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Is P(ω) a subalgebra?
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Dedicated to the memory of Murray Bell

Abstract. We consider the question of whether P(ω) is a subalgebra whenever it is
a quotient of a Boolean algebra by a countably generated ideal. This question was raised
privately by Murray Bell. We obtain two partial answers under the open coloring axiom.
Topologically our first result is that if a zero-dimensional compact space has a zero-set
mapping onto βN, then it has a regular closed zero-set mapping onto βN. The second
result is that if the compact space has density at most ω1, then it will map onto βN if it
contains a zero-set that maps onto βN.

1. Introduction. As mentioned in the abstract, Murray Bell raised the
following question: if a compact zero-dimensional space has a zero-set which
maps onto βN, must the space map onto βN? It was proved in [Dow97] that
a negative answer follows from the Continuum Hypothesis (see also [vM01]
for a simpler proof of a stronger result). In this paper, we obtain partial
positive answers under the Open Coloring Axiom.

The question can be cast in Boolean algebraic language as follows. If I
is a countably generated ideal of a Boolean algebra B, and if B/I contains
P(ω), must B itself contain P(ω)? The following definition will be useful in
formulating our partial result and was introduced in [Dow97].

Definition 1.1. Let B be a Boolean algebra. We say that a family
A ⊂ B is separated from a family C if there is a b ∈ B such that a ≤ b for
all a ∈ A and b ∧ c = 0 for all c ∈ C. We say that a family A is completely
separated if for each C ⊂ A, A \ C is separated from C.

We will prove that if OCA holds, then a Boolean algebra B will have an
infinite completely separated family if it has a countably generated ideal I
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such that B/I contains P(ω). The examples constructed in [Dow97, vM01]
show that this is not true if CH is assumed. Another question suggests
itself here: does it suffice to just assume that B/I has an infinite completely
separated family? In the third section we prove that OCA provides a positive
answer to Bell’s question if the space we start with has a dense subset of
cardinality at most ω1.

The authors acknowledge the support received from the National Sci-
ence Foundation (USA) via grant DMS-0103985 and NSERC, National Sci-
ence Foundation (USA) grant DMS-40313-00 01, then NSERC again, re-
spectively.

2. Extending to regular closed under OCA. Recall that OCA is
the Open Coloring Axiom as formulated in [Tod89]. By [X]2 we denote the
reduced square of X, which is the set of all unordered pairs of elements of X.
To every Y ⊆ [X]2 naturally corresponds a symmetric subset of X2 disjoint
from the diagonal. If X is a topological space then on the reduced square we
consider the topology consisting of all sets that correspond to open subsets
(in the product topology) of X2. The statement OCA says:

if X is separable and metrizable and if [X]2 = K0 ∪ K1, where
K0 is open, then either X has an uncountable K0-homogeneous
subset Y or X is the union of countably many K1-homogeneous
subsets.

In Theorem 3.6 we will show that if B is a subalgebra of P(ω1) and I is
a countably generated ideal on B such that B/I contains P(ω), then B
contains P(ω) in a very strong sense. Our next result applies to Boolean
algebras which are not necessarily subalgebras of P(ω1).

Theorem 2.1 (OCA). If B is a Boolean algebra and I ⊂ B is a count-
ably generated ideal such that P(ω) embeds into the quotient algebra B/I,
then B has an infinite completely separated family.

Proof. Since I is countably generated, we may choose an increasing se-
quence {cn : n ∈ ω} of members of I which generates I. Since P(ω) em-
beds into B/I, there is an embedding of P(2<ω) into B/I as well. For each
a ⊂ 2<ω, let ã be a member of B, so that a 7→ ã/I is an embedding of
P(2<ω) into B/I. Enumerate 2<ω as sn (n ∈ ω). By recursively replacing
{̃sn} with {̃sn} \

∨
i<n {̃si}, we may assume that for s, t ∈ 2<ω,

{̃s} ∧ {̃t} 6= 0B if and only if s = t.

Assume for a moment there are infinitely many s for which there is ns
satisfying {̃s} ∧ (cm \ cns) = 0B for all m ≥ ns. Then for b ≤ {̃s} \ cns we
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have b ∈ I if and only if b = 0B. And therefore {̃s} \ cns form an infinite
completely separated family, as witnessed by ã (a ⊆ 2<ω).

We can therefore assume that for each s and every n there is m ≥ n such
that {̃s}∧ (cm \ cn) is nonzero. Find an increasing sequence {ni : i ∈ ω} ⊂ ω
such that for every s and all i ≥ |s| the element

x(s, i) = {̃s} ∧ (cni+1 \ cni)
is nonzero. By replacing ci with cni we may assume for simplicity that ni = i
for all i, and therefore

x(s, n) = {̃s} ∧ (cn+|s|+1 \ cn+|s|).

Then we have

(1) x(s, n) ∧ x(t,m) 6= 0B if and only if (s, n) = (t,m).
(2) x(s, n) ∧ cm = 0B if m ≤ |s|.

For each f ∈ 2ω, let

af = {f�n : n ∈ ω}.

Note that for each s = f�n, there is an m so that x(s, k) ≤ ãf for all k ≥ m.
In addition, for each b ⊂ af and each s ∈ af , there is an m so that

(3) if s ∈ b then x(s, k) ≤ b̃ for all k ≥ m,
(4) if s 6∈ b then x(s, k) ∧ b̃ = 0B for all k ≥ m.

Now we will try to show that there is an f ∈ 2ω, an infinite a ⊂ af , and an
h ∈ ωω such that {x(s, h(n)) : n ∈ a, and s = f�n} is completely separated.
In actual fact, it could be proved that

{{̃s} \ ch(n) : n ∈ a and s = f�n}
is completely separated, but this fact will not be used.

We will use Veličković’s OCA approach (as in [Vel93]). Let X denote the
family of all pairs (a, b) of infinite sets b ⊂ a ⊂ 2<ω such that there is an f
with a ⊂ af . Clearly then f is unique and we will use the notation fa and
fb to denote it. We will put a pair {(a, b), (c, d)} ⊂ X into a set K0 just in
case the following three conditions hold:

(1) fa 6= fc;
(2) b ∩ c = d ∩ a;
(3) there is a pair (s, n) such that

(a) x(s, n) ≤ ã ∧ c̃,
(b) exactly one of b̃ ∧ x(s, n) and d̃ ∧ x(s, n) is 0B .

Claim 1. There is no uncountable Y ⊆ X such that [Y]2 ⊆ K0.



94 A. Dow and I. Farah

Proof of Claim 1. Suppose that Y ⊆ X is uncountable and K0-homo-
geneous. Set

Y =
⋃
{b : (∃a) (a, b) ∈ Y}.

From the fact that Y is K0-homogeneous it follows that for each (a, b) ∈ Y
we have Y ∩ a = b. Let us consider the element Ỹ of B. For each (a, b) ∈ Y,
there is an n(a,b) such that (Ỹ ∩ ã)4 b̃ is contained in cn(a,b) . Fix any n so
that n = n(a,b) for an uncountable subset Y ′ of Y. There are only finitely
many (s,m) such that x(s,m)∧cn is not zero. We may assume that for each
such (s,m), either b̃ meets x(s,m) for each (a, b) ∈ Y ′ or b̃ is disjoint from
x(s,m) for each (a, b) ∈ Y ′. Now select distinct (a, b) and (c, d) from Y ′.
Since {(a, b), (c, d)} ∈ K0, there is a pair (s,m) such that x(s,m) ≤ ã ∧ c̃
and exactly one of b̃ and d̃ meets x(s,m). By our second reduction of Y ′
it follows that x(s,m) is disjoint from cn. Since (Ỹ ∧ ã) \ cn = b̃ \ cn, we
have Ỹ ∧ x(s,m) = b̃ ∧ x(s,m), and since (Ỹ ∧ c̃) \ cn = d̃ \ cn, we have
Ỹ ∧ x(s,m) = d̃ ∧ x(s,m), a contradiction.

Consider the following topology on X. An open set [ϕ] is obtained by
specifying a function, ϕ, from a finite set F ⊂ 2×2<ω×ω into 2. Given such
a ϕ with domain F , a pair (a, b) is a member of [ϕ] if the following hold:

(i) for each (0, s, 0) ∈ F , s ∈ a if and only if ϕ(0, s, 0) = 1,
(ii) for each (1, s, 0) ∈ F , s ∈ b if and only if ϕ(1, s, 0) = 1,

(iii) for each (0, s, n) ∈ F with n ≥ 1, x(s, n) ≤ ã if and only if
ϕ(0, s, n) = 1,

(iv) for each (1, s, n) ∈ F with n ≥ 1, 0 6= b̃ ∧ x(s, n) if and only if
ϕ(1, s, n) = 1.

This results in a separable metric topology on X and we may note that K0
is an open subset of the square.

Claim 2. If there are Yn (n ∈ ω) such that X =
⋃
n Yn and [Yn]2 ∩K0

= ∅ for all n, then there is an infinite completely separated subset of B.

Proof of Claim 2. Assume the contrary, i.e. that B contains no infinite
completely separated sequence. For each k, let Yk be a countable dense
subset of Yk with respect to the above-mentioned topology. Fix any g ∈ 2ω

such that g 6= fa for all (a, b) ∈ ⋃k Yk. For each n ∈ ω, let sn = g�n.
Recursively construct an increasing sequence 〈ni : i ∈ ω〉. Let n0 = 0 and

suppose that 〈ni : i ≤ k〉 has been defined. For each i ≤ k and each b′ ⊂ a′ ⊂
{sj : j < nk}, fix, if possible, a pair (a, b) ∈ Yi such that a′ = a∩{sj : j < nk}
and b′ = b ∩ {sj : j < nk}. Thus, we have chosen some finite set of pairs
from

⋃{Yi : i ≤ k}. Fix nk+1 large enough so that g�nk+1 6= fa�nk+1 for
each a from one of these finitely many pairs.
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Set A =
⋃{[nk, nk+1) : k is even} and a = {sj : j ∈ A}. Fix any function

h0 ∈ ωω such that for each n ∈ A and each m > h0(n) we have x(sn,m) ≤ ã.
For each h ≥ h0, fix an infinite Jh ⊂ A such that Ah = {x(sn, h(n)) :

n ∈ Jh} is not separated from Ch = {x(sn, h(n)) : n ∈ A \ Jh}. Now
temporarily set bh = {sn : n ∈ Jh} and consider b̃h. It follows that at least
one of b̃h and ã \ b̃h meets an infinite subset of each of Ah and Ch. If it is
the former, then leave bh as it is, if the latter, then reassign bh to a \ bh. In
either case, it follows that the set

zh = {s ∈ a \ bh : b̃h ∧ x(s, h(|s|)) 6= 0B}
is infinite.

For each h, there is an i such that (a, bh) is a member of Yi. Therefore
there is an i such that the family of strictly increasing h for which (a, bh) ∈ Yi
is dominating modulo finite in ωω.

Claim 3. There is an m such that for each l, there is an h such that
(a, bh) ∈ Yi, h(m) ≥ l, and sm ∈ zh.

Proof of Claim 3. Otherwise, we can, for each m, define f(m) so that
for h with (a, bh) ∈ Yi, either sm 6∈ zh or h(m) < f(m). Having defined such
an f , choose h with (a, bh) ∈ Yi so that there is an m′ such that f(m) < h(m)
for all m ≥ m′. Since zh is infinite, there is an m ≥ m′ such that sm ∈ zh.
Obviously this contradicts the choice of f .

Fix any m as in Claim 3. Choose a family {hl : l ∈ ω} such that, for
each l, sm ∈ zhl , hl(m) ≥ l, and (a, bhl) ∈ Yi. (We shall write bl for bhl from
now on.) By passing to a subsequence and re-enumerating, we can assume
that bk ∩ {sj : j ≤ l} = bl ∩ {sj : j ≤ l} for each k ≥ l.

Fix the minimal odd k such that m < nk. By the density of Yi and the
choice of the nk’s, there is a pair (c, d) ∈ Yi such that c ∩ {sj : j < nk}
= a ∩ {sj : j < nk}, d ∩ {sj : j < nk} = bnk ∩ {sj : j < nk} and fc�nk+1 6=
g�nk+1. Of course, since k is odd, A∩ [nk, nk+1) is empty, and since c ⊂ afc ,
c ∩ {sj : nk+1 ≤ j} is empty. Therefore,

(∗) a ∩ d = c ∩ bl for all l ≥ nk.
Finally, note that sm ∈ c \ d since sm ∈ zhnk ⊂ a \ bnk . Therefore, there is
an l such that

(∗∗) x(sm, j) ≤ c̃ \ d̃, x(sm, j) ≤ ã for all j ≥ l.
So we have x(sm, hl(m)) ∧ b̃l 6= 0B and x(sm, hl(m)) ∧ d̃ = 0B. By this, (∗),
(∗∗) and fa 6= fc, we have {(a, bl), (c, d)} ∈ K0, a contradiction. Claim 2 is
proved.

This completes the proof of Theorem 2.1.
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3. Completely additive almost liftings. If h: Y → X is any partial
function, then define Φh: P(X)→ P(Y ) by

Φh(A) = h−1(A).

A mapping F : P(X)→ P(Y ) is completely additive if there is an h: Y → X
such that F = Φh.

If θ is a cardinal then an ideal J on ω is θ-cc over fin if every family of
J -positive subsets of ω that are pairwise almost disjoint modulo finite has
size less than θ. If θ = ℵ1 then we say that J is ccc over fin (see [Far00,
§3.3]).

If X is a set, J is an ideal on ω, I is an ideal on X, and Φ: P(ω)/J →
P(X)/I is a Boolean algebra homomorphism, then a map Φ∗: P(ω)→ P(X)
is a lifting of Φ if the diagram

P(ω)
Φ∗ //

πJ
��

P(X)

πI
��

P(ω)/J Φ // P(X)/I

commutes, or in other words, if the formula [Φ∗(A)]I = Φ([A]J ) is true for
all A ∈ P(ω). In the case that Φ : P(ω) → P(X)/I is a homomorphism,
a lifting of Φ is a function Φ∗ : P(ω) → P(X) such that [Φ∗(A)]I = Φ(A)
is true for all A ∈ P(ω). Since we are not requiring the lifting to have any
algebraic properties, the Axiom of Choice implies that every homomorphism
has a lifting. The symbol Φ∗ will always stand for a lifting of Φ. A map
F : P(ω)→ P(X) is an almost lifting if the family

{A : [F (A)]I = Φ([A]J )}
includes an ideal that is ccc over fin. Again, in the case that there is no J
involved, F is an almost lifting if the family {A : [F (A)]I = Φ(A)} includes
an ideal that is ccc over fin.

If Φ: P(ω)→ P(X)/I is a homomorphism and B ⊆ X then let

ΦB: P(ω)→ P(B)/I
be the homomorphism whose lifting is C 7→ Φ∗(C) ∩ B, which we denote
as ΦB∗ .

Lemma 3.1. Assume I is an analytic ideal and Φ: P(ω)/fin → P(ω)/I
is a homomorphism. The following are equivalent :

(1) Φ has a continuous almost lifting.
(2) There is B ⊆ ω such that ΦB has a continuous lifting and ker(Φω\B)

is ccc over fin.
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Proof. This is [Far00, Lemma 3.3.4], using the fact that a homomorphism
has a Baire-measurable lifting if and only if it has a continuous lifting (see
[Far00, Lemma 1.3.2]).

Theorem 3.2. Assume OCA and MA and let I be a countably gener-
ated ideal on ω. Then every homomorphism Φ: P(ω)/fin → P(ω)/I has a
completely additive almost lifting.

Proof. By [Far00, Theorem 3.3.6], Φ has a continuous almost lifting.
By the second part of the same result, there is A ⊆ ω such that ΦA has a
continuous lifting and ker(Φω\A) is ccc over fin. Since the restriction of I to A
is countably generated, it is Rudin–Keisler isomorphic (see [Far00]) to either
fin or fin×∅. By [Far00, Theorems 1.6.1 and 1.6.2], ΦA has a completely
additive lifting Φh, and this is a completely additive almost lifting for Φ.

We will need the following improvement of Theorem 3.2 (or rather its
consequence, Corollary 3.4) that does not require ker(Φ) ⊇ fin. The proof
of Theorem 3.2 can be modified to a proof of Corollary 3.4 by making only
minor changes. For the convenience of the reader, we will give another proof,
using only those results that were both stated and proved in [Far00], instead
of their proofs.

Theorem 3.3. Assume that for every countably generated ideal I on ω
every homomorphism from P(ω)/fin into P(ω)/I has a completely additive
almost lifting. Then for every countably generated ideal I on ω every homo-
morphism of P(ω) into P(ω)/I has a completely additive almost lifting.

Proof. Let Φ: P(ω) → P(ω)/I be a homomorphism, and let Φ∗ be its
lifting. For n ∈ ω let

An = Φ∗({n}).
We first show that we may assume that no An is in I and that fin ⊂ I. Let
S0 = {n : {n} ∈ ker(Φ)} and S1 = ω \ S0.

We can define Φ0 : P(S0)→P(Φ∗(S0))/I and Φ1 : P(S1)→P(Φ∗(S1))/I
as the restrictions of Φ. By our assumption, Φ0 has a completely additive
almost lifting, given by say h0, and if we are able to find h1 for Φ1, then we
can define h to simply be h0 ∪ h1 and Φh is easily seen to be a completely
additive almost lifting of Φ. Therefore we may assume that ker(Φ) is {∅}.

Now let D = ω \⋃ I. For each d ∈ D, since Φ is a homomorphism and
Φ∗ is a lifting,

Ud = {C : d ∈ Φ∗(C)}
is an ultrafilter on ω. For each d ∈ D such that Ud is a fixed ultrafilter, d will
be in the domain of hD and define hD(d) to be that integer. Therefore, for
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C ⊂ ω, ΦhD(C) will equal Φ∗(C) ∩ dom(hD). For any C ⊂ ω such that
C 6∈ Ud for all d ∈ D \ dom(hD), we have ΦhD(C) = Φ∗(C) ∩D. The ideal
generated by such C is ccc over fin. That is, ΦD has a completely additive
almost lifting, hence it suffices to prove that Φω\D also has such a lifting.

Therefore, we may also assume that
⋃ I = ω. We now let I1 be the

ideal generated by I and {An : n ∈ ω}. By replacing An with ({n} ∪ An) \
(
⋃
i<nAi ∪ n), we may assume that ω is a disjoint union of An (n ∈ ω).

Then Φ∗ is a lifting of a homomorphism Ψ of P(ω) into P(ω)/I1 such that
ker(Ψ) ⊇ fin. Since I1 is countably generated, by our assumption there is
a partial function h: ω → ω such that Φh is a completely additive almost
lifting of Ψ . Let J be a ccc over fin ideal such that Φh is a lifting of Ψ on J .

Case 1. Assume there is m such that for all n ≥ m we have (writing
A =I B for A4B ∈ I)

An =I h−1({n}).
Define a partial function h1: ω → ω so that

• h1 agrees with h on ω \⋃i<mAi,
• h1(k) = i if k ∈ Ai and i < m.

We claim that Φh1 is an almost lifting for Φ. It will suffice to check that for
X ∈ J we have

DX = Φh1(X)4 Φ∗(X) ∈ I.
Since Φh(X) =I1 Φ∗(X), there is n ≥ m such that Φh(X) =I Φ∗(X) \⋃
i<nAi. Write A =

⋃
i<nAi. We have Φh1(X) 4 Φh(X) ⊆ A, therefore

DX \A ∈ I. But Φh1(X)∩A is equal to
⋃
i∈X∩nAi modulo I, which in turn

is equal to Φ∗(X)∩A modulo I. Therefore DX ∩A ∈ I, and this concludes
the proof in Case 1.

Case 2. The set X0 = {n : An 4 h−1({n}) 6∈ I} is infinite. Note that
for every Y ⊆ ω and all i we have

• i ∈ Y if and only if Ai \ Φ∗(Y ) ∈ I,
• i 6∈ Y if and only if Ai ∩ Φ∗(Y ) ∈ I.

If moreover Y ∈ J then we have Φh(Y ) =I1 Φ∗(Y ) and therefore

(∗) for all but finitely many i we have i ∈ Y if and only if Ai\Φh(Y ) ∈ I,
(∗∗) for all but finitely many i we have i 6∈ Y if and only if Ai∩Φh(Y ) ∈ I.

We will find Y ∈ J that contradicts (∗) or (∗∗), therefore proving that
Case 2 leads to contradiction.

Let us first consider the subcase when

X1 = {i ∈ X0 : (∃ni 6= i) h−1({ni}) ∩ Ai 6∈ I}
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is infinite. First find an infinite X2 ⊆ X1 such that

X2 ∩ {ni : i ∈ X2} = ∅.
Then find Y ⊆ {ni : i ∈ X2} such that Y ∈ J and {i ∈ X2 : ni ∈ Y }
is infinite (we are allowing Y itself to be finite). But there are infinitely
many i ∈ X2 such that ni ∈ Y . Therefore Φh(Y ) ∩ Ai 6∈ I for all such i,
contradicting (∗∗).

So it only remains to check the case when for all but finitely many i ∈ X0

we have
h−1({n}) ∩ Ai ∈ I

for all n 6= i. Let X1 be the set of such i. Since I is countably generated, for
each i ∈ X1 we can find an infinite Ji ⊆ ω such that

for every infinite C ⊆ Ji we have Φh(C) ∩ Ai 6∈ I.

Find an infinite Y ⊆ X1 such that Y ∈ J and Ji\Y is infinite for all i ∈ X1.
Then for every i ∈ Y we have Ai \ Φh(Y ) 6∈ I, contradicting (∗).

This exhausts all possibilities and concludes the proof.

The following is an immediate consequence of Theorems 3.2 and 3.3.

Corollary 3.4. Assume OCA and MA and let I be a countably gen-
erated ideal on ω. Then every homomorphism of P(ω) into P(ω)/I has a
completely additive almost lifting.

Definition 3.5. If θ is a cardinal, λ is any set, and Φ: P(ω)/J →
P(λ)/I is a homomorphism, then F : P(ω) → P(λ) is a θ-almost lifting
of Φ if the set

{A ∈ P(ω) : Φ∗(A) =I F (A)}
includes an ideal that is θ-cc over fin.

In particular, an ℵ1-almost lifting is an almost lifting in the usual sense.
The main result of this section is the following.

Theorem 3.6. Assume OCA and MA and let I be a countably gener-
ated ideal on ω1. Then every homomorphism Φ: P(ω) → P(ω1)/I has a
completely additive ℵ2-almost lifting.

Proof. Let Φ be as above and let Φ∗ be a lifting for Φ. Fix an increasing
sequence An (n ∈ ω) of subsets of ω1 which generate I. Let D = ω1 \⋃
n∈ω An. Then, analogously to what we saw in Theorem 3.3, ΦD has a

completely additive lifting. Also, if
⋃
n∈ω An is countable, then Φ has a

completely additive almost lifting by Theorem 3.2. Hence we may assume

ω1 =
⋃

n∈ω
An.
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Let J be the ideal orthogonal to I:

J = {B : An ∩B is finite for all n}.
By our convention that ω1 is covered by the union of An’s, every set in J
is countable. An easy diagonalization argument shows that if Bn ∈ J for
n ∈ ω, then there is B ∈ J such that Bn \ B is finite for all n. (Such a
family J is usually called a P-ideal of countable sets, or just a P-ideal if
J ⊆ P(ω).)

By Corollary 3.4, for every B ∈ [ω1]ℵ0 we can fix B ⊆ B and hB: B → ω
such that the mapping ΦhB is an almost lifting of ΦB. Define partitions
[[ω1]ℵ0 ]2 = K0 ∪K1, [[ω1]ℵ0 ]2 = Kn

0 ∪Kn
1 (n ∈ ω), as follows:

(1) {A,B} ∈ K0 if and only if hA(ξ) 6= hB(ξ) for some ξ ∈ A ∩B,
(2) {A,B} ∈ Kn

0 if and only if hA(ξ) 6= hB(ξ) for some ξ ∈ (A∩B)\An.

The following is almost identical to [Far00, Lemma 3.8.4], but we will re-
produce the proof for the reader’s convenience.

Lemma 3.7. For all A,B in [ω1]ℵ0 there is a large enough n such that
{A,B} ∈ Kn

1 .

Proof. Assume there is no such n. For every n find ξn ∈ (A ∩ B) \ An
such that hA(ξn) 6= hB(ξn). By applying Ramsey’s theorem, we may find an
infinite D ⊆ ω such that hA(ξm) 6= hB(ξn) for all {m,n} ⊆ D. The family
((ΦA)∗ and (ΦB)∗ are arbitrary liftings of ΦA and ΦB , respectively)

{C ⊆ ω : (ΦA)∗(C) =I ΦhA(C) & (ΦB)∗(C) =I ΦhB (C)}
includes an ideal that is ccc over fin, and therefore nonmeager ([Far00,
Lemma 3.3.2]). So we can find an infinite C ⊆ ω such that the set

⋃

n∈C
{hA(ξn), hB(ξn)}

belongs to this ideal (by a well known result of Jalali-Naini and Talagrand,
see e.g. [Far00, Lemma 3.10.2]). The sets

XA = {hA(ξn) : n ∈ C}, XB = {hB(ξn) : n ∈ C}
are disjoint. Hence Φ∗(XA) ∩ Φ∗(XB) ∈ I. But Φ∗(XA) ∩ A is equal to
h−1
A (XA) modulo I, and Φ∗(XB) ∩B is equal to h−1

B (XB) modulo I. Since
h−1
A (XA) ∩ h−1

B (XB) is not included in any An (as it contains ξm for some
m > n), we have a contradiction.

Consider [ω1]ℵ0 and J as posets under the ordering ⊆∗ of inclusion mod-
ulo finite: A ⊆∗ B if and only if A\B is finite. Since [ω1]ℵ0 and J are P-ideals
of countable sets, the posets ([ω1]ℵ0 ,⊆∗) and (J ,⊆∗) are σ-directed.
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Lemma 3.8. If for some m there is X1 ⊆ [ω1]ℵ0 that is Km
1 -homogeneous

and cofinal in ([ω1]ℵ0 ,⊆∗), then Φ has a completely additive ℵ2-almost lifting.

Proof. The homogeneity of X1 implies that

h =
⋃

B∈X1

hB�(B \ Am)

is a function. Assume Φh is not an ℵ2-almost lifting of Φ, and let Bξ (ξ < ω2)
be an almost disjoint family of subsets of ω such that the set

Yξ = Φ∗(Bξ)4 Φh(Bξ)

is not in I for all ξ. Since I is countably generated, for every X ∈ I+ there
is a δ < ω1 such that X ∩ δ ∈ I+. Find a countable ordinal δ such that
Yξ ∩ δ is not in I for ℵ2 many ξ. There is B ∈ X1 such that δ ⊆∗ B. Since
ΦhB (Bξ) \Am = Φh(Bξ) ∩ (B \Am) and

[(Φ∗(Bξ) ∩B)4 ΦhB (Bξ)] \Am = [(Φ∗(Bξ) ∩B)4 Φh(Bξ) ∩B] \ Am
= [Φ∗(Bξ)4 Φh(Bξ)] ∩ [B \ Am]

= Yξ ∩ [B \ Am],

we have (Φ∗(Bξ)∩B)4ΦhB(Bξ) 6∈ I for uncountably many ξ, contradicting
the fact that ΦhB is an almost lifting of ΦB .

In order to prove the assumption of Lemma 3.8 we will define partitions
[[ω1]ℵ0 ]2 = L0(C) ∪ L1(C) (C ⊆ ω) and [[ω1]ℵ0 ]2 = Ln0 (C) ∪ Ln1 (C) (n ∈ ω,
C ⊆ ω) as follows:

(1) {A,B} ∈ L1(C) if and only if hA(ξ) ∈ C ⇔ hB(ξ) ∈ C for all
ξ ∈ A ∩B,

(2) {A,B} ∈ Ln1 (C) if and only if hA(ξ) ∈ C ⇔ hB(ξ) ∈ C for all
ξ ∈ (A ∩B) \An.

Lemma 3.9. For every C ⊆ ω the following hold :

(a) There are Hn (n ∈ ω) such that each Hn is Ln1 (C)-homogeneous
and [ω1]ℵ0 =

⋃
nHn.

(b) There are H′n (n ∈ ω) such that each H′n is Ln1 (C)-homogeneous
and J =

⋃
nH′n.

(c) J has no uncountable Lk0(C)-homogeneous subsets for any k.

Proof. (a) For each B ∈ [ω1]ℵ0 , since B is countable it follows from
[Far00, Lemma 3.3.4] that there is a B ⊆ B such that ΦhB is a lifting of ΦB

and ker(ΦB\B) is ccc over fin. We may assume that B = dom(hB). There is
also an n = n(B) such that

ΦhB (C)4 (Φ∗(C) ∩B) ⊆ An.
Let

Hn = {B ∈ [ω1]ℵ0 : n(B) = n}.
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It will suffice to show that each Hn is Ln1 (C)-homogeneous. Fix A and B in
Hn. Pick ξ ∈ (dom(hA) ∩ dom(hB)) \ An. To check that {A,B} ∈ Ln1 (C),
note that hB(ξ) ∈ C if and only if ξ ∈ Φ∗(C) if and only if hA(ξ) ∈ C. Hence
{A,B} ∈ Ln1 (C).

Clause (b) follows from (a) since J ⊂ [ω1]ℵ0 .
In order to prove (c), we may assume k = 0 since Lk0(C) ⊆ L0

0(C) =
L0(C) for all k. Fix Y = {Bα : α < ω1} included in J . By part (b), it
has an uncountable intersection with some H′n, so we may assume Y is
Ln1 (C)-homogeneous. By refining, we may assume that the sets

Fα = Bα ∩An
form a∆-system with root R, and that the functions χC◦hBα agree on R (χC
is the characteristic function of C). For α < β pick ξ ∈ Bα ∩Bβ = Bα ∩Bβ .
We claim that

χC ◦ hBα(ξ) = χC ◦ hBβ (ξ).

If ξ 6∈ An, this follows by the Ln1 (C)-homogeneity. If ξ ∈ An, then ξ ∈ R,
hence the conclusion follows. We have shown that every uncountable sub-
set of [ω1]ℵ0 contains an uncountable L1(C)-homogeneous subset, and this
implies (c).

Let C be the forcing for adding a single Cohen subset of ω, and let Ċ be
the canonical C-name for it. Since C has the countable chain condition, it
forces that (J V ,⊆∗) and (([ω1]ℵ0)V ,⊆∗) are still σ-directed in the extension.
For B ∈ ([ω1]ℵ0)V let hĊB = χĊ ◦hB (χĊ is the characteristic function of Ċ).

Assume for a moment that some condition p ∈ C forces that there is
n for which some Ln1 (Ċ)-homogeneous set Ḣ is cofinal in (([ω1]ℵ0)V ,⊆∗).
(It should be noted that this does not follow by Lemma 3.9, in particular
because Φ∗(Ċ) is not defined.) Since C is countable, there is a single condition
q ≤ p such that

X = {B : q  B̌ ∈ Ḣ}
is cofinal in ([ω1]ℵ0 ,⊆∗). For B ∈ X , fix mB such that

(1) B ∩ (ΦhB (s)4 Φ∗(s)) ⊆ Am(B) for all s ⊆ dom(q),
(2) Φ∗({i}) ∩ Φ∗({j}) ⊆ Am(B) for all distinct i and j contained in

dom(q).

To see that we can ensure (1), note that since ΦhB is an almost lifting of
ΦB , B ∩ ΦhB (s) =I Φ∗(s) for all finite s.

Since ([ω1]ℵ0 ,⊆∗) is σ-directed, there is an m ≥ n such that X1 = {B ∈
X : m = mB} is cofinal in ([ω1]ℵ0 ,⊆∗) (see e.g. [Far00, Lemma 2.2.2]).

Claim 4. The set X1 is Km
1 -homogeneous.
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Proof. We need to prove that the functions hB�(B \Am) for B ∈ X1 are
pairwise compatible. (We say that two functions are compatible if they agree
on the intersection of their domains.) Assume not, and fix A,B in X1 and
ξ ∈ (A ∩B) \ Am such that i = hA(ξ) 6= hB(ξ) = j.

Assume for a moment that {i, j} ⊆ dom(q). By (1), we have ξ ∈ Φ∗({i})
and ξ ∈ Φ∗({j}), so Φ∗({i}) ∩ Φ∗({j}) 6⊆ Am, contradicting (2).

Therefore we must have i 6∈ dom(q) or j 6∈ dom(q), and in either case we
can find r ≤ q such that

r  |Ċ ∩ {i, j}| = 1.

But then r forces that χĊ ◦hB(ξ) 6= χĊ ◦hA(ξ), and therefore that {A,B} ∈
Lm0 (Ċ), a contradiction.

By Claim 4 and Lemma 3.8, this concludes the proof modulo the assump-
tion that some condition p ∈ C forces that there is n for which some Ln1 (Ċ)-
homogeneous set Ḣ is cofinal in (([ω1]ℵ0)V ,⊆∗). So assume that this fails,
and C forces that a cofinal Ln1 (Ċ)-homogeneous subset of (([ω1]ℵ0)V ,⊆∗)
does not exist for any n ∈ ω. The proof of Theorem 3.6 will be completed
once we prove that this assumption leads to a contradiction.

Recall that for every δ < ω1 there is a partial map

hδ: δ → ω

such that Φhδ is a completely additive almost lifting of Φδ.
Let C be a Cohen-generic subset of ω over V . In V [C] we will define a

ccc poset P that forces an uncountable Z ⊆ ω1 and for each ξ ∈ Z a Bξ ⊆ ξ
such that Bξ ∩ An is finite for all n and the functions in {hξ�Bξ : ξ ∈ Z}
are pairwise incompatible.

A typical condition p of P is a triple (F, n, 〈sξ : ξ ∈ F 〉) such that

(P0) F is a finite set of countable ordinals,
(P1) n ∈ ω,
(P2) sξ is a finite subset of An ∩ ξ,
(P3) the functions χC ◦ hξ�sξ (ξ ∈ F ) are pairwise incompatible.

The ordering on P is defined by letting p ≤ q if F p ⊇ F q, np ≥ nq, and

(P4) spξ ∩Anq = sqξ for all ξ ∈ F q.
If G is a sufficiently generic filter of P, then for ξ ∈ Z =

⋃
q∈G F

q the
set Bξ =

⋃
p∈G s

p
ξ is orthogonal to I, and the family of gξ = hξ�Bξ (ξ ∈⋃

p∈G F
p) are such that χC ◦gξ are pairwise incompatible. Since Bξ ⊆ ξ, Φgξ

is an almost lifting of ΦBξ .

Claim 5. The poset P is ccc.
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Proof. Let pα (α < ω1) be an uncountable subset of P. By going to an
uncountable subset, we can assume that the sets F α = F pα form a ∆-system
with root F , that all nα = npα are equal to some fixed n, and that for some
sξ (ξ ∈ F ) and all α we have sαξ = sξ. By Lemma 3.7, for each α there is an
mα ≥ n large enough so that {ξ, η} ∈ Kmα

1 for all ξ, η ∈ Fα. Find m such
that mα = m for uncountably many α. For each of these α let

ξ(α) = min(Fα \ F ).

The set of all ξ(α) is cofinal in [ω1]ℵ0 , and it is therefore not Lm1 (C)-
homogeneous, by our assumption. Therefore there are α 6= β and γ ∈
(ξ(α) ∩ ξ(β)) \ Am such that hξ(α)(γ) ∈ C and hξ(β)(γ) 6∈ C. Let i > m

be such that γ ∈ Ai. Define a condition q as follows: Let F q = Fα ∪ F β,
nq = i+1, sqξ = sξ for ξ ∈ F , and sqξ = sδξ∪{γ} for ξ ∈ F δ \F (if δ ∈ {α, β}).

For all η ∈ Fα \ F we have

hη(γ) = hξ(α)(γ) ∈ C
and for all η ∈ F β \ F we have

hη(γ) = hξ(β)(γ) 6∈ C,
so the functions χC ◦ hη�sqη (η ∈ F q) are pairwise incompatible.

Therefore q extends both pα and pβ . This proves that P is ccc.

Since P is ccc, some p ∈ P forces that Z =
⋃
q∈G F

q is uncountable.
By applying MA to C ∗ P and an appropriate family of dense sets, we get
C ⊆ ω, an uncountable Z ⊆ ω1, and pairs (Bξ, gξ) (ξ ∈ Z) such that
Bξ ∈ J , gξ: Bξ → ω, and Φgξ is an almost lifting of ΦBξ for all ξ ∈ Z, and
moreover the functions χC ◦ gξ (ξ < ω1) are pairwise incompatible. If the
partition L0

0(C) is re-evaluated using functions gξ in place of hBξ , the set
{Bξ : ξ ∈ Z} is L0

0(C)-homogeneous. But this contradicts (c) of Lemma 3.9.
This concludes the proof of Theorem 3.6.

The Cohen poset was used in a similar context of liftings by Christensen–
Kanovei–Reeken ([CKR01]), Kanovei–Reeken ([Far04, §8]), and Veličković
([Vel93, Theorem 4.1]). The first two references apply forcing to Borel lift-
ings, while Veličković proved that under MA and OCA all automorphisms
of P(ω1)/fin are trivial using, instead, the forcing for adding ℵ1 side-by-side
Cohen reals.

Corollary 3.10. Assume OCA and MA. If B is a subalgebra of P(ω1)
such that P(ω) is a subalgebra of B/I for some countably generated ideal I,
then P(ω) is a subalgebra of B.

Proof. If Ψ : P(ω)→ B/I is a monomorphism, then it is also a lifting of a
homomorphism Φ: P(ω)→ P(ω1)/I0, where I0 is an ideal on ω1 generated
by I. Let {In : n ∈ ω} be an increasing chain of members of I which



Is P(ω) a subalgebra? 105

generates I0. Let h: ω1 → ω be such that Φh is an ℵ2-almost lifting of Φ.
Thus, if Aξ (ξ < c) is any almost disjoint family of infinite subsets of ω,
then there is a member of the family, say A0, such that Ψ(B) =I0 Φh(B)
for all B ⊆ A0. For each such B, we may let nB ∈ ω be minimal such
that Φh(B) \ InB ∈ B. We will now prove there is an infinite subset A of
A0 and an integer m such that nB ≤ m for all B ⊂ A. Fix any pairwise
disjoint family of infinite subsets of A0, say {Ck : k ∈ ω}, and assume that
for each k, there is a Bk ⊂ Ck such that nBk > nk = max{k, nCk}. Fix any
B ⊂ A0 such that B ∩ Ck is almost equal to Bk for each k and note that
Φh(B)\Ink∩Φh(Ck)\Ink is not in B for each k. For k ≥ nB, this contradicts
the fact that Φh(B) \ InB ∈ B.

The proof is completed then by observing that the following is an em-
bedding of P(A) into B. For each B ⊂ A, define f(B) to be Φh(B) \ Im if
minA 6∈ B and to be Φh(B) ∪ Im if minA ∈ B.

The following is a topological restatement of Corollary 3.10.

Corollary 3.11. Assume OCA and MA. If a compact zero-dimen-
sional space X has density at most ω1, and has a closed Gδ set which maps
onto βN, then X itself maps onto βN.

The Weak Extension Principle was studied in [Far00, Chapter 4]. The
dual of Theorem 3.2 is its special case. The following corollary has a similar
flavor.

Corollary 3.12. If G is a closed Gδ subset of βω1 and f : G → βω
is continuous, then there is a clopen U ⊆ G such that f�U continuously
extends to βω1 and f ′′(G \ U) is nowhere dense.

Proof. Let I be the countably generated ideal on ω1 such that G = {p ∈
βω1 : p ∩ I = ∅}. Apply Theorem 3.6 to the homomorphism Φ: P(ω) →
P(ω1)/I dual to f to obtain h. Let C = dom(h) and U = βC ∩G. Then the
continuous extension of h: C → ω to a map from βC to βω extends f�U .
The image of G \ U is included in the set

X = {p ∈ βω : p ∩ ker(Φω1\C) = ∅}.
This set has the property that every family of pairwise disjoint open subsets
of ω∗ each of which intersects X has size at most ℵ1 < c, and it is therefore
nowhere dense.

In [Far00] it was conjectured that the statement “every continuous f : ω∗

→ βω continuously extends to βω” is consistent with ZFC.

Question 3.13. Is the following consistent with ZFC : If G is a closed Gδ

subset of some βκ then every continuous f : G → βω continuously extends
to βκ?
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It may be worth mentioning that Veličković has proved that under PFA
every automorphism of any κ∗ continuously extends to a function from βκ
to βκ ([Vel93]). A survey of some related extension principles and conjec-
tures (or rather their algebraic duals) for quotients P(ω)/I can be found in
[Far∞].

4. Limitations. We shall now see that Theorem 3.6 cannot be further
improved by replacing ω1 with c. Let us say that A is completely embeddable
into B if there is a completely additive monomorphism Φ: A → B, that
is, such that Φ(

∨X ) =
∨
a∈X Φ(a) for every X ⊆ A. Let us state a slight

strengthening of Corollary 3.10.

Corollary 4.1. Assume OCA and MA. If B can be embedded into
P(ω1), then the following are equivalent :

(1) P(ω) embeds into B.
(2) P(ω) completely embeds into B.
(3) P(ω) embeds into B/I for some countably generated ideal I on B.

Proof. The only nontrivial implication is (3) implies (2), and it is an
immediate consequence of Theorem 3.6 and the embedding as defined in
Corollary 3.10.

Proposition 4.2. There is a subalgebra B of P(c) such that P(ω) is
embeddable, but not completely embeddable, into B.

Proof. Let X be any countably compact dense subset of βω such that
X has cardinality c (see [Nov53]). It is easy to see that every infinite closed
subset of X has cardinality c.

We let B denote the algebra generated by the clopen subsets of X to-
gether with the singletons. Equivalently, B is the algebra of all sets of the
form (A is the closure of A in βω intersected with X)

H0 ∪ (A \H1)

for A ⊂ ω and finite subsets H0,H1 of X. To see this, note that all sets of
the above form are in B and that such sets form a Boolean algebra.

The mapping Φ(A) = A is an embedding of P(ω) into B. Assume there
is a complete embedding Ψ : P(ω) → B. Let Ψ({n}) = bn. We can fix the
sets An ⊂ ω and the finite sets Hn

0 ,H
n
1 such that bn = Hn

0 ∪ (An \Hn
1 ). We

may of course assume that Hn
1 is disjoint from ω. Note that the sets Am

(m ∈ ω) are pairwise disjoint.
For now we can consider cn = Hn

0 ∪ An and points x ∈ X which are
limits of the family {cn : n ∈ ω} and which are not in

⋃
n bn or in

⋃
nH

n
0 .

Since there are c such limits, such an x exists.
Then Ψ(ω) = X =

∨
n bn. But {x} ∧∨n bn = 0B, a contradiction.
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Let us note that Theorem 3.6 cannot be improved by replacing ℵ2-cc
with ccc.

Proposition 4.3. There is a homomorphism Φ: P(ω)→ P(ω1) with no
completely additive almost lifting.

Proof. Let Aξ (ξ < ω1) be an almost disjoint family of infinite subsets
of ω and let, for each ξ ∈ ω1, Uξ 3 Aξ be a nonprincipal ultrafilter. Define
Φ: P(ω)→ P(ω1) by

Φ(C) = {ξ : C ∈ Uξ}.
Then ker(Φ) ⊇ P(ω) \ ⋃ξ Uξ. The mapping F : P(ω) → P(ω1) defined by
F (C) = ∅ is a lifting of Φ on the ideal ker(Φ), but this ideal is not ccc over
fin (as the sets Aξ witness).

However, if h : ω1 → ω is any partial function with non-empty domain,
then it is easy to see that Φh is also not an almost lifting of Φ. Indeed, fix
any α ∈ dom(h) and almost disjoint subsets of ω, {Bξ : ξ ∈ ω1}, such that
h(α) ∈ Bξ for each ξ and Bξ 6∈ Uη for all η. By construction Φ(Bξ) is ∅ for
all ξ, and yet α ∈ h−1(Bξ) = Φh(Bξ) for all ξ.

References

[BSS96] M. Bell, L. Shapiro and P. Simon, Products of ω∗ images, Proc. Amer. Math.
Soc. 124 (1996), 1593–1599.

[Bla73] A. Blass, The Rudin–Keisler ordering of P -points, Trans. Amer. Math. Soc.
179 (1973), 145–166.

[CKR01] J. P. R. Christensen, V. Kanovei and M. Reeken, On Borel orderable groups,
Topology Appl. 109 (2001), 285–299.

[Dow97] A. Dow, Is P(ω) a subalgebra?, preprint, 1997; available at http://www.
math.uncc.edu/∼adow/Bell CH/Bell CH.pdf.

[Far00] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals
on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702.

[Far04] —, Luzin gaps, Trans. Amer. Math. Soc. 356 (2004), 2197–2239.
[Far∞] —, Rigidity conjectures, in: Proc. Logic Colloq. 2000, to appear; available at

http://www.math.yorku.ca/∼ifarah.
[Jus89] W. Just, The space (ω∗)n+1 is not always a continuous image of (ω∗)n, Fund.

Math. 132 (1989), 59–72.
[Kop89] S. Koppelberg, Handbook of Boolean Algebras, Vol. 1, J. D. Monk and R. Bon-

net (eds.), North-Holland, Amsterdam, 1989,
[vM01] J. van Mill, On Dow’s solution of Bell’s problem, Topology Appl. 111 (2001),

191–193.
[Nov53] J. Novák, Über die bikompakte Hülle einer isolierten abzählbaren Menge, in:
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