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A coding of separable Banach spaces.
Analytic and coanalytic families of Banach spaces

by

Benôıt Bossard (Paris)

Abstract. When the set of closed subspaces of C(∆), where ∆ is the Cantor set,
is equipped with the standard Effros–Borel structure, the graph of the basic relations
between Banach spaces (isomorphism, being isomorphic to a subspace, quotient, direct
sum. . . ) is analytic non-Borel. Many natural families of Banach spaces (such as reflexive
spaces, spaces not containing `1(ω), . . .) are coanalytic non-Borel. Some natural ranks
(rank of embedding, Szlenk indices) are shown to be coanalytic ranks. Applications are
given to universality questions. Analogous results are shown for basic sequences modulo
equivalence.

0. Introduction. Classifying Banach spaces is notoriously difficult, and
it is natural to conjecture that the obstruction to such a classification lies
in the topological complexity of the relevant relations, and in particular
of the isomorphism equivalence relation. To support this conjecture, one
needs of course a natural and usable frame in which such topological no-
tions can be handled. The purpose of the present work is to provide such a
frame.

The collection of separable Banach spaces is not a set, and we first need
a proper parametrization of this collection. We choose to consider it as
the set of all closed subspaces of the space C(∆) of continuous functions
on the Cantor set. It is indeed well known that every separable Banach
space is isometric to a subspace of C(∆). This choice could be considered
as arbitrary; however we show that natural but different choices lead to the
same levels of complexity.

To investigate the topological complexity of natural families of Banach
spaces, we use the theory of analytic sets, introduced by Suslin and Lusin.
The basic results of this theory are presented e.g. in [K-L1], [K] or [Z]. There
is a strong interplay between analytic sets and classical analysis, for which
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we refer for instance to the classical results of S. Mazurkiewicz [M] and
W. Hurewicz [H], and for more recent results to [Mau], [Bou1], [Ka1], [Ka2],
[G1], [D-G-S], [B-G-K], [Ko] and finally to [K-L1] and [K] and references
therein.

The gist of our results is that the natural relations, and natural classes
of Banach spaces, are as complicated as they look at first sight: for instance,
the isomorphism relation is analytic non-Borel, the class of spaces which do
not contain an isomorphic copy of a given space is coanalytic non-Borel, the
isomorphism class of a given space is in general non-Borel. Several conse-
quences are spelled out: for instance, there is no constructive way to pick
a representative in each isomorphism class. Applications are given to uni-
versality questions: indeed when a property defines a coanalytic non-Borel
class (it is so e.g. for reflexivity, separability of the dual, and many others),
it cannot reduce to being isomorphic to a subspace of a given space since
the latter is an analytic class. We show moreover that classical tools of de-
scriptive set theory are well adjusted to Banach space theory: for instance,
classical indices such as the Szlenk index turn out to be coanalytic ranks.
This leads to applications of Kunen–Martin’s transfinite “uniform bound-
edness” principle.

Let us summarize the content of this paper. Notation and preliminaries
are given below in Section 0. In Section 1, we use techniques from [J1], [L-S]
and [P] to construct two families of Banach spaces U1(θ) and U2(θ), indexed
by the trees θ on ω, such that if θ is well founded then U1(θ) does not contain
any reflexive infinite-dimensional subspace and U2(θ) is reflexive, and if not
U1(θ) and U2(θ) are universal for the separable Banach spaces.

Section 2 is devoted to codings of separable Banach spaces up to iso-
morphisms by standard Borel spaces. This can be done by a proper use of
the Effros–Borel structure. We show that the classical Banach space notions
such as isomorphism, being isomorphic to a subspace, quotient, direct sum
lead to analytic non-Borel relations, and that the isomorphism relation has
no analytic section. Therefore, the isomorphism relation is not smooth (in
the sense of [H-K-L]) and there are no Borel calculable invariants which
classify separable Banach spaces up to isomorphism. We also observe that
natural but different ways to code the separable Banach spaces yield the
same complexity results.

In Section 3, many natural families of separable Banach spaces are shown
to be coanalytic non-Borel in the sense of Section 2: reflexive spaces, spaces
with separable dual, spaces which do not contain `1(ω), spaces which are
not universal, spaces with RNP. The family of separable Banach spaces with
non-separable dual and which do not contain `1(ω) is a difference of two
coanalytic families but is neither coanalytic nor analytic. Some new results
on universal spaces are obtained as applications.
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In Section 4, natural ranks are shown to be coanalytic ranks on some
of the families studied in Section 3: ranks of embedding, Szlenk indices.
This allows us to show that the Szlenk index and the dentability index are
equivalent for spaces with separable duals, and that the Szlenk index and
the rank of embedding of `1 are equivalent for subspaces of spaces with an
unconditional basis.

Section 5 undertakes a similar study of coding basic sequences up to
equivalence: the relation of equivalence between bases is a Borel relation.
Using Bellenot’s space [Be], we show that this relation has no analytic sec-
tions. The family of shrinking basic sequences and the family of boundedly
complete basic sequences are coanalytic non-Borel, with natural coanalytic
ranks.

Finally, Section 6 uses Gowers’ solution [Gow] to the hyperplane problem
to provide an embedding of the equivalence relation E0 into the isomorphism
relation between separable Banach spaces. This gives an improvement of the
result of Section 5 obtained through Bellenot’s space. The existence of such
an embedding is natural in view of [H-K-L]. However, some extra work is
needed since the isomorphism relation is analytic non-Borel.

Acknowledgements. Most of the results of this paper are part of a
thesis [Bos] prepared under the supervision of G. Godefroy at the University
of Paris 6. The author would like to thank G. Godefroy for his suggestions
and encouragement.

Notations and preliminaries. We denote by ω = {0, 1, 2, . . .} the first
infinite ordinal, by ω? the set ω \ {0}, by ω1 the first uncountable ordinal.
Let A be a set. We denote by P(A) the set of subsets of A, and by Aω (resp.
A<ω) the set of all infinite (resp. finite) sequences in A. If x ∈ Aω, we write
x = (xi)i. Concatenation is denoted by _, and if B ⊆ A<ω or B ⊆ Aω, and
s ∈ A<ω, we denote by s_B the set {s_t; t ∈ B}.

Let X be a Banach space. Then BX is its closed unit ball, and for
x ∈ X and ε > 0, B(x, ε) = {y ∈ X; ‖y − x‖ < ε}. For A ⊆ X, conv(A)
denotes its convex hull, sp(A) (resp. spQ(A)) the real vector (resp. Q-vector)
space spanned by A, conv(A) and sp(A) their closures; A⊥ is the orthogonal
complement of A and diam(A) = sup{‖x−y‖; x, y ∈ A}. If A ⊆ X?, then A

?

denotes its w?-closure. If λ and x are finite or infinite sequences respectively
in R and X, we will write λ · x =

∑
i λixi. If x ∈ Xω, y ∈ Y ω where Y

is a Banach space, and k ∈ [1,+∞), then x∼ky means: for all λ ∈ R<ω,
k−1‖λ · x‖ ≤ ‖λ · y‖ ≤ k‖λ · x‖, and we will write x ∼ y if there exists some
k ∈ [1,+∞) such that x ∼k y. The notations X ' Y , X ⊂ Y , Y ⇒ X will
mean respectively: X and Y are isomorphic, X is isomorphic to a subspace
of Y , X is isomorphic to a quotient space of Y . The inclusion of sets is
denoted by ⊆.
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Let P be a Polish space, and O a basis of open subsets of P . We denote
by F(P ) the set of all closed subsets of P equipped with the Effros–Borel
structure (i.e. the canonical Borel structure generated by the family {{F ∈
F(P ); F ∩ O 6= ∅}; O ∈ O}} (see [C]). If in addition P is compact, the
Effros–Borel structure is generated by the Hausdorff topology, thus by the
family {{F ∈ F(P ); F ⊆ O}; O ∈ O}.

Let P be a standard Borel space (i.e. the Borel structure is generated by
a Polish topology). We refer to [K-L1] and [C] for the following notions and
properties. A subset C of P is analytic if it is the Borel image of a Borel
subset of a Polish space, coanalytic if P \ C is analytic, and Borel if it is
both analytic and coanalytic (this is Suslin’s separation theorem). When C
is coanalytic, there exists a coanalytic rank on C, that is to say, a function
σ : P → [0, ω1] such that C = {x; σ(x) < ω1} and the relations “x ∈ C and
σ(x) ≤ σ(y)” and “x ∈ C and σ(x) < σ(y)” are both coanalytic in P 2. Some
properties of coanalytic ranks are summarized in the following proposition.

Proposition 0.1. Let σ be a coanalytic rank on a coanalytic subset C
of a standard Borel space P .

(i) For every α < ω1, Bα = {x ∈ C; σ(x) ≤ α} is Borel.
(ii) If A ⊆ C is analytic, then A ⊆ Bα for some α < ω1.
(iii) If σ′ is another coanalytic rank on C, then there exists ψ : ω1 → ω1

such that if α < ω1 and if x ∈ C is such that σ(x) ≤ α, then σ′(x) ≤ ψ(α).
(iv) Let A be a coanalytic subset of a standard Borel space P ′. Assume

there is a Borel map ϕ : P ′ → P such that ϕ−1(C) = A. Then σ ◦ ϕ is a
coanalytic rank on the coanalytic subset A.

We refer to [K-L1] for (i), (ii) and (iv), which are classical properties of
coanalytic ranks; (iii) follows from (i) and (ii).

We refer again to [K-L1] for the definition of tree, height, branch. The
height of a tree θ is denoted by ht(θ). The tree ω<ω of finite sequences in
ω will be denoted by T , and the set of trees on ω, i.e. the set of subtrees
of T , is denoted by T . Let s ∈ T ; its length is denoted by |s|. If t ∈ T and
|s| ≤ |t| (or if t is a branch of T ) and if “s begins t”, we will write s � t.
If s � t and s 6= t, we will write s ≺ t. When t ∈ T and s � t, the interval
[s, t] is the set {w ∈ T ; s � w � t}. We fix an enumeration K : ω → ω<ω of
ω<ω such that if s ≺ s′, then s < s′, where s = K−1(s). We set sn = K(n).

We denote by WF the subset of T consisting of well founded trees, i.e.
of trees which have no (infinite) branch, and MF = T \WF. It is classical
that WF is a complete coanalytic subset, that is to say, WF is coanalytic
and for any Polish space and any coanalytic subset Q of P , there is a Borel
function f : P → T such that Q = f−1(WF). It is classical that a complete
coanalytic subset is not analytic, thus not Borel. A coanalytic rank on WF
is given by the map θ 7→ ht(θ).
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A Banach space is universal for separable Banach spaces (for short, uni-
versal) if it contains an isomorphic copy of every separable Banach space. It
is well known that the space C(∆) of all continuous functions on the Cantor
set ∆ = 2ω is universal.

Let E be an equivalence relation on a set A. A section S of E is a subset
of A such that for every x ∈ A, there is one and only one y ∈ S such
that xEy.

1. Construction of the families {U1(θ); θ ∈ T } and {U2(θ); θ ∈ T }.
In this section, we associate to any tree θ ∈ T two separable Banach spaces
U1(θ) and U2(θ) which are universal if θ is not well founded, and such that
U1(θ) has no infinite-dimensional reflexive subspaces and U2(θ) is reflexive
if θ is well founded.

We use the universal Banach space U built by Pełczyński ([P] or [L-T1],
pp. 92–93). Let us recall some of its properties.

Theorem 1.1. There exists a universal separable Banach space U with
a basis u = (ui)i∈ω such that for any basic sequence (xk)k∈ω, there is a sub-
sequence (unk)k∈ω of u which is equivalent to (xk)k∈ω and complemented ;
that is to say , the natural projection Π, defined by Π(unk) = unk for any
k ∈ ω and Π(un) = 0 if n 6= {nk; k ∈ ω}, is bounded.

Moreover every separable Banach space with a basis which contains iso-
morphic copies of all separable Banach spaces with a basis as complemented
subspaces must be isomorphic to U .

We now follow the lines of the construction of the James tree spaces
([J1]; see [L-S]).

We denote by c00(T ) the space of finitely supported functions from T =
ω<ω to R, and by χs : T → {0, 1} the characteristic function of {s} for every
s ∈ T . Thus c00(T ) = sp({χs; s ∈ T}).

An admissible choice of intervals is a finite set {Ij ; 0 ≤ j ≤ k} of inter-
vals of T such that every branch of T meets at most one of these intervals.
We define the following norms on c00(T ):

|||y|||1 = sup
( k∑

j=0

∥∥∥
∑

s∈Ij
y(s)u|s|

∥∥∥
)
,

|||y|||2 = sup
(( k∑

j=0

∥∥∥
∑

s∈Ij
y(s)u|s|

∥∥∥
2)1/2)

,

where |s| is the length of s ∈ T and where the supremum is taken over k ∈ ω
and over all admissible choices of intervals {Ij ; 0 ≤ j ≤ k}.

Then we let U1(T ) (resp. U2(T )) be the completion of c00(T ) under ||| · |||1
(resp. ||| · |||2). For any A ⊆ T , we denote by U1(A) (resp. U2(A)) the closed
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subspace of U1(T ) (resp. U2(T )) generated by {χs; s ∈ A}. In this notation,
the following holds.

Theorem 1.2. Let θ ∈ T .

(i) If θ is not well founded , then U1(θ) and U2(θ) are isomorphic to U ,
thus universal.

(ii) If θ is well founded , then U2(θ) is reflexive, and U1(θ) has the Schur
property , thus contains no infinite-dimensional reflexive space.

To prove Theorem 1.2, we need several technical lemmas, whose proofs
are given later on.

Lemma 1.3. The sequence (χsi ; i ∈ ω) determines a basis for U1(T )
and U2(T ). For any A ⊆ T , (χsi ; si ∈ A) determines a basis for U1(A) and
U2(A).

Lemma 1.4. Let b be a branch of T . Then

(i) The spaces U1({s; s ≺ b}), U2({s; s ≺ b}) and U are isomorphic.
(ii) If θ ∈ T and if b is a branch of θ, then for r ∈ {1, 2}, Ur({s; s ≺ b})

is a complemented subspace of Ur(θ).

Lemma 1.5. Let (Ai)i∈ω be a sequence of subsets of T such that every
branch meets at most one of these subsets. Then for r ∈ {1, 2} the spaces
Ur(
⋃
i∈ω Ai) and (

∑
i∈ω ⊕Ur(Ai))r are isometric.

Lemma 1.6. Let (Xj)j∈ω be a sequence of Banach spaces with the Schur
property. Then X = (

∑
j∈ω ⊕Xj)1 has the Schur property.

Proof of Theorem 1.2. (i) If θ is not well founded, we pick a branch b
of θ. By Lemmas 1.3 and 1.4, U1(θ) and U2(θ) are Banach spaces with a
basis, which contain an isomorphic complemented copy of U(b) = U , and
hence contain an isomorphic complemented copy of every Banach space with
a basis. By Theorem 1.1, U1(θ), U2(θ) and U are isomorphic.

(ii) For θ ∈ T , s ∈ T and i ∈ ω, we define

s_θ = {s_t; t ∈ θ}, θi = {t ∈ T ; (i)_t ∈ θ}.
Fact. If θ is well founded , then for any s ∈ T , U1(s_θ) has the Schur

property , and U2(s_θ) is reflexive.

With this fact, if θ is well founded, then U1(θ) = U1(∅_θ) has the Schur
property, and U2(θ) = U2(∅_θ) is reflexive, thus (ii) is proved.

We show the fact by transfinite induction on the height ht(θ) of θ.
Let α < ω1. We assume that for every tree τ ∈ T such that ht(τ) < α,

U1(s_τ) has the Schur property and U2(s_τ) is reflexive for any s ∈ T .
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Let θ ∈ T be such that ht(θ) = α, let s ∈ T and Ns = {i ∈ ω; s_(i) ∈ θ}.
We let Ai = s_(i)_θi for i ∈ Ns, thus

⋃
i∈Ns Ai = s_(θ \ {s}) and every

branch of T meets at most one of the Ai’s. If i ∈ Ns, then ht(θi) < α, thus
U1(Ai) = U1(s_(i)_θi) has the Schur property, and U2(Ai) = U2(s_(i)_θi)
is reflexive.

By Lemma 1.5, for r ∈ {1, 2},

Ur(s_(θ \ {s})) = Ur

( ⋃

i∈Ns
Ai

)
=
(∑

i∈Ns
⊕ Ur(Ai)

)
r
,

thus U2(s_(θ \ {s})) is reflexive, and by Lemma 1.6, U1(s_(θ \ {s})) has
the Schur property.

By Lemma 1.3, (χsj ; j ∈ ω, sj ∈ s_θ) is a basis of Ur(s_θ) with
first element χs and the other elements generate Ur(s_(θ \ {s})). We have
Ur(s_θ) ' R×Ur(s_(θ \ {s})). Thus U1(s_θ) has the Schur property and
U2(s_θ) is reflexive. The fact follows, and Theorem 1.2 is proved.

Now we have to show the four lemmas we used in the above proof.

Proof of Lemma 1.3. The proof is the same for U1(T ) and U2(T ). We
give it for U2(T ).

Let (λi)i∈ω be a sequence in R, I be an interval of T , and n, p ∈ ω. We
denote by cu the basis constant of u.

For s ∈ T , (
∑n
i=0λiχsi)(s) is equal to λs if s ≤ n, and 0 if not. Therefore

∥∥∥
∑

s∈I

( n∑

i=0

λiχsi

)
(s)u|s|

∥∥∥ =
∥∥∥
∑

s∈I
s≤n

λsu|s|
∥∥∥ ≤ cu

∥∥∥
∑

s∈I
s≤n+p

λsu|s|
∥∥∥

= cu

∥∥∥
∑

s∈I

( n+p∑

i=0

λiχsi

)
(s)u|s|

∥∥∥

since if s, s′ ∈ I, then s′ � s iff s′ ≥ s.
Let {Ij ; 0 ≤ j ≤ k} be an admissible choice of intervals. We have

k∑

j=0

∥∥∥
∑

s∈Ij

( n∑

i=0

λiχsi

)
(s)u|s|

∥∥∥
2
≤ c2u

k∑

j=0

∥∥∥
∑

s∈Ij

( n+p∑

i=0

λiχsi

)
(s)u|s|

∥∥∥
2
.

Thus |||∑n
i=0λiχsi |||2 ≤ cu|||

∑n+p
i=0 λiχsi |||2 and (χsi)i∈ω is a basic sequence.

Lemma 1.3 follows.

Proof of Lemma 1.4. Let r ∈ {1, 2}.
(i) We write bj = b|j for j ∈ ω. It is sufficient to prove that u and the

basis (χbj ; j ∈ ω) of Ur({s; s < b}) are equivalent. Let (λj)nj=0 ∈ R<ω and
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y =
∑n
j=0λjχbj . As b is a branch and |bj | = j, we have

|||y|||r = sup
{∥∥∥
∑

s∈I
y(s)u|s|

∥∥∥; I interval, I ⊆ {s; s ≺ b}
}

= sup
{∥∥∥

m∑

j=l

λjuj

∥∥∥; 0 ≤ l ≤ m ≤ n
}

and with cu being the basis constant of u,
∥∥∥

n∑

j=0

λjuj

∥∥∥ ≤ |||y|||r ≤ 2cu
∥∥∥

n∑

j=0

λjuj

∥∥∥.

Thus (χbj ; j ∈ ω) and u are equivalent, and (i) follows.
(ii) Let y =

∑
i∈ωy(si)χsi be an element of Ur(θ). We have

∣∣∣
∣∣∣
∣∣∣
∑

i∈ω
si∈b

y(si)χsi
∣∣∣
∣∣∣
∣∣∣
r

= sup
{∥∥∥
∑

s∈I
y(s)u|s|

∥∥∥; I interval, I ⊆ {s; s ≺ b}
}
≤ |||y|||r

and (ii) follows.

Proof of Lemma 1.5. The proof is the same for r = 1 and r = 2. We
give it when r = 2. Pick y ∈ sp({χs; s ∈ sp(χs; s ∈

⋃
i∈ωAi}). We let

yi =
∑
s∈Aiy(s)χs. The set {yi; i ∈ ω, yi 6= 0} is finite, thus there is m ∈ ω

such that y =
∑m
i=0yi. Clearly Lemma 1.5 follows from the following Fact.

Fact. |||y|||22 =
∑m
i=0|||yi|||22.

Indeed, let {Ij ; 0 ≤ j ≤ k} be an admissible choice of intervals. We set,
for 0 ≤ j ≤ k and 0 ≤ i ≤ m, Ij(y) =

∑
s∈Ijy(s)u|s| and Mi = {j ∈ ω;

0 ≤ j ≤ k, Ij ∩Ai 6= ∅}. The largest interval with ends in Ij ∩Ai is denoted
by J ij . For any i ∈ ω, {J ij ; j ∈Mi} is an admissible choice of intervals, thus

k∑

j=0

‖Ij(y)‖2 =
m∑

i=0

∑

j∈Mi

‖J ij(yi)‖2 ≤
m∑

i=0

|||yi|||22.

And it follows by taking the supremum over admissible choices of intervals
that

|||y|||22 ≤
m∑

i=0

|||yi|||22.

Now for any i, 0 ≤ i ≤ m, let {I ij ; 0 ≤ j ≤ ki} be an admissible

choice of intervals. We denote by Ĩij the largest interval with ends in I ij ∩Ai.
Then {Ĩij ; 0 ≤ i ≤ m, 0 ≤ j ≤ ki} is an admissible choice of intervals,
because every branch of T meets at most one of the Ai’s. For any i, we have
successively
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ki∑

j=0

‖Iij(yi)‖2 =
ki∑

j=0

‖Ĩij(yi)‖2 =
ki∑

j=0

‖Iij(y)‖2,

m∑

i=0

ki∑

j=0

‖Iij(yi)‖2 =
m∑

i=0

ki∑

j=0

‖Ĩij(y)‖2 ≤ |||y|||22,

thus m∑

i=0

|||yi|||22 ≤ ‖y‖22.

The fact follows, and Lemma 1.5 is proved.

Proof of Lemma 1.6. It is sufficient to show that if (xn)n∈ω ∈ Xω is
weakly convergent to 0, then it is norm-convergent. By contradiction, let
(xn)n∈ω ∈ Xω be a sequence which is weakly convergent to 0, and suppose
it is not norm-convergent. We can suppose there is ε > 0 such that ‖xn‖ ≥ 2ε
for every n (if not, take a subsequence). For n ∈ ω, let xn =

∑
j∈ω x

j
n with

xjn ∈ Xj . For any j, (xjn)n∈ω is weakly convergent to 0 since the natural
projection from X onto Xj is weakly continuous. Thus (xjn)n∈ω is norm-
convergent to 0.

Using the “gliding hump” technique, we build by induction a sequence
(ym)m∈ω in X and strictly increasing sequences (nm)m∈ω and (jm)m∈ω in ω
which satisfy

n0 = 0, j−1 = 0 < j0, ym =
jm−1∑

j=jm−1

xjnm ∈
jm−1∑

j=jm−1

⊕Xj = Zm,

‖xnm − ym‖ ≤
ε

m+ 1
, ‖ym‖ ≥ ε.

Then (ym)m∈ω is weakly convergent to 0, since (xnm)m∈ω is and since
‖xnm − ym‖ → 0. But for any m ∈ ω there is fm ∈ Z?m = (

∑jm−1
j=jm−1

⊕X?
j )∞

with norm 1 such that fm(ym) ≥ ε. We consider the function f ∈ X? defined
by f(y) =

∑
m∈ωfm(y|Zm) where (y|Zm) is the image of y under the natural

projection on Zm. Then the norm of f is 1, f(ym) = fm(ym) ≥ ε for any
m ∈ ω, thus (ym)m∈ω cannot converge weakly to 0, a contradiction.

Consequently, (xn)n∈ω is norm-convergent to 0 and Lemma 1.6 follows.

2. Codings of separable Banach spaces up to isomorphism, ana-
lytic non-Borel relations. In this section, we use a natural representation
of the collection of all the separable Banach spaces to make it into a set.
We show that for natural codings by standard Borel spaces, the relations
of linear isomorphism and being isomorphic to a subspace, quotient, direct
sum lead to analytic non-Borel relations. Moreover the various codings we
can choose are essentially equivalent.
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We denote by SE(Z) the subset of F(Z) consisting of the closed sub-
spaces of a Banach space Z. The fact that C(∆) is universal suggests cod-
ing separable Banach spaces by Banach subspaces of C(∆). We abbreviate
SE(C(∆)) to SE . If X is a separable Banach space, we will denote by 〈X〉
the equivalence class {Y ∈ SE ; Y ' X} of the isomorphism relation '. We
now define our codings.

Definition 2.1. A coding of separable Banach spaces up to isomorphism
is a map from a set E onto the quotient set SE/'. The canonical coding is
the quotient map from SE onto SE/' which we denote by c.

The following proposition shows in particular that the set SE is a stan-
dard Borel space.

Proposition 2.2. Let Z be a separable Banach space. Then SE(Z) is
a Borel subset of F(Z) equipped with the Effros–Borel structure.

Proof. We have

SE(Z) = {F ∈ F(Z); F satisfies (a)} ∩ {F ∈ F(Z); F satisfies (b)}
with

(a) : ∀λ ∈ R, x ∈ F ⇒ λx ∈ F,
(b) : (x, y) ∈ F 2 ⇒ x+ y ∈ F.

Let O be a countable basis of open subsets of Z. When O,O′ ∈ O and
λ ∈ R?, the subsets

λO = {x ∈ Z; ∃y ∈ O, y = λx} and

O +O′ = {x ∈ Z; ∃y ∈ O, ∃y′ ∈ O′, y + y′ = x}
are open.

We leave to the reader the easy verification of the following fact.

Fact. Let F ∈ F(Z). We have the equivalences:

(a) ⇔ (a′) : ∀λ ∈ Q?, ∀O ∈ O, O ∩ F 6= ∅ ⇒ λO ∩ F 6= ∅

(b) ⇔ (b′) : ∀O ∈ O, ∀O′ ∈ O,
O ∩ F 6= ∅

O′ ∩ F 6= ∅

}
⇒ (O +O′) ∩ F 6= ∅.

Consequently, in F(Z) we have

{F ; F satisfies (a)} =
⋂

λ∈Q?

⋂

O∈O
({F ; λO ∩ F 6= ∅} ∪ {F ; O ∩ F = ∅}),

{F ; F satisfies (b)}
=

⋃

(O,O′)∈O2

({F ; (O +O′) ∩ F 6= ∅} ∪ {F ; O ∩ F = ∅} ∪ {F ; O′ ∩ F = ∅}).

Thus these two subsets are Borel, and SE(Z) is Borel as well.
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The main result of this section is the following theorem.

Theorem 2.3. (i) The isomorphism relation ' is analytic non-Borel in
SE2 and it has no analytic section. In fact , the equivalence class 〈U〉 is not
Borel.

(ii) The relations S = {X,Y ; X ⊂ Y }, Q = {(X,Y ); Y ⇒ X} and
C = {(X,Z); ∃Y ∈ SE , Z ' X ⊕ Y } are analytic non-Borel in SE2. The
relation D = {(X,Y,Z); Z ' X ⊕ Y } is analytic non-Borel in SE3.

The assertion (i) means that isomorphism cannot be defined in a Borel
way if we use the canonical coding. By Proposition 2.8 we will see that this
remains true if we replace the canonical coding by other natural codings of
separable Banach spaces.

Theorem 2.3 is clearly a consequence of Propositions 2.5 and 2.7 below.
We can consider that U2(T ) is a subspace of C(∆). Thus U2(θ) ∈ SE for
any θ ∈ T . We need the following simple lemma.

Lemma 2.4. The map ϕ : T → SE defined by ϕ(θ) = U2(θ) is Borel.

Proof. Let O be an open subset of C(∆). It is sufficient to prove that
Ω = {θ ∈ T ; U2(θ) ∩ O 6= ∅} is Borel. Since (χsi ; i ∈ ω, si ∈ θ) defines
a basis of U2(θ), we have the equivalence: U2(θ) ∩ O 6= ∅ iff there is some
λ = (λi)ni=0 ∈ Q<ω such that

∑n
i=0λiχsi ∈ O and if λi 6= 0 then si ∈ θ.

Let Λ = {λ ∈ Q<ω;
∑
iλisi ∈ O} and for λ ∈ Q<ω set supp(λ) =

{i ∈ ω; λi 6= 0}. Then

Ω =
⋃

λ∈Λ

⋂

i∈supp (λ)

{θ ∈ T ; si ∈ θ}

thus Ω is Borel since {θ ∈ T ; si ∈ θ} is an open and closed subset.

Proposition 2.5. The class 〈U〉 is not Borel and the relations ', S,
Q, C and D are not Borel.

Proof. Since ϕ−1(〈U〉) = MF and MF is not Borel, it follows that 〈U〉
is not a Borel class, and consequently ' is not a Borel relation.

By Lemma 2.4, the maps

ϕ1 : T → (SE)2 defined by ϕ1(θ) = (U,U2(θ))

and ϕ2 : T → (SE)3 defined by ϕ2(θ) = (U, {0}, U2(θ))

are Borel. Moreover it is easy to check that

ϕ−1
1 (S) = ϕ−1

1 (Q) = ϕ−1
1 (C) = ϕ−1

2 (D) = MF,

since U2(θ) is reflexive if θ ∈WF and U2(θ) ' U if θ ∈ MF by Theorem 1.2.
Therefore since MF is not Borel, we conclude that S, Q, C and D are not
Borel sets.
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The following lemma, whose easy proof is left to the reader, is useful to
show that ', S, Q, C and D are analytic.

Lemma 2.6. Let P be a Polish space and Z be a separable Banach space.

(i) {(F, y); y ∈ F} is Borel in F(P ) × P , and consequently {(Y, y);
y ∈ Y } is Borel in SE(Z)× Z.

(ii) {(Y, y); sp(y) = Y } is Borel in SE(Z)× Zω.
(iii) {(x, y); x ∼ y} is Borel in Zω × Zω.
(iv) {(F,G); G ⊆ F} is Borel in F(P )2, and consequently {(X,Y );

Y ⊆ X} is Borel in SE(Z)2.

Proposition 2.7. (i) The isomorphism relation ' is analytic in SE2

and has no analytic section.
(ii) The relations S, Q, C in SE2 and D in SE3 are analytic.

Proof. (i) First it is easy to verify the following.

Fact. Let X, Y be two separable Banach spaces. Then X ' Y iff there
are some x ∈ Xω and y ∈ Y ω such that x ∼ y, sp(x) = X and sp(y) = Y .

By Lemma 2.6(ii), (iii), the subset {(X,Y, x, y); sp(x) = X, sp(y) = Y,

x ∼ y} in SE2× (C(∆)ω)2 is Borel. The image of this set under the natural
projection onto SE2 is analytic, and by the Fact, this image is {(X,Y );
X ' Y }. Thus ' is analytic. Then the class 〈U〉 is analytic, and non-Borel
by Proposition 2.5.

It remains to prove that the relation ' in SE has no analytic section.
Working by contradiction, we assume that Σ is an analytic section, and
U ′ ∈ Σ is such that U ′ ' U . Then Σ\{U ′} is analytic. We consider the maps
π1, π2 : SE2 → SE defined by π1(X,Y ) = X and π2(X,Y ) = Y . The subset
{(X,Y ); Y ∈ Σ \ {U ′}, X ' Y } = {(X,Y ); Y ∈ Σ, X ' Y, X 6∈ 〈U〉} is
analytic. The π1-image of this last set is {X; X 6∈ 〈U〉} since Σ is a section,
and this image is analytic. Thus its complement 〈U〉 is coanalytic. By the
separation theorem, 〈U〉 is Borel, a contradiction. Hence the relation ' has
no analytic section.

(ii) We give the main ideas of the proof; the details are left to the reader.
Since S = {(X,Y ); ∃Z ∈SE , Z ⊆ Y, X ' Z}, by (i) and Lemma 2.6(iv),

S is analytic.
To prove that Q is analytic, we use the following easy result and Lem-

ma 2.6.

Fact. In SE2, (X,Y ) ∈ Q iff there are Z ∈ SE and x, y, z ∈ C(∆)ω

such that

(1) sp(x) = X, sp(y) = Y , sp(z) = Z, Z ⊆ Y ,
(2) x ∼ y′, where y′ is the image of y under the quotient map from Y

onto Y/Z.
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Finally, to prove that C and D are analytic, we use the following equiv-
alence.

Fact. Let (X,Y,Z) ∈ SE3. Then Z ' X ⊕ Y if and only if there is
some (x, y, z) ∈ (C(∆)ω)3 satisfying the following two conditions:

(3) sp(x) = X, sp(y) = Y , sp(z) = Z, (z2i)i∈ω ∼ x, (z2i+1)i∈ω ∼ y,
(4) there is a linear continuous projection π from sp(x ∪ y) onto sp(x)

such that kerπ = sp(y).

We now consider other natural codings of separable Banach spaces up
to isomorphism. Our goal is to show that they lead to the same estimates
on the complexity of the relevant sets. The following maps ca, cb and cd
are codings, in the sense of Definition 2.1, since C(∆) is universal and since
every separable Banach space is isometric to a quotient space of `1(ω):

ca : SE(`1(ω))→ SE/', ca(W ) = 〈`1(ω)/W 〉,
cb : C(∆)ω → SE/', cb(v) = 〈sp(v)〉,
cd : `1(ω)ω → SE/', cd(w) = 〈`1(ω)/sp(w)〉.

We will show that these codings lead to identical results as in Theo-
rem 2.3. This relies on the following general statement.

Proposition 2.8. Let F and G be two standard Borel spaces, E be a
set , c1 : F → E and c2 : G → E be two surjections. Assume that the set
{(f, g); c1(f) = c2(g)} is analytic in F ×G.

(i) If A ⊆ F is analytic, then c−1
2 (c1(A)) is analytic as well.

(ii) Let C ⊆ E. Then c−1
1 (C) is analytic (resp. coanalytic) in F iff

c−1
2 (C) is analytic (resp. coanalytic) in G.

In particular this is true when c1 = c and c2 : G → SE/' is a coding
of separable Banach spaces up to isomorphism from a standard Borel space
G such that {(X, g) ∈ SE ×G; c(x) = c2(g)} is analytic. We leave it to the
reader to verify that if c2 ∈ {ca, cb, cd}, then this condition is fulfilled. Thus
if we replace c by ca, cb or cd, we obtain the same results as in Theorem 2.3.
Note that by the separation theorem, assertion (ii) of Proposition 2.8 also
holds when “analytic” is replaced by “Borel”.

Proof of Proposition 2.8. (i) Let A be an analytic subset of F . We have
the equivalence

g ∈ c−1
2 (c1(A)) ⇔ ∃f ∈ A, c1(f) = c2(g).

From this, we easily deduce that c−1
2 (c1(A)) is analytic.

(ii) Let C ⊆ E. Assume c−1
1 (C) is analytic. Since c1 is a surjection,

c1(c−1
1 (C)) = C, thus by (i), c−1

2 (C) = c−1
2 [c1(c−1

1 (C))] is analytic.
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Now if c−1
1 (C) is coanalytic, then, with D = E \C, c−1

1 (D) = F \ c−1
1 (C)

is analytic. Thus c−1
2 (D) is analytic as well, and its complement c−1

2 (C) is
coanalytic. This finishes the proof.

We conclude this section with an open question. Using Kwapień’s theo-
rem ([Kw]), it is not difficult to see that the class 〈`2(ω)〉 is Borel. Indeed by
Kwapień’s theorem an infinite-dimensional separable Banach space which is
of type 2 and cotype 2 is isomorphic to `2(ω). And “being of type 2” and
“being of cotype 2” are Borel conditions. Using the coding cb, we prove this
for type 2.

A separable Banach space X is of type 2 if there is some M ∈ R such
that for any finite sequence (xj)nj=0 in X we have

1
2n

∑

εj=±1

∥∥∥
n∑

j=0

εjxj

∥∥∥ ≤M
( n∑

j=0

‖xj‖2
)1/2

.

We easily deduce: for any v ∈ C(∆)ω, the space sp(v) is of type 2 if and
only if there is some M ∈ Q+ such that for any n ∈ ω and any (λj)nj=0 ∈
(Q<ω)n+1, we have

1
2n

∑

εj=±1

∥∥∥
n∑

j=0

εjλ
j · v

∥∥∥ ≤M
( n∑

j=0

‖λj · v‖2
)1/2

where λj · v =
∑
i λ

j
ivi. Consequently, {v ∈ C(∆)ω; sp(v) is of type 2} is

Borel.
For cotype 2, the proof is similar, since by definition a separable Banach

space X is of cotype 2 if there is some M ∈ R?+ such that for any finite
sequence (xj)nj=0 in X we have

1
2n

∑

εj=±1

∥∥∥
n∑

j=0

εjxj

∥∥∥ ≥ 1
M

( n∑

j=0

‖xj‖2
)1/2

.

Consequently, 〈`2(ω)〉 is Borel.
It follows from Bourgain’s work ([Bou4]) that the equivalence classes

〈Lp(0, 1)〉 when 1 < p < ∞ and p 6= 2 are not Borel. Thus a natural
question is:

Problem 2.9. Is there some separable Banach space X such that X is
not isomorphic to `2(ω) and its isomorphism class 〈X〉 is Borel?

3. Topological complexity of families of separable Banach spaces
which are stable under isomorphism. We identify a family of separable
Banach spaces which is stable under isomorphism with a subset of SE/'.
Referring to the canonical coding c, it is natural to define the topological
complexity of such a family as follows.
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Definition 3.1. A family G ⊆ SE/' is analytic (resp. coanalytic, Borel)
if c−1(G) is analytic (resp. coanalytic, Borel).

The following theorem, which is the main result of this section, is an
extension of a seminal result of J. Bourgain ([Bou3]) which appears here as
a corollary (Corollary 3.4(i)).

Theorem 3.2. Let A be an analytic family of separable Banach spaces,
stable under isomorphism, which contains all separable reflexive spaces.
Then A contains a space which is universal for all separable Banach spaces.

An informal consequence of Theorem 3.2 is that any hereditary property
which is “analytic” (that is, whose statement starts with “there exists”. . . )
is true for every separable Banach space if it is true for all reflexive Banach
spaces.

Proof. The map ϕ is defined in Lemma 2.4. If θ ∈WF, then ϕ(θ) = U2(θ)
is reflexive (Theorem 1.2), thus ϕ−1[c−1(A)] is analytic and contains WF.
Since WF is not analytic, there is some θ0 ∈ MF∩ϕ−1[c−1(A)], and ϕ(θ0) =
U2(θ0) is an element of c−1(A) which is isomorphic to U . Theorem 3.2
follows.

As a corollary, we obtain the topological complexity of some families of
separable Banach spaces.

Corollary 3.3. The following families of separable Banach spaces
which are stable under isomorphism are coanalytic and not Borel :

(i) the family Gr of reflexive spaces,
(ii) the family Gs of spaces with separable dual ,
(iii) the family G` of spaces which do not contain an isomorphic copy

of `1(ω),
(iv) the family Gc of spaces which do not contain a complemented copy

of `1(ω),
(v) the family Gn of non-universal spaces,
(vi) the family GZ of spaces which do not contain an isomorphic copy of

the infinite-dimensional separable Banach space Z,
(vii) the family Gp of spaces with the Radon–Nikodym property.

In fact , c−1(G) is a complete coanalytic set when G is one of these families.

This statement asserts that any characterization of the families (i) to
(vii) will be at least as complex as the definition. Note that (iii) and (v)
are special cases of (vi). We singled them out because of their particular
importance.

Proof. Let G be one of these families, except the family GZ when Z is
reflexive. Then G contains all the reflexive separable spaces, and does not
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contain a universal space (for (iv), note that U contains a complemented
copy of `1(ω), and see the proof of Theorem 3.2). By Theorem 3.2, G is
not analytic, thus not Borel. In fact, if θ ∈ T , then ϕ(θ) ∈ c−1(G) iff
θ ∈ WF. Hence by Lemma 2.4, c−1(G) is a complete coanalytic subset if
it is coanalytic.

Now if Z is reflexive, we use the map Φ : T → SE defined by Φ(θ) = U1(θ)
(see Section 1). Following similar lines to those in Lemma 2.4, it is not dif-
ficult to prove that Φ is Borel. By Theorem 1.2, if θ ∈ WF then Φ(θ) does
not contain an isomorphic copy of Z, and if θ 6∈ WF then Φ(θ) contains
an isomorphic copy of Z since it is universal. Hence c−1(GZ) is a complete
coanalytic subset if it is coanalytic, and is not Borel.

It remains to prove that all these families are coanalytic. If G is such a
family, it is sufficient to show that the complement of c−1(G) is analytic. We
give the main ideas for this proof, the details are left to the reader and we
refer to [Bos] for a complete proof. In the following, X is a separable Banach
space.

To prove that Gs is coanalytic, we use the following equivalence due to
I. Namioka and R. Phelps ([N-P] or [D-G-Z], Theorem I.5.2): X? is not
separable iff there is some ε > 0 and some weak?-compact K ⊆ BX?
such that every subset H ∩ K 6= ∅, with H a w?-open half space, has a
norm-diameter more than ε. Using the coding ca, we prove that c−1

a (Gs) =
{W ∈ SE(`1(ω)); (`1(ω)/W )? separable} is coanalytic. Indeed if W ∈
SE(`1(ω)), it is classical that (`1(ω)/W )? and W⊥ are isometric and w?-
isomorphic, when W⊥ is equipped with the topology inherited from the
weak?-topology of `∞(ω). Thus (`1(ω)/W )? is not separable iff there is
some ε > 0 and some weak?-closed subset K of BW⊥ such that every subset
H ∩K 6= ∅, H a w?-open half space, has a norm-diameter more than ε. Now
it is easy to prove that c−1

a (Gs) is coanalytic, and then by Proposition 2.8(ii),
Gs is coanalytic.

To prove that G`, Gn and GZ are coanalytic, we use the fact which fol-
lows easily from Theorem 2.3, that the subset {X; Z ⊂ X} of SE is an-
alytic, and hence {X; `1(ω) ⊂ X} and {X; C(∆) ⊂ X} are analytic as
well.

In the same way, it is not difficult to prove that Gc is coanalytic.
And to prove that Gp is coanalytic, we use the equivalence: X has the

Radon–Nikodym property iff for any closed subset F of BX and any ε > 0,
there is some x ∈ F such that x 6∈ conv(F \ B(x, ε)). By classical methods
we deduce that Gp is coanalytic. The verification is easy but tedious, and
for more details we refer the reader to [Bos].

From Theorems 3.2 and 2.3 we obtain the following result, whose first
assertion is Bourgain’s result ([Bou2]).
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Corollary 3.4. Let X be a separable Banach space.

(i) Every reflexive separable space has an isomorphic copy in X iff X
is universal.

(ii) Every reflexive separable space is isomorphic to a subspace of a quo-
tient space of X iff X contains an isomorphic copy of `1(ω).

(iii) Every reflexive separable space is isomorphic to a quotient space of
X iff X contains an isomorphic complemented copy of `1(ω).

Proof. We can suppose X ∈ SE . Let A1 be the family of Banach spaces
which have an isomorphic copy in X, A2 be the family of spaces which are
isomorphic to a subspace of a quotient space of X, and A3 be the family of
spaces which are isomorphic to a quotient of X. These families are stable
under isomorphism, and it is easy to see from Theorem 2.3 that they are
analytic.

If every separable reflexive space is in A1, then by Theorem 3.2 a uni-
versal space is in A1, thus X is universal. Since the other direction is clear,
(i) follows.

Now if every separable reflexive space is in A2, then U is in A2 by
Theorem 3.2, thus U is isomorphic to a subspace of a quotient of X. Since a
subspace of a quotient of X is isomorphic to a quotient of a subspace of X
(see for instance [L-T1], p. 85), there is some subspace Z of X such that U is
isomorphic to a quotient of Z. Then `1(ω) is isomorphic to a complemented
subspace of U by a property of U (Theorem 1.1), thus isomorphic to a
quotient of U , and finally isomorphic to a quotient of Z. Hence it is easy
to verify that `1(ω) is isomorphic to a (complemented) subspace of Z, thus
isomorphic to a subspace of X. The other direction is clear and (ii) follows.

In the same way, if every separable reflexive space is in A3, then U is
in A3, thus U , and `1(ω), are isomorphic to a quotient of X. And `1(ω) is
isomorphic to a complemented subspace of X. The other direction is clear,
(iii) follows, and the proof is complete.

The following corollary gives a characterization of U .

Corollary 3.5. Let X be a separable Banach space with a basis. Then
X contains a complemented copy of every separable reflexive Banach space
with a basis if and only if X is isomorphic to U .

Proof. We suppose X ∈ SE satisfies the first assertion. The set A =
{Y ∈ SE ; ∃Z ∈ SE , X ' Y ⊕ Z} is analytic (Theorem 2.3). Thus ϕ−1(A)
is analytic by Lemma 2.4, and contains WF (Theorem 1.2 and Lemma 1.4).
Since WF is not analytic, there is some θ 6∈ WF such that U2(θ), which
is isomorphic to U , is in A. Then X contains a complemented copy of U ,
thus contains a complemented copy of every Banach space with a basis. By
Theorem 1.1, X is isomorphic to U . The other direction is clear.
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By Theorem 2.3, the set of spaces which are isomorphic to a subspace
of a given space is analytic, hence by assertion (vi) of Corollary 3.3, the set
of spaces which do not contain an isomorphic copy of Z has no universal
element. This can be formulated as follows.

Corollary 3.6 Let X and Z be infinite-dimensional separable Banach
spaces such that Z is not isomorphic to a subspace of X. Then there exists
a separable Banach space Y such that Z is not isomorphic to a subspace of
Y and Y is not isomorphic to a subspace of X.

In the following theorem, we determine the topological complexity of the
family J consisting of the separable Banach spaces which do not contain
an isomorphic copy of `1(ω) and whose dual space is not separable. Quite
naturally, this family brings us to the next level of complexity.

Theorem 3.7. The family J is the difference of two coanalytic fami-
lies, and is neither coanalytic nor analytic. In fact , c−1(J ) reduces every
difference of two coanalytic sets.

Proof. Since J = G` \ Gs, by Corollary 3.3, J is the difference of two
coanalytic sets.

Since WF is a complete coanalytic set, the set D0 =WF×MF is neither
analytic nor coanalytic, and reduces every difference of two coanalytic sub-
sets; i.e. for any set A which is the difference of two coanalytic subsets
in a Polish space P , there is some Borel map φ from P to SE such that
φ−1(D0)=A.

To prove Theorem 3.7, it is therefore sufficient to prove the following
lemma.

Lemma 3.8. There is a Borel map ϕ3 : T 2 → SE such that

ϕ−1
3 (c−1(J )) = WF×MF.

We first produce a family {J(Aθ); θ ∈ T } of separable Banach spaces
such that J(Aθ) belongs to the family J iff θ 6∈ WF. As in Section 1, we
follow the lines of the construction of the James tree space, one of the first
examples of Banach spaces in J , built by R. C. James ([J1], or see [L-S]).

We equip the space c00(T ) of all finitely supported functions from T =
ω<ω to R with the norm ‖ · ‖J defined by

‖x‖2J = sup
{ k∑

j=0

(∑

s∈Ij
x(s)

)2}

where the supremum is taken over k ∈ ω? and over the finite sets
{Ij ; 0 ≤ j ≤ k} of pairwise disjoint intervals. Then we let J(T ) be the
completion of c00(T ) under ‖ · ‖J . For any A ⊆ T , we denote by J(A) the
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closed subspace of J(T ) generated by {χs; s ∈ A}, where χs is the charac-
teristic function of {s}. For instance, J({0, 1}<ω) is the James tree space.

Fact 3.9. (i) J(T ) does not contain an isomorphic copy of `1(ω)
(ii) If θ ∈WF, then J(θ) is reflexive.

Using an injection γ from ω<ω to {0, 1}<ω such that if s ≺ t then γ(s) ≺
γ(t), it is not difficult to see that J(T ) has an isometric copy in the James
tree space J({0, 1}<ω), thus (i) follows. And (ii) is proved by transfinite
induction, as in Theorem 1.2.

For any t = (ti)i ∈ T , we define

At = {t′ = (t′i)i ∈ T ; |t′| = |t|, t′j ∈ {2tj , 2tj + 1}
for any j such that 0 ≤ j ≤ |t|}.

If θ ∈ T , then Aθ =
⋃
t∈θ At is a subtree of T , and Aθ ∈WF iff θ ∈WF.

If θ = {s; s ≺ b} where b is a branch of T , then J(Aθ) is isometric to the
James tree space J({0, 1}<ω). Thus if θ 6∈WF, then J(Aθ)? is not separable.
We have shown

Fact 3.10. Let θ ∈ T .

(i) J(Aθ) does not contain an isomorphic copy of `1(ω).
(ii) J(Aθ) is reflexive iff θ ∈WF iff J(Aθ)? is separable.

Then we can suppose that U2(T )× J(T ) is a subspace of C(∆), and we
identify U2(θ) with U2(θ)× {0} and J(T ) with {0} × J(θ) for any θ ∈ T . It
is not difficult to see that the map ϕ3 : T 2 → SE defined by ϕ3[(θ, θ′)] =
U2(θ)⊕ J(A′θ) is Borel. We have to check that ϕ3 satisfies

ϕ−1
3 (c−1(J )) = WF×MF.

If (θ, θ′) ∈WF×MF, then neither U2(θ) is reflexive nor J(Aθ′) contains
`1(ω). By a theorem due to E. Odell and H. P. Rosenthal ([L-T1], 2.e.7),
U2(θ) ⊕ J(Aθ′) does not contain `1(ω), since the cardinality of (U2(θ) ⊕
J(Aθ′))?? is the same as the one of U2(θ) ⊕ J(Aθ′). Moreover (U2(θ) ⊕
J(Aθ′))? is not separable since J(Aθ′)? is not separable. Hence ϕ3((θ, θ′)) ∈
c−1(J ).

We suppose now that (θ, θ′) 6∈WF×MF. If θ 6∈WF, then U2(θ) contains
`1(ω) since U2(θ) ' U , thus ϕ3((θ, θ′)) 6∈ c−1(J ). If θ ∈ WF and θ′ ∈ WF,
then ϕ3((θ, θ′)) is reflexive, thus ϕ3((θ, θ′))? is separable, and ϕ3((θ, θ′)) 6∈
c−1(J ).

Consequently, ϕ−1
3 (c−1(J )) = WF × MF, and Lemma 3.8 and Theo-

rem 3.7 are proved.

4. Coanalytic ranks. Let G be a family of separable Banach spaces
which is stable under isomorphism and coanalytic. We refer to Section 0 for
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the definition of a coanalytic rank. If σ is a coanalytic rank on c−1(G), we
also say that σ is a coanalytic rank on G.

First we give some general results about coanalytic ranks.

Lemma 4.1. Let H be a countable set , P be a Polish space, and j :
P → P(H<ω) be such that j(x) is a tree on H. If for any h ∈ H<ω the
subset {x; h ∈ j(x)} is a Borel subset of P , then {x; j(x) is well founded}
is coanalytic, and the map ht ◦ j is a coanalytic rank on this subset , where
ht ◦ j(x) is the height of j(x).

Proof. Let n 7→ h(n) be an enumeration of H. For s ∈ ω<ω we denote
by hs ∈ H<ω the sequence (h(s(i)))i, and by j′ the map P → T defined by
j′(x) = {s ∈ ω<ω; hs ∈ j(x)}. By assumption, for any s ∈ ω<ω the subset

{x; s ∈ j′(x)} = {x; hs ∈ j(x)}
is Borel, thus j′ is Borel. Therefore j′−1(WF) = {x; j(x) is well founded}
is coanalytic, and ht ◦ j′ is a coanalytic rank on this coanalytic subset (see
Proposition 0.1(iv)). For every x ∈ P , ht(j ′(x)) = ht(j(x)) since the map
s 7→ hs from j′(x) to j(x) is bijective and respects inclusion (i.e. s ≺ t ⇒
hs ≺ ht). Lemma 4.1 is proved.

Let P be a Polish space. Every map d from F(P ) to F(P ) such that
d(F ) ⊆ F for any F ∈ F(P ), and d(F ) ⊆ d(F ′) if F ⊆ F ′, is called a
derivation.

If d is a derivation, we associate to it an ordinal index σd defined as
follows. Let F ∈ F(P ). We set F (0) = F , and inductively define, for an
ordinal α,

F (α+1) = d(F (α))

and
F (β) =

⋂

α<β

F (α) if β is a limit ordinal.

Since P is Polish, for some α < ω1 we have F (α+1) = F (α). We let
σd(F ) = min{α; F (α) = ∅} if such an ordinal exists, and ω1 otherwise.

We give without proof the following theorem. The first part is a classical
result of descriptive set theory, and following the same lines as in the proof of
this first part, it is not difficult to show the second part ([KL1], Chapter VI,
Section 1, Theorem 4).

Theorem 4.2. Let K be a metrizable compact set. Equip F(K) with the
Hausdorff topology.

(i) If d is a Borel derivation, then σd is a coanalytic rank on the coan-
alytic subset {F ; σd(F ) < ω1}.
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(ii) Let {dn; n ∈ ω} be a countable family of Borel derivations. Then
F 7→ sup{σdn(F ); n ∈ ω} defines a coanalytic rank on the coanalytic subset
{F ∈ F(K); ∀n ∈ ω, σdn(F ) < ω1}.

Our next statement is a quantitative version of Proposition 2.8.

Proposition 4.3. The notations and assumptions are those of Proposi-
tion 2.8.

(iii) Let C ⊆ E be such that c−1
1 (C) is coanalytic, and let σ : C → ω1

be a map. Then

σ ◦ c1 is a coanalytic rank on c−1
1 (C) iff

σ ◦ c2 is a coanalytic rank on c−1
2 (C).

The proof is a direct application of the definition of a coanalytic rank,
and of Proposition 2.8. The details are left to the reader.

We now give examples of natural coanalytic ranks on separable Banach
spaces. Our first set of examples consists of the ranks of embedding. Roughly
speaking, these ranks measure how long it takes to realize that a fixed space
does not embed into a given Banach space.

Let X be a separable Banach space with a basis, and let x be a fixed
basis of X. We define a rank of embedding rX : SE → [0, ω1] such that
rX(Y ) = ω1 iff X ⊂ Y . Let Y ∈ SE and k ∈ ω?.

We denote by Tk(Y ) the tree of finite sequences (zi)ni=0 in Y such that
(zi)ni=0 ∼k (xi)ni=0, and T (Y ) = {∅}∪⋃k∈ω?((k)_Tk(Y )) is a tree on ω?∪Y .

It is not difficult to see that X ⊂ Y if and only if T (Y ) is not well
founded. We will show (after stating Lemma 4.7) the following claim: if
T (Y ) is well founded, then ht(T (Y )) < ω1. We now define the rank of
embedding rX by rX(Y ) = ht(T (Y )) if T (Y ) is well founded, and ω1 if not.
Clearly rX(Y ) = rX(Z) if Y ' Z.

Theorem 4.4. The index rX is a coanalytic rank on the coanalytic fam-
ily GX of all separable Banach spaces which do not contain an isomorphic
copy of X.

In particular if x is the canonical basis of `1(ω), we obtain an index r`
which is a coanalytic rank on G`, and if x is a basis of C(∆), then rC(∆) is
a coanalytic rank of Gn.

To prove Theorem 4.4, we use the coding cb. Since GX is coanalytic
(Corollary 3.3), c−1

b (GX) = {y ∈ C(∆)ω; X 6⊂ sp(y)} is coanalytic. Theo-
rem 4.4 follows from the next lemma and Proposition 4.3.

Lemma 4.5. The map from c−1
b (GX) defined by y 7→ rX(sp(y)) is a co-

analytic rank on c−1
b (GX).
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In order to be able to use Lemma 4.1, we first reduce rX(sp(y)) to the
height of a tree on the countable set ω? ∪ Q<ω through a classical pertur-
bation result (see [L-T1], Proposition 1.a.9). For y ∈ C(∆)ω and k ∈ ω?, we
define

Tk(y) = {(zi)ni=0 ∈ Tk(sp(y)); n ∈ ω, zi ∈ spQ(y)}
and the following tree on Q<ω:

T ′k(y) = {µ0, µ1, . . . , µn); n ∈ ω, (µi · y)ni=0 ∈ Tk(y)}.
Then T (y) = {∅}∪ (

⋃
k∈ω?(k)_Tk(y)) is a tree on ω? ∪ spQ(y), and T ′(y) =

{∅} ∪ (
⋃
k∈ω?(k)_T ′k(y)) is a tree on ω? ∪Q<ω.

Lemma 4.6. For any h ∈ (ω?∪Q<ω)<ω, the subset α(h) = {y ∈ C(∆)ω;
h ∈ T ′(y)} is Borel.

Indeed, if h = (k, µ0, µ1, . . . , µn), then y ∈ α(h) iff (µi · y)ni=0 ∼k (xi)ni=0.
Lemma 4.6 follows.

Lemma 4.7. For any y ∈ C(∆)ω, we have rX(sp(y)) = ht(T ′(y)).

We postpone for a moment the proof of this technical lemma. Note that
using it, we see that if Y is a separable Banach space such that T (Y ) is
well founded, and if y is a sequence such that sp(y) = Y , then rX(Y ) =
ht(T (Y )) = ht(T ′(y)) < ω1, since T ′(y) is a tree on a countable set. This
proves the claim we made before stating Theorem 4.4.

Proof of Lemma 4.5. By Lemmas 4.6 and 4.1, the subset {y ∈ C(∆)ω;
T ′(y) is well founded} is coanalytic, and admits as coanalytic rank the map
y 7→ ht(T ′(y)), that is to say, by Lemma 4.7, the map y 7→ rX(sp(y)). Since

c−1
b (GX) = {y; rX(sp(y)) < ω1} = {y; T ′(y) is well founded}.

Lemma 4.5 follows and Theorem 4.4 is proved.

It remains to prove Lemma 4.7.

Proof of Lemma 4.7. Let M be the basis constant of x. The following
fact is proved in the same way as Proposition 1.a.9 of [L-T1] and we leave
the proof to the reader.

Fact 4.8. Let J be a subset of ω, and k ∈ ω?. If two sequences (zn)n∈J
and (z′n)n∈J in C(∆) satisfy (zn)n∈J ∼k (xn)n∈J and for any n ∈ J ,

‖zn − z′n‖ ≤
1

2Mk
· 1

2n+2 ,

then (z′n)n∈J ∼2k (xn)n∈J .

Let y ∈ C(∆)ω. Since T (y) ⊆ T (sp(y)), if T (sp(y)) is well founded, then
T (y) is well founded and ht(T (y)) ≤ ht(T (sp(y))).
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We will define a map ` : T (sp(y)) → T (y) respecting inclusion (i.e.
s ≺ t ⇒ `(s) ≺ `(t)). Thus by a classical result (see [K-L1], p. 141) if T (y)
is well founded, then T (sp(y)) is well founded and ht(T (sp(y))) ≤ ht(T (y)).
For every (z, n, k) ∈ C(∆)× ω × ω?, we pick z(n, k) ∈ spQ(y) such that

‖z − z(n, k)‖ ≤ 1
2Mk

· 1
2n+2 .

Then we set `(∅) = ∅; for any k ∈ ω?, `((k)) = (2k); and for any ζ =
(k, z1, . . . , zn) ∈ T (sp(y)), `(ζ) = (2k, z1(1, k), z2(2, k), . . . , zn(n, k)). Then
` clearly respects inclusion, and `(ζ) ∈ T (y) by Fact 4.8. Consequently,
T (y) is well founded iff T (sp(y)) is well founded, and rX(sp(y)) = ht(T (y)).
To show that ht(T (y)) = ht(T ′(y)) for every z ∈ spQ(y), we pick µ(z) ∈
Q<ω such that µ(z) · y = z. Then the map from T (y) to T ′(y) defined
by (k, z0, z1, . . . , zn) 7→ (k, µ(z0), µ(z1), . . . , µ(zn)) clearly respects inclusion.
And so does the map from T ′(y) to T (y) defined by (k, µ0, µ1, . . . , µn) 7→
(k, µ0·y, µ1·y, . . . , µn·y). Thus ht(Y (y)) = ht(T ′(y)). Lemma 4.7 is proved.

When a separable Banach space X is generated by a sequence x which
is not a basis, we cannot use Fact 4.8 since there is no analogue of Proposi-
tion 1.a.9 of [L-T1]. However, we can still define a coanalytic rank on GX in
a similar manner. The proof is not difficult but slightly longer. We leave the
details to the reader (see [Bos], Theorem 4.8) and just outline the argument.

We fix an enumeration m 7→ λm = (λmi )i of Q<ω such that the length
|λm| of the sequence λm satisfies |λm| ≤ m. We define a rank of embedding
r′X : SE → [0, ω1] such that r′X(Y ) = ω1 iff X ⊂ Y as follows. Let Y ∈ SE .
For any k ∈ ω?, we denote by Ak(Y ) the tree on Y <ω consisting of the
empty sequence and of sequences ((z0

0), (z1
0 , z

1
1), (z2

0 , z
2
1 , z

2
2), . . . , (zn0 , z

n
1 , z

n
2 )),

n ∈ ω?, such that

(1) for any i, j, j′ ∈ ω such that 0 ≤ i ≤ j ≤ j′ ≤ n,

‖zji − zj
′

i ‖ ≤
k

2j
,

(2) for any m, j ∈ ω such that 0 ≤ m ≤ j ≤ n,

k−1
∥∥∥
∑

i

λmi z
j
i

∥∥∥ ≤
∥∥∥
∑

i

λmi xi

∥∥∥ ≤ k
∥∥∥
∑

i

λmi z
j
i

∥∥∥.

Then the tree A(Y ) on ω? ∪ Y <ω is defined by

A(Y ) = {∅} ∪
[ ⋃

k∈ω?
(k)_Ak(Y )

]

and r′X(Y ) is the height of A(Y ) if A(Y ) is well founded, and ω1 if not.
Using this approach and the same notation, we can state, for an arbitrary

separable Banach space X:
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Theorem 4.9. (i) The tree A(Y ) is not well founded iff X ⊂ Y .
(ii) The index r′X is a coanalytic rank on GX .

The proof, which is similar to that of Theorem 4.4, is left to the reader.
Our second family of coanalytic ranks consists of the Szlenk indices,

which we now define. We refer to [G-2] for a recent survey on this notion.
Let X be a separable Banach space and ε > 0. We define two derivations

on F(BX?) by

δ(ε) : F 7→ F [′]
ε = {x? ∈ F ; ‖ · ‖- diam(H ∩ F ) ≥ ε

for all w?-open half-spaces H 3 x?},
d(ε) : F 7→ F ′ε = {x? ∈ F ; ‖ · ‖- diam(V ∩ F ) ≥ ε

for all w?-open sets V 3 x?},

that is to say, F ′ε (resp. F [′]
ε ) is what is left from F when all w?-open subsets

(resp. w?-open slices) of diameter less than ε are removed.
We set ζε = σd(ε), ξε = σδ(ε) and

ζ(F ) = sup
ε>0

ζε(F ) (= sup
ε∈Q?+

ζε(F )), ξ(F ) = sup
ε>0

ξε(F ) (= sup
ε∈Q?+

ξε(F )).

Let now Sz(X) = ζ(BX?) and τ(X) = ξ(BX?).
The index Sz, which is usually called the Szlenk index , has been intro-

duced by W. Szlenk in [Sz]. The index τ is called the dentability index . It
is clear that if X ' Y , then Sz(X) = Sz(Y ) and τ(X) = τ(Y ). If Y ⊂ X,
then Sz(Y ) ≤ Sz(X) and τ(Y ) ≤ τ(X).

Proposition 4.10. Let X be a separable Banach space. The following
assertions are equivalent :

(i) X? is separable,
(ii) Sz(X) < ω1,
(iii) τ(X) < ω1.

This proposition is a classical application of Baire’s theorem and of a
result due to I. Namioka and R. Phelps ([N-P] or see [D-G-Z], Theorem I-5-2,
or [G-2]).

Theorem 4.11. The indices Sz and τ are both coanalytic ranks on the
family Gs of all Banach spaces with a separable dual space.

Clearly we have Sz(X) ≤ τ(X), and by Proposition 0.1 we obtain the
following quantitative version of Proposition 4.10.

Corollary 4.12. There exists a universal function ψ : ω1 → ω1 such
that if α < ω1 and if X is a separable Banach space which satisfies
Sz(X) ≤ α, then τ(X) ≤ ψ(α).
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G. Lancien shows in [La] (see [La1] and [La2]) that Corollary 4.12 is true,
with the same function ψ, for arbitrary Banach spaces, and uses it as a tool
for obtaining renorming results.

Proof of Theorem 4.11. The proof is the same for Sz and τ . We do it
for Sz. We use the coding cd (see Section 2). It is sufficient to show that
the index defined on c−1

d (Gs) = {w ∈ `1(ω)ω; (`1(ω)/ sp(w))? separable} by
w 7→ Sz(`1(ω)/ sp(w)) is a coanalytic rank on c−1

d (Gs). We denote by K the
closed unit ball of `∞(ω) and we equip it with the w?-topology. Thus K
is a metrizable compact set. The set F(K) is equipped with the Hausdorff
topology.

Using compactness of K it is not difficult to show by classical methods
the following two lemmas. We leave the proofs to the reader.

Lemma 4.13. For ε > 0, the derivation d(ε) is Borel.

For w ∈ `1(ω)ω, we denote by Kw the closed unit ball of the subspace
w⊥ of `∞(ω).

Lemma 4.14. The map k : `1(ω)ω → F(K) defined by K(w) = Kw is
Borel.

Since ζ(F ) = supε∈Q?+ζε(F ), Lemma 4.13 and Theorem 4.2 imply that
ζ is a coanalytic rank on the coanalytic subset {F ∈ F(K); ζ(F ) < ω1}. By
a classical result, w⊥ and (`1(ω)/ sp(w))? are isometric and w?-isomorphic,
thus we obtain easily Sz(`1(ω)/ sp(w)) = ζ(Kw).

By Proposition 0.1(iv) and Lemma 4.14, the map from `1(ω)ω to [0, ω1]
defined by w 7→ ζ(Kw) is a coanalytic rank on the coanalytic subset
k−1({F ; ζ(F ) < ω1}), which is {w ∈ `1(ω)ω; Sz(`1(ω)/ sp(w)) < ω1} =
c−1
d (Gs) by Proposition 4.10. Theorem 4.11 is proved.

We give (with an outline of proofs) some results about the Radon–
Nikodym property (RNP). For definition and general results about RNP,
we refer to [D-U], and for complete proofs of the statements below, to [Bos].

We define three indices as follows. Let X be a separable Banach space,
F be a subset of BX , and ε > 0. We set

D1(ε)(F ) = {x ∈ F ; x ∈ conv(F \B(x, ε))},
D2(ε)(F ) = {x ∈ F ; diam(H ∩ F ) > ε for all open half space H 3 x},
D3(ε)(F ) = {x ∈ F ; ∀ε′ ∈ (0, ε), x ∈ conv(F \B(x, ε′))}.

In the same way as for a derivation, for any i ∈ {1, 2, 3} we define the index
%i(ε) and we set %i(F ) = supε>0%i(ε)(F ), %i(X) = %i(BX). The definitions
of the indices %1 and %2 are more natural, but if F is closed, it is not clear that
D1(ε)(F ) is closed as well, and for D2(ε), if X? is not separable a problem
occurs with the cardinality of the set of open half spaces. The index %3 looks
more convenient, and in fact we have:
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Lemma 4.15. Let X be a separable Banach space. Then %1(X) = %2(X)
= %3(X).

In the following, we denote this index by %(X). If X ' Y , we clearly have
%(X) = %(Y ). It is not clear if % is a coanalytic rank on Gp. But we have the
following result which shows that % has some properties of coanalytic ranks.

Theorem 4.16. (i) A separable Banach space X has RNP iff %(X)<ω1.
(ii) If A is an analytic family of separable Banach spaces with RNP ,

which is stable under isomorphism, then there is some ordinal α < ω1 such
that %(X) ≤ α for any X of the family.

Sketch of proof. (i) is a direct consequence of the definition of % and
RNP. To prove (ii), we need the following lemma.

Lemma 4.17. For ε > 0, the derivation D3(ε) from F(BC(∆)) to
F(BC(∆)) is such that {(F,G); G ⊆ D(ε)(F )} is analytic.

With this lemma, we can apply the following Theorem 4.18 on transfinite
uniform boundedness, due to C. Dellacherie ([D]).

Theorem 4.18. Let P be a Polish space. Equip the set F(P ) with the
Effros–Borel structure. Let D : F(P ) → F(P ) be a derivation, and %D the
associated index. If {(F,G) ∈ F(P )2; G ⊆ D(F )} is an analytic subset ,
then

(i) C = {F ; %D(F ) < ω1} is coanalytic.
(ii) If A ⊆ C is analytic, then there is some ordinal α < ω1 such that

%D(F ) ≤ α for any F ∈ A.

Now let A be a family satisfying the assumption of Theorem 4.16(ii).
Then A = {BX ; X ∈ c−1(A)} is analytic since the map SE → F(BC(∆))
defined by X 7→ BX is Borel. For any ε ∈ Q?+, by Lemma 4.17 and The-
orem 4.18 there is some ordinal αε < ω1 such that supF∈A %(ε)(F ) ≤ αε.
Then

sup
F∈A

%(F ) = sup
F∈A

sup
ε∈Q?+

%(ε)(F ) ≤ sup
ε∈Q?+

αε = α < ω1

and
sup

X∈c−1(A)
%(X) = α < ω1.

Theorem 4.16 follows.

In [Lo] H. P. Lotz has shown that if X is a closed subspace of a Banach
space with an unconditional basis, then X? is separable iff X does not
contain `1(ω) isomorphically, or in other words Sz(X) < ω1 iff r`(X) < ω1

where r` is the rank of embedding of `1(ω). It is not difficult to see that
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{X ∈ SE ; ∃Y ∈ SE such that X ⊂ Y and Y has an unconditional basis} is
analytic. Then by Proposition 0.1(iii) we obtain

Theorem 4.19. There exist two universal functions ψ1 : ω1 → ω1 and
ψ2 : ω1 → ω1 such that , if X is a closed subspace of a Banach space with
an unconditional basis, and if Sz(X) ≤ α < ω1 and r`(X) ≤ β < ω1, then
r`(X) ≤ ψ1(α) and Sz(X) ≤ ψ2(β).

Remark. Without using trees on ω, A. Sersouri ([Se]) has shown that
there is a family of Banach spaces with separable dual on which r` is bounded
by a countable ordinal, and Sz is not. That proves, without giving an explicit
construction, that there is a Banach space with separable dual which does
not contain `1(ω) isomorphically.

We refer to [Bos3] and [B-L] for other applications of coanalytic ranks
to Banach space theory.

5. Coding of basic sequences up to equivalence. We wish to de-
velop, for basic sequences and equivalence between bases, a theory similar to
what we did for separable spaces and isomorphisms. To do that, we first need
a universal space. We use the basis u of Pełczyński’s universal space U (see
Theorem 1.1) to define a coding of basic sequences up to equivalence. We
determine the topological complexity of some families of basic sequences,
such as “shrinking” or “boundedly complete” basic sequences. Using the
Szlenk indices of the space and its dual space, we deduce a coanalytic rank
on the family of reflexive Banach spaces with a basis.

We denote by P(ω) the set of subsets of ω. For P ∈ P(ω) we denote by
(P (i)) the increasing sequence of its elements, and UP is the closed subspace
of U generated by the basis uP = (uP (i))i. By Theorem 1.1, for any basic
sequence (xi)i, there is some P ∈ P(ω) such that uP ∼ (xi)i. The equiva-
lence relation ∼ on P(ω) is defined by P ∼ Q iff uP ∼ uQ, and we denote
by 〈P 〉 the equivalence class of P .

Definition 5.1. A coding of basic sequences up to equivalence is a map
from a set E onto P(ω)/∼. The canonical coding is the quotient map from
P(ω) onto P(ω)/∼.

The equivalence relation E0 on 2ω defined by E0 = {(s, t) ∈ 2ω × 2ω;
∃n ∈ ω, ∀m ≥ n, s(m) = t(m)} is Borel and has no analytic section. And if
E is an analytic equivalence relation on a Polish space X, and E0 embeds
into E (i.e. there is a Borel injective map f : 2ω → X such that sE0t iff
f(s)Ef(t)), then E has no analytic section. We refer the reader to [H-K-L]
for a deeper discussion of Borel equivalence relations.

Theorem 5.2. In P(ω)2, the equivalence relation ∼ is Borel and E0

embeds into ∼. Thus ∼ has no analytic section.
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Proof. Let P,Q ∈ P(ω). Then P ∼ Q iff there is K ∈ ω? such that for
all λ ∈ Q<ω,

1
K

∥∥∥
∑

i

λiuP (i)

∥∥∥ ≤
∥∥∥
∑

i

λiuQ(i)

∥∥∥ ≤ K
∥∥∥
∑

i

λiuP (i)

∥∥∥.

It is not difficult to see that ∼ is Borel.
To show that E0 embeds into ∼, we use S. Bellenot’s result ([Be]): there

is a basic sequence such that two subsequences are equivalent iff only a finite
number of terms are distinct.

Let L ∈ P(ω) be such that uL is equivalent to Bellenot’s sequence.
Define a map 2ω → P(ω) by s 7→ Ps with Ps(i) = L(2i) if s(i) = 0 and
Ps(i) = L(2i+ 1) if s(i) = 1. Since this map is continuous and injective, it
is an embedding of E0 into ∼. Indeed, let (s, t) ∈ 2ω × 2ω; then (s, t) ∈ E0

iff there is some n ∈ ω such that s(i) = t(i) if i ≥ n, thus iff uPs ∼ uPt .
For a family S of basic sequences, we denote by S(P) the subset

{P ∈ P(ω); uP is in S}. In the same way as in Section 3, we define:

Definition 5.3. A family S of basic sequences, stable under ∼, is ana-
lytic (resp. coanalytic, Borel) if S(P) is analytic (resp. coanalytic, Borel).

If such a family S is coanalytic, an ordinal index σ defined on basic
sequences and stable under equivalence is a coanalytic rank on S if P 7→
σ(uP ) is a coanalytic rank on S(P).

We recall some definitions and properties relating to basic sequences
which are shrinking or boundedly complete (see [L-T1]). A basis (xi)i∈ω
of a Banach space X is shrinking if the sequence (xi?)i∈ω of biorthogonal
functionals is a basis of X?, and boundedly complete if for every sequence
of scalars (ai)i∈ω such that supn ‖

∑n
i=1 aixi‖ < ∞, the series

∑∞
n=1anxn

converges. The basis (xi)i∈ω is boundedly complete iff X = sp({x?i ; i ∈ ω})?;
then we define X? = sp({x?i ; i ∈ ω}). A basic sequence (xi)i∈ω is shrinking
or boundedly complete if it has this property in sp({xi; i ∈ ω}).

R. C. James has shown ([J-2] or [L-T1]) that if X is a Banach space
with a basis (xi)i∈ω, then X is reflexive iff (xi)i∈ω is both shrinking and
boundedly complete.

The main result of this section is the following.

Theorem 5.4. (i) The family Ss of shrinking basic sequences is coana-
lytic non-Borel , and the ordinal index x 7→ Sz(sp(x)) is a coanalytic rank
on Ss.

(ii) The family Sb of boundedly complete basic sequences is coanalytic
non-Borel , and the ordinal index x 7→ Sz((sp(x))?) is a coanalytic rank on
Sb. In fact , Ss(P) and Sb(P) are complete coanalytic subsets.
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Corollary 5.5. The family Sr of bases of reflexive spaces is coanalytic
non-Borel , and the ordinal index x 7→ sup(Sz(sp(x)),Sz(sp(x)?)) defines a
coanalytic rank on Sr. In fact Sr(P) is a complete coanalytic subset.

We do not know if the ordinal index defined by sup(Sz(X),Sz(X?)) when
X is a separable reflexive space is a coanalytic rank on the family Gr of
separable reflexive Banach spaces.

The Szlenk index of a separable reflexive Banach space does not control
the Szlenk index of its dual space. In [La] G. Lancien has shown that the
family of reflexive spaces {Xα; α < ω1} considered by W. Szlenk ([Sz])
satisfies, for every α < ω1, Sz(Xα) ≥ α and Sz(X?

α) ≤ ω. It follows that a
separable Banach space which contains an isomorphic copy of every reflexive
space with a Szlenk index less than ω does not have RNP.

We now proceed to the proof of Theorem 5.4. This is done through
several lemmas.

Lemma 5.6. The subsets Ss(P), Sb(P) and Sr(P) of P(ω) are not Borel.

Proof. We use the family {U2(θ); θ ∈ T } (see Section 1). Let PT ∈ P(ω)
be such that uPT is equivalent to the basis {χsi ; i ∈ ω} of U2(T ). For θ ∈ T
we set Pθ = {PT (i); si ∈ θ}. Thus uPθ ∼ (χsi ; si ∈ θ) and UPθ ' U2(θ).

The map ϕb : T → P(ω) defined by ϕb(θ) = Pθ is clearly continuous,
and

ϕ−1
b (Ss(P)) = ϕb−1(Sb(P)) = ϕ−1

b (Sr(P)) = WF.

Indeed, if θ ∈ WF, then UPθ ' U2(θ) is reflexive, thus uPθ is shrinking
and boundedly complete, and Pθ ∈ Ss(P)∩Sb(P)∩Sr(P). If θ 6∈WF, then
UPθ ' U2(θ) ' U , thus uPθ is neither shrinking nor boundedly complete,
and Pθ is neither in Ss(P) nor in Sb(P) nor in Sr(P). Lemma 5.6 follows
since WF is not Borel.

We can show that Ss, Sb and Sr are coanalytic by classical methods, but
it will follow from results about coanalytic ranks.

We need a more general lemma about the convergence index (see [K-L2]),
which is defined as follows. Let X be a Banach space, K be a compact metric
space and (fm)m∈ω be a sequence of continuous functions from K to X. The
set F(K) of closed subsets of K is equipped with the Hausdorff topology.
For any ε > 0, Dc(ε) is the derivation on F(K) defined by

Dc(ε)(F ) = {x ∈ F ; ∀V 3 x open subset, ∀N ∈ ω?,
∃m ≥ N, n ≥ N, x′ ∈ V ∩ F such that ‖fm(x′)− fn(x′)‖ ≥ ε}.

We denote by γε the associated index (see Section 4), and the convergence
index γ of (fm)m∈ω is

γ(F ) = sup
ε>0

γε(F ) = sup
ε∈Q?+

γε(F ).
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It is classical that γ(F ) < ω1 iff (fm)m∈ω pointwise converges on F .

Lemma 5.7. (i) For ε > 0, the derivation Dc(ε) is Borel.
(ii) The convergence index γ is a coanalytic rank on the coanalytic subset

{F ∈ F(K); (fm)m∈ω pointwise converges on F}.
Proof. The proof of (i) is done by classical methods and we leave it to

the reader. Then (ii) follows by Theorem 4.2.

For n ∈ ω we denote by Πn the projection from U onto sp({ui; i ≤ n})
defined by Πn(ui) = ui if i ≤ n, and 0 if not. Then Π?

n : U? → U? satisfies
Π?
n(u?i ) = u?i if i ≤ n, and 0 if not. And Π?

n is w?-continuous since Πn is
continuous. Since the range of Π?

n is finite-dimensional, Π?
n is continuous

from (U?, w?) to (U?, ‖ · ‖). We denote by KU? the compact metric set
(BU? , w?). Then Π?

n : KU? → (U?, ‖ · ‖) is continuous.
In the following, we denote by γ the convergence index of (Π?

n)n∈ω. By
Lemma 5.7 we obtain

Fact 5.8. The subset of F(KU?) defined by {F ; γ(F ) < ω1} =
{F ; (Π?

n)n∈ω pointwise converges on F} is coanalytic, and γ is a coana-
lytic rank on this subset.

We will use a coding which is slightly different from the canonical cod-
ing, but equivalent by Propositions 2.8 and 4.3. Let P0 = {P ∈ P(ω);
uP is complemented}. By Theorem 1.1, for every basic sequence x, there is
some P ∈ P0 such that uP ∼ x. Thus the map P0 → P(ω)/∼ defined by
P 7→ 〈P 〉 is a coding of basic sequences up to equivalence. It is not difficult
to prove that P0 is Borel, and that so is {(P,Q) ∈ P(ω)× P0; 〈P 〉 = 〈Q〉}.
Thus P0 is a standard Borel space, and the assumptions of Propositions
2.8 and 4.3 are fulfilled. That ensures that the coding is equivalent to the
canonical coding in the sense of these propositions. We denote by Ss(P0),
Sb(P0), Sr(P0) the subsets Ss(P) ∩ P0, Sb(P) ∩ P0, and Sr(P) ∩ P0.

Let P ∈ P0 and denote by KP the unit ball of sp?({u?i ; i ∈ P}). We
have U = UP ⊕ Uω\P and

sp?({u?i ; i ∈ P}) = U⊥ω\P ' (U/Uω\P )? ' U?P .
The spaces U?P and U⊥ω\P are ‖ · ‖-isomorphic and w?-isomorphic, via an

isomorphism such that the image of the sequence of biorthogonal functionals
of uP is the sequence (u?P (i))i∈ω. That justifies the coding from P0. We
identify U?P and sp?({u?i ; i ∈ P}).

Lemma 5.9. (i) The map ϕ4 : P0 → F(KU?) defined by ϕ4(P ) = KP is
Borel.

(ii) Let P ∈ P0. Then uP is shrinking iff γ(KP ) < ω1.
(iii) Let P ∈ P0 be such that uP is shrinking. Then γ(KP ) = Sz(UP ).
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Proof. (i) It is sufficient to prove that {P ∈ PO; KP ⊆ O} is Borel when
O is a w?-open subset of BU? . Thanks to the w?-compactness of BU? , the
proof is not difficult and we leave it to the reader.

(ii) The sequence uP is shrinking iff

sp?({u?i ; i ∈ P}) = sp({u?i ; i ∈ P})
iff (Π?

n)n∈ω pointwise converges on KP

iff γ(KP ) < ω1.

(iii) We refer to Section 4 for notations. Using the w? and norm isomor-
phism between U?P and sp?({u?i ; i ∈ P}), we obtain Sz(UP ) = ζ(KP ). It is
sufficient to prove that ζ(KP ) = γ(KP ) if P ∈ Ss(P0), i.e. if uP is shrinking.

Fact 5.10. Let P ∈ Ss(P0), ε > 0 and F ∈ F(KP ). Then F ′8ε ⊆ Dc(ε).
Thus ζ(KP ) ≤ γ(KP ).

Indeed, let x ∈ F ′8ε, N ∈ ω? and let V ∈ V?(x), the set of w?-neighbour-
hoods of x. Since uP is shrinking, there is n ≥ N such that ‖Π?

n(x)−x‖
≤ ε. Since Π?

n is w?-‖ · ‖ continuous, there exists V1 ∈ V?(x) such that
‖Π?

n(x′)−Π?
n(x)‖ ≤ ε for any x′ ∈ V1. Since diam(V ∩ V1 ∩ F ) > 8ε, there

is x′ ∈ V ∩ V1 ∩ F such that ‖x′ − x‖ ≥ 4ε. And there is m ≥ n such that
‖Π?

m(x′)− x′‖ ≤ ε.
We easily obtain

4ε ≤ ‖x′ − x‖ ≤ 3ε+ ‖Π?
m(x′)−Π?

n(x′)‖
thus

‖Π?
m(x′)−Π?

n(x′)‖ ≥ ε.
Therefore, x ∈ Dc(ε)(F ) since

∀V ∈ V?(x), ∀N ∈ ω?, ∃m ≥ N, ∃n ≥ N, ∃x′ ∈ V ∩ F
such that

‖Π?
m(x′)−Π?

n(x′)‖ ≥ ε.
By transfinite induction, it follows that ζ8ε(F ) ≤ γε(F ), thus ζ(F ) ≤ γ(F ),
and Sz(UP ) = ζ(KP ) ≤ γ(KP ).

Fact 5.11. Let P ∈ Ss(P0), ε > 0 and F ∈ F(KP ). Then Dc(3cuε)(F )
⊆ F ′ε, thus γ(KP ) ≤ ζ(KP ), where cu is the basic constant of u.

Indeed, let x ∈ F \ F ′ε. There is V ∈ V?(x) such that diam(V ∩ F ) ≤ ε,
and since uP is shrinking there is N ∈ ω such ‖Π?

m(x) − Π?
n(x)‖ ≤ cuε

for any m,n ≥ N . Since ‖Πn‖ = ‖Π?
n‖ ≤ cu for any n ∈ ω, and since

‖x′ − x‖ ≤ ε for any x′ ∈ V ∩ F , we obtain

‖Π?
m(x′)−Π?

n(x′)‖ ≤ ‖Π?
m(x′)−Π?

m(x)‖+ ‖Π?
m(x)−Π?

n(x)‖
+ ‖Π?

n(x)−Π?
n(x′)‖ ≤ 3cuε.
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Thus x 6∈ Dc(3cuε)(F ), and Dc(3cuε)(F ) ⊆ F ′ε. By transfinite induction we
obtain γ3cuε(F ) ≤ ζε(F ), thus γ(F ) ≤ ζ(F ) and

γ(KP ) ≤ ζ(KP ) = Sz(UP ).

Lemma 5.9(iii) follows.

Finally we are ready to show Theorem 5.4 and Corollary 5.5.

Proof of Theorem 5.4. (i) By Lemma 5.9 we have

ϕ−1
4 ({F ; γ(F ) < ω1} = {P ∈ P0; γ(KP ) < ω1}

= {P ∈ P0; uP shrinking}.
By Fact 5.8 this subset is coanalytic, and P 7→ γ(KP ) is a coanalytic

rank on it. Thus by Lemma 5.9(iii), P 7→ Sz(UP ) is a coanalytic rank on the
coanalytic subset Ss(P0).

Since the coding from P0 is equivalent to the canonical coding in the
sense of Propositions 2.8 and 4.3, it follows that P 7→ Sz(UP ) is a coanalytic
rank on the coanalytic non-Borel (by Lemma 5.6) subset Ss(P), and (i)
follows.

(ii) Let Q ⊆ ω be such that uQ ∼ (u?i )i∈ω. For P ∈ P0, uP is boundedly
complete iff (u?P (i))i∈ω is shrinking, by the ‖·‖ and w?-isomorphism between
U?P and sp?({u?i ; i ∈ P}). Since (u?P (i))i∈ω ∼ (uQ(P (i)))i∈ω), uP is boundedly
complete iff (uQ(P (i)))i∈ω) is shrinking.

It is not difficult to see that the map ϕ5i : P0 → P(ω) defined by
ϕ5(P ) = Q(P ) = {Q(P (i)); i ∈ ω} is Borel.

Since ϕ−1
5 (Ss(P)) = Sb(P0), we see that Sb(P0) is coanalytic, and

P 7→ Sz(UQ(P )) is a coanalytic rank on Sb(P0).
When uP is boundedly complete, with P ∈ P0, we have UQ(P ) '

sp({u?i ; i ∈ P}) ' (UP )?. Thus P 7→ Sz[(UP )?] is a coanalytic rank on
Sb(P0). By equivalence between codings, (ii) follows.

Finally, the proof of Lemma 5.6 shows that Ss(P) and Sb(P) are complete
coanalytic subsets.

Proof of Corollary 5.5. If P ∈ P(ω) is such that UP is reflexive then
(UP )? = U?P . Since Sr(P) = Ss(P) ∩ Sb(P), Corollary 5.5 follows. By the
proof of Lemma 5.6, Sr(P) is a complete coanalytic subset.

6. The embedding of E0 into the isomorphism relation. The
equivalence relation E0 (whose definition is recalled in Section 5) has no
measurable selection, and the main result of [H-K-L] asserts that this rela-
tion embeds into every non-smooth Borel equivalence relation R on a Polish
space P . We recall that this means there is a Borel 1-to-1 map f from 2ω

into P such that xE0y if and only if f(x)Rf(y). As shown in Section 2,
the isomorphism equivalence relation between separable Banach spaces is



A coding of separable Banach spaces 149

not Borel, hence we cannot apply [H-K-L]. However the following propo-
sition shows that the result still holds. Note that this embedding provides
an alternative way to show that the isomorphism relation has no analytic
section.

Proposition 6.1. The equivalence relation E0 on 2ω embeds into the
isomorphism relation on SE , and thus the latter has no analytic section.

To prove this result we will use the reflexive Banach space X with an
unconditional basic sequence and which fails the hyperplane property, built
by W. T. Gowers ([Gow]). A vector x ∈ X is denoted by

∑
i∈ωx(i)ei, and

supp(x) is the set {i ∈ ω; x(i) 6= 0}. Let x, y ∈ X, and n ∈ ω. The notations
x < y, x < n and x > n mean respectively max(supp(x)) < min(supp(y)),
max(supp(x)) < n, and min(supp(x)) > n. The space X satisfies a criterion
due to P. Casazza, that is: if (yn)n∈ω and (zn)n∈ω are two sequences in X
such that yn < zn < yn+1 for every n ∈ ω, then they are not equivalent.
The purpose of this criterion is to conclude that there is no proper subspace
Y of X such that Y ' X. In fact we show below a slightly more general
result. If F ∈ P(ω) and n ∈ ω, we define

F (n) = {i ∈ F ; i ≤ n} and XF = sp{en; n ∈ F}.

Lemma 6.2. Let F and G be two infinite subsets of ω such that there
is some strictly increasing sequence (ni)i∈ω which satisfies card(F (ni)) >
card(G(ni)) for every i ∈ ω. Then no subspace of XG is isomorphic to XF .

Proof. Assume there is an isomorphism T : XF → Y where Y is a
subspace of XG. We can suppose that card(supp(Ten)) is finite for any
n ∈ ω.

Since card(F (n0)) > card(G(n0)), it follows that dimTXF (n0) >
dimXG(n0), thus there is x0 ∈ F (n0) with ‖x0‖ = 1 such that Tx0 > n0, so
x0 < Tx0. Then there is m1 ∈ {ni; i ∈ ω} such that m1 > n0 and Tx0 < m1.
As before there is x1 ∈ XF (m1) with ‖x1‖ = 1 such that Tx1 > m1, since
card(F (m1)) > card(G(m1)). Thus we have x1 < Tx1 and Tx0 < Tx1.
By induction we obtain a sequence (xi)i∈ω in XF such that ‖xi‖ = 1 and
xi < Txi for any i ∈ ω, and Tx0 < Tx1 < Tx2 < . . . The sequence
(Txi)i∈ω is basic, and (xi)i∈ω is basic as well since T is an isomorphism.
Since X is reflexive, we can apply a classical result of Bessaga and Pełczyński
([L-T1], Prop. 1.a.12) to get a subsequence (xnk)k∈ω which is equivalent to
a block-basis (x′nk)k∈ω of the original basis, such that x′nk < Txnk . Tak-
ing a subsequence, we obtain two equivalent basic sequences (ym)m∈ω and
(zm)m∈ω such that ym < zm < ym+1. Thus X does not satisfy the Casazza
criterion, a contradiction.
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Proof of Proposition 6.1. We can suppose X ∈ SE . Let s = (s(i))i∈ω
∈ 2ω. We set

Xs = sp{e2i+s(i); i ∈ ω} and Fs = {n; n = 2i+ s(i), i ∈ ω}.
It is easy to verify that the map 2ω → SE defined by s 7→ Xs is Borel. Let
s, t ∈ 2ω.

If sE0t, then Xs and Xt have the same finite codimension in sp{Xs∪Xt},
thus Xs ' Xt.

If sE0t fails, then there is a strictly increasing sequence (ni)i∈ω such
that either card(Fs(ni)) > card(Ft(ni)) for any i ∈ ω, or card(Ft(ni)) >
card(Fs(ni)) for any i ∈ ω. Thus Xs 6' Xt by the Lemma.

Therefore E0 embeds into ', and it follows (see [H-K-L]) that ' has no
analytic section in SE .

Note that the proof of Proposition 6.1 gives an improvement of Theo-
rem 5.2, since when sE0t fails, the corresponding bases are not equivalent
and in fact the spaces Xs and Xt are not even isomorphic.
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