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Size functions

by

Niel Shell (New York)

Abstract. We introduce the notion of a nonarchimedean size function similar to the
notion of a size function introduced by Marcos. We describe a class of ring topologies on
fields that are complete, neither first countable nor locally bounded, but have topologically
nilpotent elements.

Two types of valuations are commonly considered: real-valued valuations
(also called absolute values) and nonarchimedean valuations (also called
Krull valuations). In [3] Marcos introduced axioms for a function which we
will call a real-valued size function. We introduce the notion of a nonar-
chimedean size function. As for valuations, the classes of real and nonar-
chimedean size functions overlap, but neither subsumes the other.

Marcos introduced size functions to construct topologies which yield an
affirmative answer to a thirty year old open question in [2]: Do there ex-
ist topological fields which are not locally bounded but have topologically
nilpotent elements? We describe here another class of ring topologies on
fields with these properties.

A nonzero element x in a topological ring is called topologically nilpotent
if xn → 0. A∗ denotes the set of nonzero elements of a subset A of an
additive group, and G≥a (resp. G>a) denotes the set of elements greater
than or equal to (resp. strictly greater than) a in an ordered group G. In an
ordered group (in particular, the real numbers) a ∨ b (resp. a ∧ b) denotes
the larger (resp. smaller) of a and b.

Definition 1. A real-valued size function on a ring A is a function N :
A→ [1,∞) such that
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(N1) N(0) = 1;
(N2) N(−a) = N(a);
(N3) N(a+ b) ≤ N(a) +N(b);
(N4) N(ab) ≤ N(a) +N(b);
(N5) for each g ≥ 1 there exists a ∈ A such that N(a) ≥ g.

A real-valued size function is called nonarchimedean if

(N3′) N(a+ b) ≤ N(a) ∨N(b);
(N4′) N(ab) ≤ N(a) ∨N(b).

Condition (N1) is dispensable, in the sense that the topologies induced in
[3] by functions satisfying (N1)–(N5) can be induced by functions satisfying
only (N2)–(N5). Indeed, in [3] Marcos requires N(0) = 2, except for size
functions that satisfy conditions (N3′) and (N4′).

The topology constructed in Section 3 of [3] is described in Theorem 1
below. We have replaced statements in [3] using logarithms with correspond-
ing ones using exponents in order to make the analogy with Theorem 2 more
apparent.

Theorem 1. Let N be a real-valued size function on a field F . Let γ :
(1,∞) → R be a strictly decreasing function such that limt→1+ γ(t) = ∞.
Let R consist of all formal series

∑
anX

n ∈ F [[X]] such that , for all t > 1,
there exists m such that N(an) ≤ tn for n ≥ m. Then R is a local ring whose
maximal ideal consists of all series in R with constant coefficient equal to 0,
and K =

⋃
d≥0 X

−dR is the quotient field R(R∗)−1. The sets

Vt =
{∑

anX
n ∈ R : an = 0 for n < γ(t) and N(an) ≤ tn for n ≥ γ(t)

}
,

t > 1, form a neighborhood base at zero for a complete field topology on K.
This topology is not locally bounded , and X is topologically nilpotent in this
topology. The topology is independent of the particular choice of γ.

Definition 2. Let G be an additive totally ordered group. An arbitrary
element of G>0 is labeled as 1. Since no multiplication is defined, the label
1 is not intended to have any significance except to match notation in the
real-valued case. A nonarchimedean G-valued size function on a ring A is a
function N : A→ G≥1 which satisifies (N1), (N2), (N3′), (N4′) and (N5).

If N is a nonarchimedean G-valued size function and g ∈ G≥1, then Ag =
{a ∈ A : N(a) ≤ g} is a proper subring of A. The rings Ag increase with g
and have union A. Conversely, given an increasing indexed set {Ag}g∈G>0

of proper rings whose union is A and given a cofinal well ordered subset
P of G>0 whose smallest element we label as 1, then letting N(a) be the
least element of {p ∈ P : a ∈ Ap} defines a nonarchimedean size function.
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A nonarchimedean size function N on a field satisfies the condition

(N6) N(1) = 1 and N(a−1) = N(a) for all a 6= 0

if and only if {a ∈ A : N(a) ≤ g} is a field for each g ∈ G≥1.

Example. Let F0 be a field and let P be a well-ordered cofinal subset of
positive elements of an ordered group G. Let 1 denote the least element of P ,
and let T = {tp : p ∈ P\{1}} be a set of elements algebraically independent
over F0. Let F = F0(T ), Tp = {tq : q ≤ p} (so T1 = ∅), and define N(a) to
be the least element of {p ∈ P : a ∈ F0(Tp)}. Then N is a nonarchimedean
G-valued size function on F satisfying (N6).

A nonarchimedean G-valued size function on a field F may be used to
induce a ring topology on a subfield of the field F ((G)) of formal power
series in somewhat the same way as for real-valued size functions. (See [1]
or [5, Appendix B] for basic information about power series fields.)

The following result follows immediately from [8] (see also [5, Th. 2.3.2],
[6] and [7]):

Lemma 2.1. Let R be a ring with identity and with quotient field K,
and let T be a nondiscrete ring topology on R. If the filter B(T ) of T -
neighborhoods of zero satisfies the condition xU ∈ B(T ) for all x ∈ R∗ and
U ∈ B(T ), then B(T ) is a neighborhood base at zero for a nondiscrete ring
topology on K.

Theorem 2. Let F be a field with a nonarchimedean G-valued size func-
tion N such that N(1) = 1 and N(a−1) = N(a) for a 6= 0. The set

R =
{∑

agX
g ∈ F [[G]] : N(ag) ≤ g ∨ 1 for all g ∈ G≥0

}

is a local ring whose maximal ideal consists of all series in R with constant
coefficient equal to 0; and K =

⋃
d≥0X

−dR is the quotient field R(R∗)−1.
The sets Uh, where, for h ≥ 1,

Uh =
{∑

agX
g ∈ F [[G]] : ag = 0 for all g < h,

and N(ag) ≤ g − h+ 1 for all g ≥ h
}
,

are ideals in R, and {Uh}h≥1 is a neighborhood base at zero for a nondiscrete
complete locally bounded Hausdorff field topology on K.

Proof. We will verify the following:

(1) R is an additive group;
(2) RR ⊂ R;
(3) the inverse of an element in R which has nonzero constant coefficient

is again in R;
(4) R(R∗)−1 = K;
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(5) Uh is an additive group for h ≥ 1;
(6) RUh ⊂ Uh for h ≥ 1;
(7) X−dUh+d ⊂ Uh for d ≥ 0, h ≥ 1;
(8) (1 + Uh)−1 = 1 + Uh for h ≥ 1.

From (1)–(3) it will follow that R is a local ring whose maximal ideal consists
of the series with constant coefficient equal to zero; (5) and (6) state that
the sets Uh are (clearly nonzero) ideals of R. Obviously {Uh} is decreasing
and

⋂{Uh : h ≥ 1} = {0}. Thus, the sets Uh form a neighborhood base
at zero for a nondiscrete Hausdorff ring topology on R. Using (4), (6), (7)
and Lemma 2.1, we see that the sets Uh also are a neighborhood base at
zero for a ring topology on K: Given x ∈ R∗, write x−1 = X−dy, where
d ≥ 0 and y ∈ R. Then X−dyUh+d ⊂ Uh or, equivalently, Uh+d ⊂ xUh.
By (8), inversion is continuous. The topology is locally bounded, since, by the
definition of Uh, Xh−1U1 ⊂ Uh for h ≥ 1 (see [5, Th. 4.1.3]). Completeness
will be verified after (1)–(8) are proved.

(1), (5) and (7) are obvious. The remaining statements all require con-
sideration of the coefficient cg of Xg in the product xy of the series

x =
∑

agX
g, y =

∑
bgX

g,

where ag = bg = 0 for g < 0. For some positive integer n, which depends on
g, cg = ag1bg′1 + ag2bg′2 + · · ·+ agnbg′n , where, if cg 6= 0, then agibg′i 6= 0 for
any i, and gi, g

′
i ≥ 0 and gi + g′i = g; thus gi, g′i ≤ g.

(2) If x, y ∈ R, then N(agi) ≤ gi ∨ 1 ≤ g ∨ 1 and N(bg′i) ≤ g′i ∨ 1 ≤ g ∨ 1,
so N(cg) ≤ g ∨ 1.

(3) For x ∈ R with constant coefficient not zero, y = x−1 ∈ R[[G]]. We
verify by induction on the index g that N(bg) ≤ g ∨ 1. We label indices so
that g′1 < g′2 < · · · < g′n. If g = 0, then n = 1, g1 = g′1 = 0, b0 = a−1

0 (since
xy = 1) and N(b0) = N(a−1

0 ) = N(a0) ≤ 1. We assume that N(bk) ≤ k ∨ 1
for k < g. For g > 0, cg = 0 (since xy = 1). If bg = 0 we are done. Otherwise,
we may take g′n = g and gn = 0, and

N(bg) = N(−a−1
0 [ag1bg′1 + · · ·+ agn−1bg′n−1

]),

and N(bg) ≤ g ∨ 1 by the inductive hypothesis.
(4) CertainlyK ⊂R(R∗)−1 andK is a ring. Upon verifying that z−1∈K∗

for z ∈ K∗, we find that K is a field containing R and, hence, containing
the smallest field R(R∗)−1 containing R. With d, h ≥ 0, N(ag) ≤ g ∨ 1 and
ah 6= 0, we may write

z = X−d
∑

g≥h
agX

g = X−d+h
∑

g≥h
agX

g−h = X−d+h
∑

g≥0

ag+hX
g.

If we write z−1 = Xd−h∑
g≥0 bgX

g, where bg ∈ F , it follows, as in (3), from
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N(ag+h) ≤ (g + h) ∨ 1 for all g that N(bg) ≤ (g + h) ∨ 1 for all g. Thus,

z−1 = Xd−hX−h
∑

g≥h
bgX

g+h ∈ Xd−2hR.

(6) If x ∈ R, y ∈ Uh and cg 6= 0, then g ≥ h and g′i ≥ h for all i. Then
N(agi) ≤ gi∨1 = (g−g′i)∨1 ≤ (g−h)∨1. It follows that N(cg) ≤ g−h+1.

(8) Suppose x ∈ 1 + Uh, where h ≥ 1, and y = x−1. Then b0 = 1 and
bg = 0 for 0 < g < h. For g ≥ h, cg = 0 (since xy = 1) and, as in the proof
of (3), N(bg) ≤ g− h+ 1. Thus, (1 +Uh)−1 ⊂ 1 +Uh. Taking the inverse of
both sides reverses the containment.

Finally, suppose that xλ =
∑
aλgX

g, λ ∈ Λ, is a Cauchy net in R. Now,
xλ− xµ ∈ Uh implies aλg = aµg for g < h. Thus, aλg is eventually constant for
any fixed g; call the eventual value ag. One readily verifies x =

∑
agX

g ∈ R
and xλ → x. If {xλ}λ∈Λ is a Cauchy net in K then, for some µ ∈ Λ,
{xλ − xµ}λ≥µ is a Cauchy net in R.
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