤ n.

Proof. Let x ∈ X. If x ∈ X1 \X2 or x ∈ X2 \X1 then x has arbitrarily
small open neighbourhoods U with P-ind BdU ≤ n− 1.

Let now x ∈ X1 ∩ X2 and B be a closed subset of X such that x 6∈ B
and B ∩ Xi 6= ∅, i = 1, 2. Denote the point x by A. Choose partitions C1
and C2 as in Lemma 2.1. Then Y = C1 ∪ C2 ∪ (X1 ∩X2) = Y1 ∪ Y2, where
Yi = Ci ∪ (X1 ∩X2). Moreover IntY1 ∪ IntY2 = Y and P-indYi ≤ n (recall
that Yi ⊂ Xi). So by properties (1)–(3) of P-indY we have P-indY ≤ n.
By Lemma 2.1, there exists a partition C in X between A and B such that
C ⊂ Y . Now just observe that P-indC ≤ n.

Corollary 2.1. Let X be a space and q ≥ 0 be an integer. If X =⋃n+1
k=1 Xk, where each Xk is closed in X, 0 ≤ n ≤ 2m−1 for some integer m

and max{P-indXk} ≤ q, then P-indX ≤ q+m. In particular , if cmpXk =
0 for k = 1, . . . , n+ 1, then cmpX ≤ m.

Proof. Let n = 2m − 1. For every integer j such that 1 ≤ j ≤ 2m−1 put
X

(1)
j = X2j−1∪X2j. By Theorem 2.1, we have P-indX(1)

j ≤ q+1. For every

integer p such that 1 ≤ p ≤ 2m−2 put X(2)
p = X

(1)
2p−1 ∪ X

(1)
2p . By Theorem

2.1, we have P-indX(2)
p ≤ q + 2 and so on. Observe that X = X

(m)
1 . It is

clear that P-indX ≤ q +m.

To every normal space X one assigns the large inductive compactness
degree Cmp as follows (cf. [AN]):

(i) For n = −1 or 0, CmpX = n iff cmpX = n.
(ii) CmpX ≤ n ≥ 1 if for each pair of disjoint closed subsets A and B

of X there exists a partition C in X such that CmpC ≤ n− 1.
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(iii) CmpX = n if CmpX ≤ n and CmpX > n− 1.
(iv) CmpX =∞ if CmpX > n for every natural number n.

It is clear that Cmp has the following properties:

1. If A is closed in X, then CmpA ≤ CmpX.
2. If X = X1 ⊕X2, then CmpX = max{CmpX1,CmpX2}.
Corollary 2.2. Let X be a normal space such that X = X1 ∪ X2,

where Xi is closed in X and CmpXi ≤ 0 for every i. Then CmpX ≤ 1.
Moreover , if Cmp(X1∩X2) = −1, then CmpX ≤ 0; if CmpX1 = −1, then
CmpX = CmpX2.

Proof. Observe that CmpXi = cmpXi ≤ 0 for every i. By Theorem
2.1, for any closed subsets A and B of X there exists a partition C in
X between A and B such that cmpC = CmpC ≤ 0. So CmpX ≤ 1. If
Cmp(X1∩X2) = −1, then (again by Theorem 2.1) there exists a base B for
the open sets of X such that the boundary BdU is compact for each U ∈ B.

Now we are ready to prove the following theorem.

Theorem 2.2. Let X be a normal space such that X = X1 ∪X2, where
Xi is closed for i = 1, 2. Then

CmpX ≤ max{CmpX1,CmpX2}+ Cmp(X1 ∩X2) + 1

≤ CmpX1 + CmpX2 + 1.

Proof. Put Cmp(X1 ∩ X2) = k and max{CmpX1,CmpX2} = m. Ob-
serve that k ≤ m. Let k = −1. First we prove the theorem for any m ≥ −1
(k = −1). By Corollary 2.2 the statement is valid for m = −1 and m = 0.
Assume that it holds for m < p ≥ 1. Put m = p. Consider two disjoint
closed subsets A and B of X. We can suppose that A ∩ Xi 6= ∅ and
B∩Xi 6= ∅, i = 1, 2. Choose partitions Ci, i = 1, 2, as in Lemma 2.1 such that
max{CmpC1,CmpC2} ≤ p−1. Set Y1 = C1∪C2 (recall that C1 and C2 are
disjoint), Y2 = X1 ∩X2 and Y = Y1 ∪ Y2. Observe that Cmp(Y1 ∩Y2) = −1,
CmpY1 = max{CmpC1,CmpC2} ≤ p − 1 and max{CmpY1,CmpY2} ≤
p− 1. By the inductive assumption,

CmpY ≤ max{CmpY1,CmpY2}+ Cmp(Y1 ∩ Y2) + 1

≤ −1 + (p− 1) + 1 = p− 1.

By Lemma 2.1, there is a partition C in X between A and B such that
C ⊂ Y . Hence, CmpX ≤ p = k +m+ 1.

Assume that the assertion is valid for any pair (k,m) with k < q ≥ 0
and k ≤ m. Put k = q. Consider the case m = k ≥ 0. If k = m = 0, then
CmpXi ≤ 0 for every i = 1, 2, and by Corollary 2.2, CmpX ≤ 1 = k+m+1.
Let k = m = q ≥ 1. Consider two disjoint closed subsets A and B of X. We
can suppose that A∩Xi 6= ∅ and B ∩Xi 6= ∅, i = 1, 2. Choose partitions Ci,
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i = 1, 2, as in Lemma 2.1 such that max{CmpC1,CmpC2} ≤ q − 1. Write
Y1 = C1 ∪ C2 (C1 and C2 are disjoint), Y2 = X1 ∩ X2 and Y = Y1 ∪ Y2.
Observe that CmpY1 = max{CmpC1,CmpC2} ≤ q − 1, Cmp(Y1 ∩ Y2) ≤
min{q, q− 1} = q− 1 < q and max{CmpY1,CmpY2} ≤ q. By the inductive
assumption,

CmpY ≤ max{CmpY1,CmpY2}+ Cmp(Y1 ∩ Y2) + 1

≤ q + (q − 1) + 1 = 2q.

By Lemma 2.1, there is a partition C in X between A and B such that
C ⊂ Y . Hence, CmpX ≤ 2q + 1 = k +m+ 1.

Assume that the assertion is valid for any m with k ≤ m < p ≥ 1
(k = q). Put m = p. Consider two disjoint closed subsets A and B of X. We
can suppose that A ∩ Xi 6= ∅ and B ∩ Xi 6= ∅, i = 1, 2. Choose partitions
Ci, i = 1, 2, as in Lemma 2.1 such that max{CmpC1,CmpC2} ≤ p− 1. Set
Y1 = C1 ∪ C2 (C1 and C2 are disjoint), Y2 = X1 ∩ X2 and Y = Y1 ∪ Y2.
Observe that CmpY1 = max{CmpC1,CmpC2} ≤ p − 1, Cmp(Y1 ∩ Y2) ≤
min{q, p − 1} = q and max{CmpY1,CmpY2} ≤ p − 1. By the inductive
assumption,

CmpY ≤ max{CmpY1,CmpY2}+ Cmp(Y1 ∩ Y2) + 1

≤ q + (p− 1) + 1 = q + p.

By Lemma 2.1 there is a partition C in X between A and B such that
C ⊂ Y . Hence, CmpX ≤ q + p+ 1 = k +m+ 1.

Corollary 2.3. Let X be a normal space with CmpX = n ≥ 1. Then

(a) X cannot be represented as a union of n closed subsets P1, . . . , Pn
with CmpPi ≤ 0 for each i.

Suppose now that X =
⋃n+1
i=1 Zi, where each Zi is closed and CmpZi ≤ 0

for every i = 1, . . . , n+ 1. Then:

(b) Cmp(Z1 ∪ . . . ∪ Zk+1) = k for any k with 0 ≤ k ≤ n.
(c) Cmp((Z1 ∪ . . . ∪ Z1+i) ∩ (Zi+2 ∪ . . . ∪ Zi+j+2)) = min{i, j} for any

nonnegative integers i, j such that i+ j + 1 ≤ n.

Proof. (a) Suppose that X =
⋃n
i=1 Pi, where Pi is a closed subset of

X with CmpPi ≤ 0 for each i. Applying Theorem 2.2 n − 1 times we get
Cmp(

⋃n
i=1 Pi) ≤ n− 1. This is a contradiction.

(b) By Theorem 2.2, we have Cmp(Z1 ∪ . . . ∪ Zk+1) ≤ k. If Cmp(Z1 ∪
. . .∪Zk+1) < k then we apply Theorem 2.2 to the union (Z1 ∪ . . .∪Zk+1)∪
(Zk+2 ∪ . . . ∪ Zn+1) to get again Cmp(

⋃n+1
i=1 Zi) ≤ n− 1.

(c) Apply (b) and Theorem 2.2.

Remark 2.1. The estimates from Corollary 2.2 and Theorem 2.2 cannot
be improved (see Corollary 3.3).
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3. Spaces with cmp 6= def (cmp 6= Cmp). The deficiency def is defined
in the following way: For a separable metrizable space X,

def X = min{ind(Y \X) : Y is a metrizable compactification of X}.
In this section, the concept ofB-special decomposition introduced in [Ch]

is essential. A decomposition X = F ∪ ⋃∞i=1Ei of a metric space X into
disjoint sets is called B-special if Ei is clopen in X and limi→∞ δ(Ei) = 0,
where δ(A) is the diameter of A.

The following proposition is easily obtained by use of [Ch, Lemma 2.3].

Proposition 3.1. Let X = F ∪⋃∞i=1Ei be a B-special decomposition of
a metric space X and n ≥ 0 be an integer. If max{P-indF,P-indEi} ≤ n,
then P-indX ≤ n.

Let {xi}∞i=1 be a sequence of real numbers such that 0 < xi+1 < xi ≤ 1
for all i and limi→∞ xi = 0. Put

Cn = (Bd In × {0}) ∪
∞⋃

i=1

(In × [x2i, x2i−1]) ⊂ In+1.

Theorem 3.1. (a) There are closed subsets X1, . . . ,Xn+1 of Cn such
that Cn =

⋃n+1
k=1 Xk and cmpXk = 0 for each k = 1, . . . , n+ 1.

(b) def Cn = CmpCn = n (= CompCn) (see [AN] for the definition of
Comp).

(c) Let m be an integer such that 0 ≤ n ≤ 2m − 1. Then cmpCn ≤ m.
In particular , cmpCn < CmpCn = def Cn for n ≥ 3.

Proof. (a) For every i choose finite systems Bi
k, k = 1, . . . , n + 1, con-

sisting of disjoint compact subsets of In with diameter < 1/i such that
In =

⋃n+1
k=1(

⋃
Bi
k). We put

Xk = (Bd In × {0}) ∪
∞⋃

i=1

((⋃
Bi
k

)
× [x2i, x2i−1]

)

for every k = 1, . . . , n + 1. Observe that the space Xk admits a B-special
decomposition into compact subsets and, by Proposition 3.1, cmpXk = 0
for every k = 1, . . . , n+ 1.

(b) It is enough to prove that CompCn ≥ n, i.e. there exist n pairs
(F1, G1), . . . , (Fn, Gn) of disjoint compact subsets of Cn such that for any
partitions Si in X between Fi and Gi, i = 1, . . . , n, the intersection S1 ∩
. . .∩Sn is not compact. (Recall that for every separable metrizable space W
we have CompW ≤ CmpW ≤ def W (cf. [AN]) and evidently def Cn ≤ n.)
For example, such pairs are (({0}× In)∩Cn, ({1}× In)∩Cn), . . . , ((In−1×
{0} × [0, 1]) ∩ Cn, (In−1 × {1} × [0, 1]) ∩ Cn).

Moreover, for any partition C in Cn between the sets ({0}×In)∩Cn and
({1} × In) ∩ Cn, we have CompC ≥ n− 1.
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(c) Apply Corollary 2.1 (the particular case) and the statement (a).

Now we are ready to show Theorem 1.1.

Proof of Theorem 1.1. Decompose the space Zn, n ≥ 3, into the union
of two closed subsets Z1

n and Z2
n (each homeomorphic to Cn), where

Z1
n = (Bd In × {0}) ∪

∞⋃

i=1

(In × [1/(2i+ 1), 1/(2i)]),

Z2
n = (Bd In × {0}) ∪

∞⋃

i=1

(In × [1/(2i), 1/(2i− 1)]).

Letm be the integer such that 0 ≤ n ≤ 2m−1. It follows from Theorem 3.1(c)
that cmpZin ≤ m for i = 1, 2. Thus, by Theorem 2.1, we have cmpZn ≤
m+ 1.

Corollary 3.1. (a) cmpC2 = cmp(C2 × [0, 1]) = 2.
(b) cmpC3 = 2.

Proof. (a) Recall that for any partition C in C2 between ({0}× I2)∩C2

and ({1} × I2) ∩ C2, we have CompC ≥ 1, and hence cmpC ≥ 1. This
yields cmpC2 = 2 (and even cmpZ2 = 2). Observe that the space C2 × R
can be considered as an open subset of C3. So by property (2) of P-ind and
Theorem 3.1(c), cmp(C2 × I) = cmp(C2 × R) ≤ cmpC3 ≤ 2. On the other
hand, cmp(C2 × I) ≥ cmpC2 = 2.

(b) Just observe that C2 can be considered as a closed subspace of C3.

The following question is discussed in [AN, Problem 6, p. 71].

Question 3.1. For any k and m with 0 < k < m, does there exist a
separable metrizable space X such that cmpX = k and def X = m?

We partially answer the question as follows:

Corollary 3.2. Let m be an integer and l(m) = [log2(m)] + 1. Then
for every k with m ≥ k ≥ l(m) there exists a separable metrizable space X
such that cmpX = k and def X = m.

Proof. Observe that l(m) = min{p : m ≤ 2p − 1}. Consider the space
Y = Q′× Ik, where Q′ = Q× I, Q is the space of rational numbers and k is
as in the theorem. Recall from [AN] that cmpY = def Y = k. The required
space X is the sum Y ⊕ Cm.

Remark 3.1. Observe that limm→∞(m− l(m)) =∞ (see also [K]).

Let Cn be the space defined above and X1, . . . ,Xn+1 be the closed sub-
sets of Cn described in Theorem 3.1. It follows from Theorem 3.1(a) and
Corollary 2.3 that Cmp(X1 ∪ . . . ∪ Xk+1) = k for each k with 0 ≤ k ≤ n.
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However, we do not know the value of the deficiency of X1 ∪ . . .∪Xk+1. So
we can ask the following.

Question 3.2. Is it true that def(X1 ∪ . . . ∪Xk+1) = k for 1 ≤ k < n?

The question might be interesting when we consider a problem posed by
Aarts and Nishiura [AN, Problem 6, p. 71]: Exhibit a separable metrizable
space X such that cmpX < CmpX < def X. If Question 3.2 had a negative
answer for example for the case of n = 4 and k = 3, then we would have
def(X1 ∪X2 ∪X3 ∪X4) = 4. We put Y = X1 ∪X2 ∪X3 ∪X4. Then, by the
argument above, CmpY = 3. On the other hand, by Theorem 3.1(a) and
Corollary 2.1, cmpY ≤ 2. Hence cmpY < CmpY < def Y . Even if Question
3.2 had an affirmative answer, then one gets an interesting counterpart of
Corollary 3.3 (see below) for def.

Now we will obtain a complement to Theorem 2.2 showing the exactness
of the theorem’s estimates.

Corollary 3.3. For any integer n ≥ 1 there exists a compact space
Xn (= Cn) with CmpXn = n such that for any nonnegative integers p, q
with p+ q = n− 1 there exist closed subsets X(p)

n and X(q)
n of Xn such that

Xn = X
(p)
n ∪X(q)

n , CmpX(p)
n = p, CmpX(q)

n = q and Cmp(X(p)
n ∩X(q)

n ) =
min{p, q}.

Proof. Let n ≥ 1, Cn be the space defined at the beginning of this
section, and X1, . . . ,Xn+1 be the closed subsets of Cn described in Theo-
rem 3.1. We put X(p) = X1 ∪ . . . ∪ Xp+1 and X(q) = Xp+2 ∪ . . . ∪ Xn+1.
By Theorem 3.1(b), it follows that CmpCn = n. By Corollary 2.3(b), we
have CmpX(p) = p and CmpX(q) = q. Furthermore, it follows from Corol-
lary 2.3(c) that Cmp(X(p) ∩X(q)) = min{p, q}.
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