On a question of de Groot and Nishiura

by

Vitalij A. Chatyrko (Linköping) and Yasunao Hattori (Matsue)

Abstract

Let $Z_{n}=[0,1]^{n+1} \backslash(0,1)^{n} \times\{0\}$. Then $\mathrm{cmp} Z_{n}<\operatorname{def} Z_{n}$ for $n \geq 5$. This is the answer to a question posed by de Groot and Nishiura [GN] for $n \geq 5$.

1. Introduction. A regular space X is called rim-compact if there exists a base \mathcal{B} for the open sets of X such that the boundary $\operatorname{Bd} U$ is compact for each U in \mathcal{B}.

In 1942 de Groot (cf. [AN]) proved the following:
(*) A separable metrizable space X is rim-compact if and only if there is a metrizable compactification Y of X such that $\operatorname{ind}(Y \backslash X) \leq 0$.

In an attempt to generalize $(*)$, de Groot introduced two notions, the small inductive compactness degree cmp and the compactness definiency def (we will recall the definitions in Section 2 and Section 3 respectively). It is known that $\mathrm{cmp} X \leq \operatorname{def} X$ for every separable metrizable space X. The well known conjecture of de Groot (see for example [GN]) was that the two invariants coincided in the class of separable metrizable spaces. As a way to either disprove or support the conjecture, de Groot and Nishiura [GN, p. 213] posed the following

Question 1.1. Let

$$
Z_{n}=[0,1]^{n+1} \backslash(0,1)^{n} \times\{0\} .
$$

Is it true that $\operatorname{cmp} Z_{n} \geq n$ for $n \geq 3$?
In the cited article, de Groot and Nishiura proved that $\operatorname{def} Z_{n}=n$ for every $n \geq 1$, and that $\mathrm{cmp} Z_{i}=i$ for $i=1,2$.

In [P1] R. Pol constructed a space $P \subset \mathbb{R}^{4}$ such that $\mathrm{cmp} P=1<$ def $P=2$. The space P is a modification of an example given by Lux-

[^0]emburg [L] of a compactum with noncoinciding transfinite inductive dimensions. After that, some other counterexamples to de Groot's conjecture were constructed by Hart (cf. [AN]), Kimura [K], Levin and Segal [LS]. However, Question 1.1 remained open (see also [P2, Question 418] and [AN, Problem 3, p. 71]).

One of our main results in this paper is the following.
Theorem 1.1. Let $n \leq 2^{m}-1$ for some integer m. Then $\mathrm{cmp} Z_{n} \leq$ $m+1$. In particular, $\operatorname{cmp} Z_{n}<\operatorname{def} Z_{n}$ for $n \geq 5$.

This is an answer to Question 1.1 for $n \geq 5$. Our paper is based on a construction of compacta with noncoinciding transfinite inductive dimensions given in [Ch]. Our terminology follows [E] and [AN].
2. Finite sum theorem for \mathcal{P}-ind. In this section, all topological spaces are assumed to be regular T_{1} and all classes of topological spaces considered are assumed to be nonempty and to contain any space homeomorphic to a closed subspace of one of their members. The letter \mathcal{P} is used to denote such classes.

Recall the definition of the small inductive dimension modulo \mathcal{P}, \mathcal{P}-ind. Let X be a space.
(i) \mathcal{P}-ind $X=-1$ iff $X \in \mathcal{P}$.
(ii) \mathcal{P}-ind $X \leq n(\geq 0)$ if each point in X has arbitrarily small neighbourhoods V with \mathcal{P}-ind $\operatorname{Bd} V \leq n-1$.
(iii) \mathcal{P}-ind $X=n$ if \mathcal{P}-ind $X \leq n$ and \mathcal{P}-ind $X>n-1$.
(iv) \mathcal{P}-ind $X=\infty$ if \mathcal{P}-ind $X>n$ for $n=-1,0,1, \ldots$

It is clear that if $\mathcal{P}=\{\emptyset\}$ then \mathcal{P}-ind $X=$ ind X. If \mathcal{P} is the class of compact spaces then \mathcal{P}-ind $X=\operatorname{cmp} X$.

The following properties of \mathcal{P}-ind will be used in the paper.
(1) If A is closed in X then \mathcal{P}-ind $A \leq \mathcal{P}$-ind X.
(2) If \mathcal{P}-ind $X \leq n \geq 0$ and U is open in X then \mathcal{P}-ind $U \leq n$.
(3) If $X=O_{1} \cup O_{2}$, where O_{i} is open in $X, i=1,2$, and $\max \left\{\mathcal{P}\right.$-ind O_{1}, \mathcal{P}-ind $\left.O_{2}\right\} \leq n \geq 0$, then \mathcal{P}-ind $X \leq n$.
(4) \mathcal{P}-ind $X \leq n \geq 0$ iff for each point p and each closed set G in X with $p \notin G$ there is a partition S in X between p and G such that \mathcal{P}-ind $S \leq n-1$.

The following statement is implicitly contained in the proofs of $[\mathrm{Ch}$, Theorem 3.9] and [ChK, Theorem 2].

Lemma 2.1. Let X be a normal space such that $X=X_{1} \cup X_{2}$, where each X_{i} is closed in X, and A, B be two closed disjoint subsets of X such that $A \cap X_{i} \neq \emptyset$ and $B \cap X_{i} \neq \emptyset, i=1,2$. Choose a partition C_{1} in X_{1} between $A \cap X_{1}$ and $B \cap X_{1}$ such that $X_{1} \backslash C_{1}=U_{1} \cup V_{1}$, where U_{1}, V_{1} are open in X_{1} and disjoint, and $A \cap X_{1} \subset U_{1}, B \cap X_{1} \subset V_{1}$. Choose also
a partition C_{2} in X_{2} between $A \cap X_{2}$ and $\left(\left(C_{1} \cup V_{1}\right) \cup B\right) \cap X_{2}$ such that $X_{2} \backslash C_{2}=U_{2} \cup V_{2}$, where U_{2}, V_{2} are open in X_{2} and disjoint, and $A \cap X_{2} \subset U_{2}$, $\left.\left(C_{1} \cup V_{1}\right) \cup B\right) \cap X_{2} \subset V_{2}$. Then the set

$$
C=X \backslash\left(\left(\left(U_{1} \backslash X_{2}\right) \cup U_{2}\right) \cup\left(V_{1} \cup\left(V_{2} \backslash X_{1}\right)\right)\right)
$$

is a partition in X between A and B such that $C \subset C_{1} \cup C_{2} \cup\left(X_{1} \cap X_{2}\right)$.
Moreover, if X is a regular T_{1}-space then the same statement is valid for a pair of closed subsets of X where one of the sets is a point.

The following theorem and corollary are generalizations of [ChK, Theorem 2] and [Ch, Corollary 3.10(a)] respectively. Although one might show them similarly to [ChK] and [Ch], we give the proofs for the convenience of the reader.

Theorem 2.1. Let X be a space such that $X=X_{1} \cup X_{2}$, where X_{i} is closed in X and \mathcal{P}-ind $X_{i} \leq n \geq 0$ for every $i=1,2$. Then \mathcal{P}-ind $X \leq n+1$. Moreover, if X is normal then for any closed subsets A and B of X there exists a partition C in X between A and B such that \mathcal{P}-ind $C \leq n$.

Proof. Let $x \in X$. If $x \in X_{1} \backslash X_{2}$ or $x \in X_{2} \backslash X_{1}$ then x has arbitrarily small open neighbourhoods U with \mathcal{P}-ind $\operatorname{Bd} U \leq n-1$.

Let now $x \in X_{1} \cap X_{2}$ and B be a closed subset of X such that $x \notin B$ and $B \cap X_{i} \neq \emptyset, i=1,2$. Denote the point x by A. Choose partitions C_{1} and C_{2} as in Lemma 2.1. Then $Y=C_{1} \cup C_{2} \cup\left(X_{1} \cap X_{2}\right)=Y_{1} \cup Y_{2}$, where $Y_{i}=C_{i} \cup\left(X_{1} \cap X_{2}\right)$. Moreover $\operatorname{Int} Y_{1} \cup \operatorname{Int} Y_{2}=Y$ and \mathcal{P}-ind $Y_{i} \leq n$ (recall that $Y_{i} \subset X_{i}$). So by properties (1)-(3) of \mathcal{P}-ind Y we have \mathcal{P}-ind $Y \leq n$. By Lemma 2.1, there exists a partition C in X between A and B such that $C \subset Y$. Now just observe that \mathcal{P}-ind $C \leq n$.

Corollary 2.1. Let X be a space and $q \geq 0$ be an integer. If $X=$ $\bigcup_{k=1}^{n+1} X_{k}$, where each X_{k} is closed in $X, 0 \leq n \leq 2^{m}-1$ for some integer m and $\max \left\{\mathcal{P}\right.$-ind $\left.X_{k}\right\} \leq q$, then \mathcal{P}-ind $X \leq q+m$. In particular, if $\operatorname{cmp} X_{k}=$ 0 for $k=1, \ldots, n+1$, then $\operatorname{cmp} X \leq m$.

Proof. Let $n=2^{m}-1$. For every integer j such that $1 \leq j \leq 2^{m-1}$ put $X_{j}^{(1)}=X_{2 j-1} \cup X_{2 j}$. By Theorem 2.1, we have \mathcal{P}-ind $X_{j}^{(1)} \leq q+1$. For every integer p such that $1 \leq p \leq 2^{m-2}$ put $X_{p}^{(2)}=X_{2 p-1}^{(1)} \cup X_{2 p}^{(1)}$. By Theorem 2.1, we have \mathcal{P}-ind $X_{p}^{(2)} \leq q+2$ and so on. Observe that $X=X_{1}^{(m)}$. It is clear that \mathcal{P}-ind $X \leq q+m$.

To every normal space X one assigns the large inductive compactness degree Cmp as follows (cf. [AN]):
(i) For $n=-1$ or $0, \operatorname{Cmp} X=n$ iff $\operatorname{cmp} X=n$.
(ii) $\operatorname{Cmp} X \leq n \geq 1$ if for each pair of disjoint closed subsets A and B of X there exists a partition C in X such that $\operatorname{Cmp} C \leq n-1$.
(iii) $\operatorname{Cmp} X=n$ if $\operatorname{Cmp} X \leq n$ and $\operatorname{Cmp} X>n-1$.
(iv) $\operatorname{Cmp} X=\infty$ if $\operatorname{Cmp} X>n$ for every natural number n.

It is clear that Cmp has the following properties:

1. If A is closed in X, then $\operatorname{Cmp} A \leq \operatorname{Cmp} X$.
2. If $X=X_{1} \oplus X_{2}$, then $\operatorname{Cmp} X=\max \left\{\operatorname{Cmp} X_{1}, \operatorname{Cmp} X_{2}\right\}$.

Corollary 2.2. Let X be a normal space such that $X=X_{1} \cup X_{2}$, where X_{i} is closed in X and $\operatorname{Cmp} X_{i} \leq 0$ for every i. Then $\operatorname{Cmp} X \leq 1$. Moreover, if $\operatorname{Cmp}\left(X_{1} \cap X_{2}\right)=-1$, then $\operatorname{Cmp} X \leq 0$; if $\operatorname{Cmp} X_{1}=-1$, then $\operatorname{Cmp} X=\operatorname{Cmp} X_{2}$.

Proof. Observe that $\operatorname{Cmp} X_{i}=\mathrm{cmp} X_{i} \leq 0$ for every i. By Theorem 2.1, for any closed subsets A and B of X there exists a partition C in X between A and B such that $\mathrm{cmp} C=\operatorname{Cmp} C \leq 0$. So $\operatorname{Cmp} X \leq 1$. If $\operatorname{Cmp}\left(X_{1} \cap X_{2}\right)=-1$, then (again by Theorem 2.1) there exists a base \mathcal{B} for the open sets of X such that the boundary $\mathrm{Bd} U$ is compact for each $U \in \mathcal{B}$.

Now we are ready to prove the following theorem.
Theorem 2.2. Let X be a normal space such that $X=X_{1} \cup X_{2}$, where X_{i} is closed for $i=1,2$. Then

$$
\begin{aligned}
\operatorname{Cmp} X & \leq \max \left\{\operatorname{Cmp} X_{1}, \operatorname{Cmp} X_{2}\right\}+\operatorname{Cmp}\left(X_{1} \cap X_{2}\right)+1 \\
& \leq \operatorname{Cmp} X_{1}+\operatorname{Cmp} X_{2}+1
\end{aligned}
$$

Proof. Put $\operatorname{Cmp}\left(X_{1} \cap X_{2}\right)=k$ and $\max \left\{\operatorname{Cmp} X_{1}, \operatorname{Cmp} X_{2}\right\}=m$. Observe that $k \leq m$. Let $k=-1$. First we prove the theorem for any $m \geq-1$ $(k=-1)$. By Corollary 2.2 the statement is valid for $m=-1$ and $m=0$. Assume that it holds for $m<p \geq 1$. Put $m=p$. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_{i} \neq \emptyset$ and $B \cap X_{i} \neq \emptyset, i=1,2$. Choose partitions $C_{i}, i=1,2$, as in Lemma 2.1 such that $\max \left\{\operatorname{Cmp} C_{1}, \operatorname{Cmp} C_{2}\right\} \leq p-1$. Set $Y_{1}=C_{1} \cup C_{2}$ (recall that C_{1} and C_{2} are disjoint), $Y_{2}=X_{1} \cap X_{2}$ and $Y=Y_{1} \cup Y_{2}$. Observe that $\operatorname{Cmp}\left(Y_{1} \cap Y_{2}\right)=-1$, $\operatorname{Cmp} Y_{1}=\max \left\{\operatorname{Cmp} C_{1}, \operatorname{Cmp} C_{2}\right\} \leq p-1$ and $\max \left\{\operatorname{Cmp} Y_{1}, \operatorname{Cmp} Y_{2}\right\} \leq$ $p-1$. By the inductive assumption,

$$
\begin{aligned}
\operatorname{Cmp} Y & \leq \max \left\{\operatorname{Cmp} Y_{1}, \operatorname{Cmp} Y_{2}\right\}+\operatorname{Cmp}\left(Y_{1} \cap Y_{2}\right)+1 \\
& \leq-1+(p-1)+1=p-1
\end{aligned}
$$

By Lemma 2.1, there is a partition C in X between A and B such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq p=k+m+1$.

Assume that the assertion is valid for any pair (k, m) with $k<q \geq 0$ and $k \leq m$. Put $k=q$. Consider the case $m=k \geq 0$. If $k=m=0$, then $\operatorname{Cmp} X_{i} \leq 0$ for every $i=1,2$, and by Corollary $2.2, \operatorname{Cmp} X \leq 1=k+m+1$. Let $k=m=q \geq 1$. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_{i} \neq \emptyset$ and $B \cap X_{i} \neq \emptyset, i=1,2$. Choose partitions C_{i},
$i=1,2$, as in Lemma 2.1 such that $\max \left\{\operatorname{Cmp} C_{1}, \operatorname{Cmp} C_{2}\right\} \leq q-1$. Write $Y_{1}=C_{1} \cup C_{2}\left(C_{1}\right.$ and C_{2} are disjoint $), Y_{2}=X_{1} \cap X_{2}$ and $Y=Y_{1} \cup Y_{2}$. Observe that $\operatorname{Cmp} Y_{1}=\max \left\{\operatorname{Cmp} C_{1}, \operatorname{Cmp} C_{2}\right\} \leq q-1, \operatorname{Cmp}\left(Y_{1} \cap Y_{2}\right) \leq$ $\min \{q, q-1\}=q-1<q$ and $\max \left\{\operatorname{Cmp} Y_{1}, \operatorname{Cmp} Y_{2}\right\} \leq q$. By the inductive assumption,

$$
\begin{aligned}
\operatorname{Cmp} Y & \leq \max \left\{\operatorname{Cmp} Y_{1}, \operatorname{Cmp} Y_{2}\right\}+\operatorname{Cmp}\left(Y_{1} \cap Y_{2}\right)+1 \\
& \leq q+(q-1)+1=2 q
\end{aligned}
$$

By Lemma 2.1, there is a partition C in X between A and B such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq 2 q+1=k+m+1$.

Assume that the assertion is valid for any m with $k \leq m<p \geq 1$ $(k=q)$. Put $m=p$. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_{i} \neq \emptyset$ and $B \cap X_{i} \neq \emptyset, i=1,2$. Choose partitions $C_{i}, i=1,2$, as in Lemma 2.1 such that $\max \left\{\operatorname{Cmp} C_{1}, \operatorname{Cmp} C_{2}\right\} \leq p-1$. Set $Y_{1}=C_{1} \cup C_{2}\left(C_{1}\right.$ and C_{2} are disjoint), $Y_{2}=X_{1} \cap X_{2}$ and $Y=Y_{1} \cup Y_{2}$. Observe that $\operatorname{Cmp} Y_{1}=\max \left\{\operatorname{Cmp} C_{1}, \operatorname{Cmp} C_{2}\right\} \leq p-1, \operatorname{Cmp}\left(Y_{1} \cap Y_{2}\right) \leq$ $\min \{q, p-1\}=q$ and $\max \left\{\operatorname{Cmp} Y_{1}, \operatorname{Cmp} Y_{2}\right\} \leq p-1$. By the inductive assumption,

$$
\begin{aligned}
\operatorname{Cmp} Y & \leq \max \left\{\operatorname{Cmp} Y_{1}, \operatorname{Cmp} Y_{2}\right\}+\operatorname{Cmp}\left(Y_{1} \cap Y_{2}\right)+1 \\
& \leq q+(p-1)+1=q+p
\end{aligned}
$$

By Lemma 2.1 there is a partition C in X between A and B such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq q+p+1=k+m+1$.

Corollary 2.3. Let X be a normal space with $\operatorname{Cmp} X=n \geq 1$. Then
(a) X cannot be represented as a union of n closed subsets P_{1}, \ldots, P_{n} with $\operatorname{Cmp} P_{i} \leq 0$ for each i.

Suppose now that $X=\bigcup_{i=1}^{n+1} Z_{i}$, where each Z_{i} is closed and $\operatorname{Cmp} Z_{i} \leq 0$ for every $i=1, \ldots, n+1$. Then:
(b) $\operatorname{Cmp}\left(Z_{1} \cup \ldots \cup Z_{k+1}\right)=k$ for any k with $0 \leq k \leq n$.
(c) $\operatorname{Cmp}\left(\left(Z_{1} \cup \ldots \cup Z_{1+i}\right) \cap\left(Z_{i+2} \cup \ldots \cup Z_{i+j+2}\right)\right)=\min \{i, j\}$ for any nonnegative integers i, j such that $i+j+1 \leq n$.

Proof. (a) Suppose that $X=\bigcup_{i=1}^{n} P_{i}$, where P_{i} is a closed subset of X with $\operatorname{Cmp} P_{i} \leq 0$ for each i. Applying Theorem $2.2 n-1$ times we get $\operatorname{Cmp}\left(\bigcup_{i=1}^{n} P_{i}\right) \leq n-1$. This is a contradiction.
(b) By Theorem 2.2, we have $\operatorname{Cmp}\left(Z_{1} \cup \ldots \cup Z_{k+1}\right) \leq k$. If $\operatorname{Cmp}\left(Z_{1} \cup\right.$ $\left.\ldots \cup Z_{k+1}\right)<k$ then we apply Theorem 2.2 to the union $\left(Z_{1} \cup \ldots \cup Z_{k+1}\right) \cup$ $\left(Z_{k+2} \cup \ldots \cup Z_{n+1}\right)$ to get again $\operatorname{Cmp}\left(\bigcup_{i=1}^{n+1} Z_{i}\right) \leq n-1$.
(c) Apply (b) and Theorem 2.2.

Remark 2.1. The estimates from Corollary 2.2 and Theorem 2.2 cannot be improved (see Corollary 3.3).
3. Spaces with $\mathrm{cmp} \neq \operatorname{def}$ ($\mathrm{cmp} \neq \mathrm{Cmp}$). The deficiency def is defined in the following way: For a separable metrizable space X,
$\operatorname{def} X=\min \{\operatorname{ind}(Y \backslash X): Y$ is a metrizable compactification of $X\}$.
In this section, the concept of B-special decomposition introduced in [Ch] is essential. A decomposition $X=F \cup \bigcup_{i=1}^{\infty} E_{i}$ of a metric space X into disjoint sets is called B-special if E_{i} is clopen in X and $\lim _{i \rightarrow \infty} \delta\left(E_{i}\right)=0$, where $\delta(A)$ is the diameter of A.

The following proposition is easily obtained by use of [Ch, Lemma 2.3].
Proposition 3.1. Let $X=F \cup \bigcup_{i=1}^{\infty} E_{i}$ be a B-special decomposition of a metric space X and $n \geq 0$ be an integer. If $\max \left\{\mathcal{P}\right.$-ind F, \mathcal{P}-ind $\left.E_{i}\right\} \leq n$, then \mathcal{P}-ind $X \leq n$.

Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a sequence of real numbers such that $0<x_{i+1}<x_{i} \leq 1$ for all i and $\lim _{i \rightarrow \infty} x_{i}=0$. Put

$$
C^{n}=\left(\operatorname{Bd} I^{n} \times\{0\}\right) \cup \bigcup_{i=1}^{\infty}\left(I^{n} \times\left[x_{2 i}, x_{2 i-1}\right]\right) \subset I^{n+1} .
$$

Theorem 3.1. (a) There are closed subsets X_{1}, \ldots, X_{n+1} of C^{n} such that $C^{n}=\bigcup_{k=1}^{n+1} X_{k}$ and $\mathrm{cmp} X_{k}=0$ for each $k=1, \ldots, n+1$.
(b) $\operatorname{def} C^{n}=\operatorname{Cmp} C^{n}=n\left(=\operatorname{Comp} C^{n}\right)($ see [AN] for the definition of Comp).
(c) Let m be an integer such that $0 \leq n \leq 2^{m}-1$. Then $\mathrm{cmp} C^{n} \leq m$. In particular, $\operatorname{cmp} C^{n}<\operatorname{Cmp} C^{n}=\operatorname{def} C^{n}$ for $n \geq 3$.

Proof. (a) For every i choose finite systems $B_{k}^{i}, k=1, \ldots, n+1$, consisting of disjoint compact subsets of I^{n} with diameter $<1 / i$ such that $I^{n}=\bigcup_{k=1}^{n+1}\left(\bigcup B_{k}^{i}\right)$. We put

$$
X_{k}=\left(\operatorname{Bd} I^{n} \times\{0\}\right) \cup \bigcup_{i=1}^{\infty}\left(\left(\bigcup B_{k}^{i}\right) \times\left[x_{2 i}, x_{2 i-1}\right]\right)
$$

for every $k=1, \ldots, n+1$. Observe that the space X_{k} admits a B-special decomposition into compact subsets and, by Proposition 3.1, $\mathrm{cmp} X_{k}=0$ for every $k=1, \ldots, n+1$.
(b) It is enough to prove that $\operatorname{Comp} C^{n} \geq n$, i.e. there exist n pairs $\left(F_{1}, G_{1}\right), \ldots,\left(F_{n}, G_{n}\right)$ of disjoint compact subsets of C^{n} such that for any partitions S_{i} in X between F_{i} and $G_{i}, i=1, \ldots, n$, the intersection $S_{1} \cap$ $\ldots \cap S_{n}$ is not compact. (Recall that for every separable metrizable space W we have Comp $W \leq \operatorname{Cmp} W \leq \operatorname{def} W$ (cf. [AN]) and evidently $\operatorname{def} C^{n} \leq n$.) For example, such pairs are $\left(\left(\{0\} \times I^{n}\right) \cap C^{n},\left(\{1\} \times I^{n}\right) \cap C^{n}\right), \ldots,\left(\left(I^{n-1} \times\right.\right.$ $\left.\{0\} \times[0,1]) \cap C^{n},\left(I^{n-1} \times\{1\} \times[0,1]\right) \cap C^{n}\right)$.

Moreover, for any partition C in C^{n} between the sets $\left(\{0\} \times I^{n}\right) \cap C^{n}$ and $\left(\{1\} \times I^{n}\right) \cap C^{n}$, we have $\operatorname{Comp} C \geq n-1$.
(c) Apply Corollary 2.1 (the particular case) and the statement (a).

Now we are ready to show Theorem 1.1.
Proof of Theorem 1.1. Decompose the space $Z_{n}, n \geq 3$, into the union of two closed subsets Z_{n}^{1} and Z_{n}^{2} (each homeomorphic to C^{n}), where

$$
\begin{aligned}
& Z_{n}^{1}=\left(\operatorname{Bd} I^{n} \times\{0\}\right) \cup \bigcup_{i=1}^{\infty}\left(I^{n} \times[1 /(2 i+1), 1 /(2 i)]\right) \\
& Z_{n}^{2}=\left(\operatorname{Bd} I^{n} \times\{0\}\right) \cup \bigcup_{i=1}^{\infty}\left(I^{n} \times[1 /(2 i), 1 /(2 i-1)]\right)
\end{aligned}
$$

Let m be the integer such that $0 \leq n \leq 2^{m}-1$. It follows from Theorem 3.1(c) that $\operatorname{cmp} Z_{n}^{i} \leq m$ for $i=1,2$. Thus, by Theorem 2.1, we have $\operatorname{cmp} Z_{n} \leq$ $m+1$.

Corollary 3.1. (a) $\operatorname{cmp} C^{2}=\operatorname{cmp}\left(C^{2} \times[0,1]\right)=2$.
(b) $\operatorname{cmp} C^{3}=2$.

Proof. (a) Recall that for any partition C in C^{2} between $\left(\{0\} \times I^{2}\right) \cap C^{2}$ and $\left(\{1\} \times I^{2}\right) \cap C^{2}$, we have $\operatorname{Comp} C \geq 1$, and hence $\mathrm{cmp} C \geq 1$. This yields $\mathrm{cmp} C^{2}=2$ (and even $\mathrm{cmp} Z_{2}=2$). Observe that the space $C^{2} \times \mathbb{R}$ can be considered as an open subset of C^{3}. So by property (2) of \mathcal{P}-ind and Theorem 3.1(c), $\operatorname{cmp}\left(C^{2} \times I\right)=\operatorname{cmp}\left(C^{2} \times \mathbb{R}\right) \leq \operatorname{cmp} C^{3} \leq 2$. On the other hand, $\operatorname{cmp}\left(C^{2} \times I\right) \geq \operatorname{cmp} C^{2}=2$.
(b) Just observe that C^{2} can be considered as a closed subspace of C^{3}.

The following question is discussed in [AN, Problem 6, p. 71].
Question 3.1. For any k and m with $0<k<m$, does there exist a separable metrizable space X such that $\mathrm{cmp} X=k$ and $\operatorname{def} X=m$?

We partially answer the question as follows:
Corollary 3.2. Let m be an integer and $l(m)=\left[\log _{2}(m)\right]+1$. Then for every k with $m \geq k \geq l(m)$ there exists a separable metrizable space X such that $\operatorname{cmp} X=k$ and $\operatorname{def} X=m$.

Proof. Observe that $l(m)=\min \left\{p: m \leq 2^{p}-1\right\}$. Consider the space $Y=\mathbb{Q}^{\prime} \times I^{k}$, where $\mathbb{Q}^{\prime}=\mathbb{Q} \times I, \mathbb{Q}$ is the space of rational numbers and k is as in the theorem. Recall from $[\mathrm{AN}]$ that $\mathrm{cmp} Y=\operatorname{def} Y=k$. The required space X is the sum $Y \oplus C^{m}$.

Remark 3.1. Observe that $\lim _{m \rightarrow \infty}(m-l(m))=\infty$ (see also $[\mathrm{K}]$).
Let C^{n} be the space defined above and X_{1}, \ldots, X_{n+1} be the closed subsets of C^{n} described in Theorem 3.1. It follows from Theorem 3.1(a) and Corollary 2.3 that $\operatorname{Cmp}\left(X_{1} \cup \ldots \cup X_{k+1}\right)=k$ for each k with $0 \leq k \leq n$.

However, we do not know the value of the deficiency of $X_{1} \cup \ldots \cup X_{k+1}$. So we can ask the following.

QUESTION 3.2. Is it true that $\operatorname{def}\left(X_{1} \cup \ldots \cup X_{k+1}\right)=k$ for $1 \leq k<n$?
The question might be interesting when we consider a problem posed by Aarts and Nishiura [AN, Problem 6, p. 71]: Exhibit a separable metrizable space X such that $\mathrm{cmp} X<\operatorname{Cmp} X<\operatorname{def} X$. If Question 3.2 had a negative answer for example for the case of $n=4$ and $k=3$, then we would have $\operatorname{def}\left(X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right)=4$. We put $Y=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$. Then, by the argument above, $\mathrm{Cmp} Y=3$. On the other hand, by Theorem 3.1(a) and Corollary 2.1, $\operatorname{cmp} Y \leq 2$. Hence $\operatorname{cmp} Y<\operatorname{Cmp} Y<\operatorname{def} Y$. Even if Question 3.2 had an affirmative answer, then one gets an interesting counterpart of Corollary 3.3 (see below) for def.

Now we will obtain a complement to Theorem 2.2 showing the exactness of the theorem's estimates.

Corollary 3.3. For any integer $n \geq 1$ there exists a compact space $X_{n}\left(=C^{n}\right)$ with $\operatorname{Cmp} X_{n}=n$ such that for any nonnegative integers p, q with $p+q=n-1$ there exist closed subsets $X_{n}^{(p)}$ and $X_{n}^{(q)}$ of X_{n} such that $X_{n}=X_{n}^{(p)} \cup X_{n}^{(q)}, \operatorname{Cmp} X_{n}^{(p)}=p, \operatorname{Cmp} X_{n}^{(q)}=q$ and $\operatorname{Cmp}\left(X_{n}^{(p)} \cap X_{n}^{(q)}\right)=$ $\min \{p, q\}$.

Proof. Let $n \geq 1, C^{n}$ be the space defined at the beginning of this section, and X_{1}, \ldots, X_{n+1} be the closed subsets of C^{n} described in Theorem 3.1. We put $X^{(p)}=X_{1} \cup \ldots \cup X_{p+1}$ and $X^{(q)}=X_{p+2} \cup \ldots \cup X_{n+1}$. By Theorem 3.1(b), it follows that $\mathrm{Cmp} C^{n}=n$. By Corollary 2.3(b), we have $\operatorname{Cmp} X^{(p)}=p$ and $\operatorname{Cmp} X^{(q)}=q$. Furthermore, it follows from Corollary $2.3(\mathrm{c})$ that $\operatorname{Cmp}\left(X^{(p)} \cap X^{(q)}\right)=\min \{p, q\}$.

References

[AN] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.
[Ch] V. A. Chatyrko, On finite sum theorems for transfinite inductive dimensions, Fund. Math. 162 (1999), 91-98.
[ChK] V. A. Chatyrko and K. L. Kozlov, On (transfinite) small inductive dimension of products, Comment. Math. Univ. Carolin. 41 (2000), 597-603.
[GN] J. de Groot and T. Nishiura, Inductive compactness as a generalization of semicompactness, Fund. Math. 58 (1966), 201-218.
[E] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann, Lemgo, 1995.
[K] T. Kimura, The gap between $\mathrm{cmp} X$ and $\operatorname{def} X$ can be arbitrarily large, Proc. Amer. Math. Soc. 102 (1988), 1077-1080.
[LS] M. Levin and J. Segal, A subspace of R^{3} for which Cmp \neq def, Topology Appl. 95 (1999), 165-168.
[L] L. A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian).
[P1] R. Pol, A counterexample to J. de Groot's conjecture cmp = def, Bull. Acad. Polon. Sci. 30 (1982), 461-464.
[P2] -, Questions in dimension theory, in: J. van Mill and G. M. Reed (eds.), Open Problems in Topology, North-Holland, Amsterdam, 1990, 279-291.

Department of Mathematics
Linköping University
58183 Linköping, Sweden
E-mail: vitja@mai.liu.se

Department of Mathematics
Shimane University
Matsue, Shimane, 690-8504 Japan
E-mail: hattori@math.shimane-u.ac.jp

Received 8 January 2001

[^0]: 2000 Mathematics Subject Classification: Primary 54F45.
 Key words and phrases: small inductive compactness degree, large inductive compactness degree, compactness deficiency.

