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Reidemeister orbit sets

by

Boju Jiang (Beijing), Seoung Ho Lee (Daejeon)
and Moo Ha Woo (Seoul)

Abstract. The Reidemeister orbit set plays a crucial role in the Nielsen type theory of
periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Extending
Ferrario’s work on Reidemeister sets, we obtain algebraic results such as addition formulae
for Reidemeister orbit sets. Similar formulae for Nielsen type essential orbit numbers are
also proved for fibre preserving maps.

0. Introduction. Nielsen fixed point theory has been extended to a
Nielsen type theory of periodic orbits [6, Section III.3]. In fixed point the-
ory, the computation of the Nielsen number often relies on the knowledge of
the Reidemeister set, that is, the set of Reidemeister conjugacy classes in the
fundamental group. Ferrario [2] made an algebraic study of the Reidemeister
set in relation to an invariant normal subgroup. He obtained addition for-
mulae for Reidemeister numbers, and applied them to the Nielsen number
of fibre preserving maps. Our aim in this paper is similar, but in the more
complicated setting of periodic orbits: to study the Reidemeister orbit set of
a group endomorphism in relation to an invariant normal subgroup, to ob-
tain addition formulae for Reidemeister orbit numbers, and as application,
to find addition formulae for Nielsen type essential orbit numbers of fibre
preserving maps.

Given a group endomorphism f : G → G, the Reidemeister set of f ,
denoted by R(f), is the set of orbits of the left action of G on G via γ

g7→
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gγf(g−1), and its cardinality is the Reidemeister number R(f) of f . When
f is the homomorphism induced by a map X → X on the fundamental
group π1(X), R(f) is an upper bound for the Nielsen number N(f); N(f)
is usually the minimal number of fixed points in the homotopy class of the
map. For many spaces, such as nil and solvmanifolds, the computation of
the Nielsen number reduces to that of R(f) (see [3]).

For a given integer n > 0, f acts on the Reidemeister set R(fn) of the
nth iterate fn. An orbit of this action is called a Reidemeister orbit, the
set of all such orbits is the Reidemeister orbit set RO(n)(f). When f is
the homomorphism induced by a map X → X on π1(X), its cardinality
]RO(n)(f) is an upper bound for the number of essential n-orbits, the latter
being a lower bound for the number of n-orbits in the homotopy class.

Let f : G → G be a group endomorphism. If H ⊂ G is an f -invariant
normal subgroup and G = G/H, then the short exact sequence 1 → H

i→
G→ G→ 1 induces an exact sequence (in the category of pointed sets)

RO(n)(fH) i∗→RO(n)(f)→RO(n)(f̄)→ 1

of Reidemeister orbit sets. We shall find conditions for the function i∗ to be
injective. Under certain conditions, we will prove an addition formula of the
form

]RO(n)(f) =
∑

j∈RO(n)(f̄)

]RO(mj)(θ′j),

where mj = n/`j , `j being the length of the orbit j, and θ′j : H → H is a

twisted version of f `jH .
Turning to the topological context, we consider a fibre preserving map

f : E → E of a Hurewicz fibration p : E → B of compact ANR’s. It
induces a map f̄ : B → B. Let K be the kernel of the homomorphism j∗ :
π1(Fb)→ π1(E) induced by the inclusion of the fibre. Denote by EO (n)(f)
the number of essential n-orbit classes of f , and by EO (m)

K the number of
mod K essential orbit classes on a fibre. Under suitable conditions, we have
an addition formula of the form

EO (n)(f) =
∑

b∈ξ
EO (m)

K (hb),

where the summation runs over a set ξ of essential n-orbit representatives
for f̄ , ` is the length of the essential f̄ -orbit class containing b, m = n/`,
and hb : Fb → Fb is a variant of f `|Fb.

The paper consists of two sections. In the first section we show our results
on Reidemeister orbit sets using the method of Ferrario’s algebraic results
in [2] on the Reidemeister sets. In the second section we apply them to fibre
preserving maps.
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For the basics of Nielsen fixed point theory, the reader is referred to [1]
and [6].

1. The Reidemeister orbit set. Let f : G→ G be a group endomor-
phism. The Reidemeister set of f , denoted by R(f), is the set of equivalence
classes for the following Reidemeister equivalence relation in G: γ, γ ′ ∈ G are
equivalent if and only if γ′ = gγf(g−1) for some g ∈ G. The Reidemeister
class of γ ∈ G will be written [γ]f .

If H ⊂ G is an f -invariant normal subgroup, then the short exact se-
quence

1→ H
i→ G

q→ G→ 1,

where G = G/H, and i : H → G and q : G → G are the inclusion and
quotient homomorphisms, induces an exact sequence (in the category of
pointed sets)

(R(fH), [1]fH ) i∗→ (R(f), [1]f)
q∗→ (R(f̄), [1]f̄)→ 1

of Reidemeister sets, where R(fH) is the Reidemeister set of the restriction
map fH : H → H, and R(f̄) is the Reidemeister set of the induced map
f̄ : G→ G.

The function i∗ is not injective in general. In Davide Ferrario’s paper
[2], an f -invariant normal subgroup Tf (K) in H is identified so that under
certain conditions, the image i∗R(fH) is in one-to-one correspondence with
the Reidemeister set R(f̂H) of the induced map f̂H : H → H, where H =
H/Tf (K).

Definition 1.1. Let n > 0 be a given integer. Then f acts on the Reide-

meister set R(fn) by [γ]fn
f7→ [f(γ)]fn . The f -orbit of a Reidemeister class

[γ]fn will be called a Reidemeister n-orbit, denoted by [γ](n)
f . The set of all

such Reidemeister f -orbits will be called the Reidemeister n-orbit set of f ,
denoted by RO(n)(f).

The length of the orbit [γ](n)
f is the smallest integer ` > 0 such that

[γ]fn = [f `(γ)]fn . Clearly ` divides n.

Remark 1.2. RO(n)(f) is the set of equivalence classes in G of the
following equivalence relation: γ, γ′ ∈ G are equivalent if and only if

(∗) γ′ = gf i(γ)fn(g−1) for some i ≥ 0 and g ∈ G.
For any integer n > 0, there is an exact sequence (in the category of

pointed sets)

(RO(n)(fH), [1](n)
fH

)
i∗→ (RO(n)(f), [1](n)

f )
q∗→ (RO(n)(f̄), [1](n)

f̄
)→ 1
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of Reidemeister orbit sets, where RO(n)(fH) is the Reidemeister orbit set
of the restriction map fH : H → H, and RO(n)(f̄) is the Reidemeister orbit
set of the induced map f̄ : G → G. For any γ ∈ G we shall always write
γ := q(γ), so that q∗([γ]fn) = [γ]f̄n and q∗([γ](n)

f ) = [γ](n)
f̄

.

We now consider the algebraic results in [2], applied to the endomorphism
fn : G → G. Since the endomorphisms fH , f̄ etc. are all induced by f , the
maps established between their Reidemeister sets R(fn) etc. are equivariant
under the f -action, so they induce maps between the Reidemeister orbit sets
RO(n)(f) etc.

Definition 1.3. Suppose K ⊂ G is an f -invariant subgroup of G and

KH = q−1 Fix(f̄n).

Such K exist, for example the subgroup q−1 Fix(f̄n) itself. Let [K,H] denote
the subgroup of G generated by all khk−1h−1 such that k ∈ K and h ∈ H.
Let KG denote the smallest normal subgroup of G containing K. Define

OfnK := {kfn(k−1) | k ∈ K}.
Let

Tfn(K) := [KG,H] ∪OfnK
be the smallest subgroup of G containing [KG,H] and OfnK.

Ferrario’s proofs ([2, pp. 5–7] with f replaced, whenever it occurs, by
fn) establish the following results 1.4, 1.5 and 1.6.

Proposition 1.4. The subgroup Tfn(K) is normal in H and f -invariant ,
and it equals {αkfn(k−1) | α ∈ [KG,H], k ∈ K}.

Lemma 1.5. For any f -invariant subgroup K of G such that

KH = q−1 Fix(f̄n),

there exists a surjection

A : q−1
∗ ([1](n)

f̄
) = i∗RO(n)(fH)→ RO(n)(f ′H : H/Tfn(K)→ H/Tfn(K))

defined by A([h](n)
f ) := [p(h)](n)

f ′H
for all h ∈ H, where p is the projection

p : H → H/Tfn(K), and f ′H is induced by fH . Moreover , A is injective
whenever RO(n)(f) = RO(n)(f̂ : G/[KG,H]→ G/[KG,H]).

Corollary 1.6. If Fix(f̄n) = {1}, then

i∗ : RO(n)(fH)→ q−1
∗ ([1](n)

f̄
) ⊂ RO(n)(f)

is a bijection.
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How do we deal with q−1
∗ ([α](n)

f̄
) ⊂ RO(n)(f) for an arbitrary α ∈ G?

Lemma 1.7. Let n > 0 and α ∈ G. Suppose the orbit [α](n)
f̄
∈ RO(n)(f̄)

has length `, and let m := n/`. We have a commutative diagram of exact
sequences in the category of pointed sets:

(RO(m)(f `), [α](m)
f`

) (RO(m)(f `), [α](m)
f`

) 1

(RO(n)(f), [α](n)
f ) (RO(n)(f), [α](n)

f
) 1

q∗ //

σ

��

//

σ

��
q∗ // //

where the vertical maps σ and σ are induced by inclusions, and they are
surjective. Furthermore, σ restricts to a bijection

σ : q−1
∗ ([α](m)

f̄`
)→ q−1

∗ ([α](n)
f̄

).

Proof. First we will show that σ(q−1
∗ ([α](m)

f̄`
)) ⊂ q−1

∗ ([α](n)
f̄

). If [β](m)
f`
∈

q−1
∗ ([α](m)

f̄`
), then [β](m)

f̄`
= [α](m)

f̄`
, and hence

β = γ(f̄ `)i(α)(f̄ `)m(γ−1) = γf̄ `i(α)f̄n(γ−1)

for some i ≥ 0 and γ ∈ G. Therefore q∗ ◦ σ([β](m)
f`

) = [α](n)
f̄

.

Suppose [β](n)
f ∈ q−1

∗ ([α](n)
f̄

). Then α = ηf̄ i(β)f̄n(η−1) for some i ≥ 0

and η ∈ G. There exists [f i(β)](m)
f`
∈ RO(m)(f `) such that

[f̄ i(β)](m)
f̄`

= [α](m)
f̄`

and σ([f i(β)](m)
f`

) = [β](n)
f .

Thus the restriction map σ is surjective.
Clearly

q−1
∗ ([α](m)

f̄`
) =

⋃

[β](n)
f ∈q−1

∗ ([α](n)
f̄

)

(σ−1([β](n)
f ) ∩ q−1

∗ ([α](m)
f̄`

)),

and

σ−1([β](n)
f ) = {[β](m)

f`
, [f(β)](m)

f`
, [f2(β)](m)

f`
, . . . , [f `−1(β)](m)

f`
}.

By definition of the length ` of the orbit [α](n)
f̄

, each orbit [f̄ i(α)](m)
f̄`

consists of a single Reidemeister class [f̄ i(α)]f̄n , and the orbits {[f i(β)](m)
f`
|

0 ≤ i < `} are different from each other. If some element [f j(β)](m)
f`

of

σ−1([β](n)
f ), 0 ≤ j < `, is in q−1

∗ ([α](m)
f̄`

), we have
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[f̄ j(α)](m)
f̄`

= q∗([f j(β)](m)
f`

) = [α](m)
f̄`

,

so we must have j = 0. Therefore |σ−1([β](n)
f ) ∩ q−1

∗ ([α](m)
f̄`

)| = 1 for every

[β](n)
f ∈ q−1

∗ ([α](n)
f̄

), which proves the last statement of the lemma.

For ` |n, we have a commutative diagram of pointed sets

R(f `) R(fn)

RO(`)(f) RO(n)(f)

ι`,n //

�� ��
ι`,n //

where the vertical maps are projections, and the horizontal maps are induced
by the level-change function ι`,n : G → G defined (as in [5, Definition 1.9])
by

ι`,n(β) := βf `(β)f2`(β) · · · fn−`(β).

Definition 1.8. We say that an f -orbit [α](n)
f ∈ RO(n)(f) is reducible

to level h if there exists a [β](h)
f ∈ RO(h)(f) such that ιh,n([β](h)

f ) = [α](n)
f .

The lowest level d = d([α](n)
f ) to which [α](n)

f reduces is its depth. Clearly,

the length ` of the orbit [α](n)
f divides the depth d.

A Reidemeister orbit [α](n)
f ∈ RO(n)(f) is said to have the full depth

property if its depth equals its length, i.e., d = `.

For example, [1](n)
f ∈ RO(n)(f) always has full depth because its depth

is 1. Example of nonfull depth: If f : G→ G is the identity automorphism,
then any orbit [α](n)

f has length ` = 1, but the depth d varies.

Corollary 1.9. Let n > 0 and α ∈ G. Assume that the orbit [α](n)
f̄
∈

RO(n)(f̄) is irreducible and has the full depth property. Then in the com-
mutative diagram of exact sequences

(R(fn), [α]fn) (R(f̄n), [α]f̄n) 1

(RO(n)(f), [α](n)
f ) (RO(n)(f̄), [α](n)

f̄
) 1

q∗ //

σ

��

//

σ

��
q∗ // //

σ restricts to a bijection

σ : q−1
∗ ([α]f̄n)→ q−1

∗ ([α](n)
f̄

).

Proof. If the orbit [α](n)
f̄

is irreducible, then the depth of the orbit is n.
Apply Lemma 1.7 to ` = d = n.
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Notation. For α ∈ G, let τα : G → G denote the conjugation defined
by τα(β) = αβα−1.

Lemma 1.10. For any α ∈ G, there is a canonical bijection of the Reide-
meister orbit sets of ταf and f , denoted by α∗ : RO(n)(ταf) → RO(n)(f),
given by

α∗([g](n)
ταf

) = [gαf(α) · · · fn−1(α)](n)
f .

Proof. Clearly we have

(ταf)n(g) = (αf(α) · · · fn−1(α))fn(g)(αf(α) · · · fn−1(α))−1

for all g ∈ G. By [2, p. 4], there is a canonical bijection

α∗ : R((ταf)n)→R(fn)

defined by α∗([g](ταf)n) = [gαf(α) · · · fn−1(α)]fn for all g ∈ G.
We will show that under this bijection α∗, the ταf -action on R((ταf)n)

corresponds to the f -action on R(fn). That is to say, we show the commu-
tativity of the following diagram:

R((ταf)n) R(fn)

R((ταf)n) R(fn)

α∗ //

ταf

��
f

��
α∗ //

Then α∗ clearly induces the desired bijection between the Reidemeister orbit
sets.

Let [g](ταf)n be an arbitrary element in R((ταf)n). Then

α∗ταf([g](ταf)n) = α∗([ταf(g)](ταf)n) = [ταf(g)αf(α) · · · fn−1(α)]fn

= [αf(gαf(α) · · · fn−1(α))fn(α−1)]fn

= [f(gαf(α) · · · fn−1(α))]fn = fα∗([g](ταf)n).

This is exactly what we need.

Combining Lemma 1.7 with Lemma 1.10 (applied to the endomorphism
fd), we have

Corollary 1.11. Let n > 0 and α ∈ G. Suppose the orbit [α](n)
f̄
∈

RO(n)(f̄) has depth d, and let m := n/d and ῑd,n(β) = α for some β ∈ G.
Then we have a commutative diagram of exact sequences in the category of
pointed sets:
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(RO(m)(τβf
d
H), [1]) (RO(m)(τβf

d), [1]) (RO(m)(τ
β
fd), [1])→ 1

(RO(m)(fd), [β(m)
d ](m)

fd
) (RO(m)(fd), [β

(m)
d ](m)

fd
)→ 1

(RO(n)(f), [α](n)
f ) (RO(n)(f), [α](n)

f
)→ 1,

i∗ // q∗ //

β∗

��
β∗
��

q∗ //

σ

��
σ

��
q∗ //

where the vertical maps β∗ and β∗ are induced by the element β ∈ G. The
notation [1] in the middle of the upper sequence stands for [1](m)

τβfd
, and the

other ocurrences of [1] have a similar meaning. The notation β
(m)
d stands

for βfd(β) · · · fn−d(β), and similarly for β
(m)
d . Furthermore, if [α](n)

f̄
has

the full depth property and ῑd,n(β) = α, then we have a bijection

σ ◦ β∗ : q−1
∗ ([1](m)

τβ f̄
d)→ q−1

∗ ([α](n)
f̄

).

Proof. In the notation of Lemma 1.10, the canonical bijection β∗ is given
by β∗([g](m)

τβfd
) = [gβfd(β) · · · fn−d(β)](m)

fd
. Then we have

σ ◦ β∗ ◦ q∗([1](m)
τβfd

) = σ ◦ β∗([1](m)
τβ f̄

d) = σ([βf̄d(β) · · · f̄n−d(β)](m)
f̄d

)

= [βf̄d(β) · · · f̄n−d(β)](n)
f̄

= [ῑd,n(β)](n)
f̄

= [α](n)
f̄
.

When [α](n)
f̄

has the full depth property, the depth d is the same as the
length `. Hence the last statement follows by Lemma 1.7.

Lemma 1.12. Fix(ταfn) = {1} implies the full depth property of [α](n)
f .

Proof. Let d and ` denote the depth and length of [α](n)
f , respectively.

Clearly ` divides d.
Since α and f `(α) are in the same Reidemeister class of fn, there is an

ω ∈ G such that α = ωf `(α)fn(ω−1). Let µ := ωf `(ω) · · · fn−`(ω). Then

α = ωf `(α)fn(ω−1)

= ωf `(ωf `(α)fn(ω−1))fn(ω−1) = ωf `(ω)f2`(α)fn(f `(ω−1)ω−1)

= · · ·
= µfn(α)fn(µ−1) = (µα−1)αfn(αµ−1),

and αµ−1 ∈ Fix(ταfn).
When Fix(ταfn) = {1}, we have α = µ = ωf `(ω) · · · fn−`(ω). By defini-

tion this means [α](n)
f is reducible to level `. Therefore d ≤ ` by the definition

of depth. But ` | d, so ` = d.
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Note that the converse of Lemma 1.12 does not hold. If we let f : G→ G

be the identity map and α = 1 ∈ G, then the orbit [α](n)
f has the full depth

property, but Fix(ταfn) = G.

Corollary 1.13. Suppose ῑd,n(β) = α. Then (τβ f̄
d)m = ταf̄

n. If
Fix(ταf̄n) = {1}, then

i∗ : RO(m)(τβfdH)→ q−1
∗ ([α](n)

f̄
) ⊂ RO(n)(f)

is a bijection.

Proof. By direct computation, (τβ f̄
d)m = τῑd,n(β)f̄

n = ταf̄
n.

When Fix(ταf̄n) = {1}, Lemma 1.12 tells us that [α](n)
f̄

has the full
depth property. Thus by Corollary 1.11 we have a bijection

σ ◦ β∗ : q−1
∗ ([1](m)

τβ f̄
d)→ q−1

∗ ([α](n)
f̄

).

On the other hand, since Fix((τβ f̄
d)m) = {1}, by Corollary 1.6 the map

i∗ : RO(m)(τβfdH)→ q−1
∗ ([1](m)

τβ f̄
d) ⊂ RO(m)(τβfd)

is a bijection. Combining the two bijections, we have the assertion.

Theorem 1.14. Let n > 0. For an orbit [α](n)
f̄
∈ RO(n)(f̄), let dα be

the depth of [α](n)
f̄

, mα := n/dα, and ῑdα,n(βα) = α for some βα ∈ G. If

Fix(ταf̄n) = {1} for all [α](n)
f̄
∈ RO(n)(f̄), then

]RO(n)(f) =
∑

[α](n)
f̄
∈RO(n)(f̄)

]RO(mα)(τβαf
dα
H ).

Proof. Clearly the Reidemeister orbit set RO(n)(f) is the disjoint union
of q−1
∗ ([α](n)

f̄
) for all [α](n)

f̄
∈ RO(n)(f̄). By Corollary 1.13,

i∗ : RO(mα)(τβαf
dα
H )→ q−1

∗ ([α](n)
f̄

) ⊂ RO(n)(f)

is a bijection for every [α](n)
f̄
∈ RO(n)(f̄). This completes the proof.

Example 1.15 (Semidirect product of finitely generated free abelian
groups). Let H = Zr and G = Zk be two (additive) finitely generated free
abelian groups and let M : G → Aut(H) be a homomorphism from G to
the automorphism group of H. Denote by Mg := M(g) the image of each
g ∈ G. Let G be the external semidirect product of H and G via M ; it is the
set of all pairs (g, h) ∈ G×H with the group operation (g1, h1) + (g2, h2) =
(g1 + g2,Mg2

(h1) + h2). Let f : G → G be an endomorphism such that
f(H) ⊂ H. Then f̄ : G→ G and fH : H → H are defined by two matrices
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F ∈ Matk,k(Z) and FH ∈ Matr,r(Z) (see [2, Example 3]). Since the sequence

0→ Fix(f̄n)→ G
1−f̄n−→ G→ G/Im(1− f̄n)→ 0

is exact, Fix(f̄n) 6= {0} if and only if det(I − Fn) = 0, and this happens if
and only if ]RO(n)(f̄) = ∞. Therefore either RO(n)(f) and RO(n)(f̄) are
infinite, or Fix(f̄n) = {0}. In this last case, since G is abelian, Theorem 1.14
can be used; thus

]RO(n)(f) =
∑

[α](n)
f̄
∈RO(n)(f̄)

]RO(mα)(fdαH ).

Example 1.16 (The Klein bottle). Let G be the fundamental group of
the Klein bottle, i.e., G := 〈α, β | βα = α−1β〉. The subgroup H := 〈α〉 is
a fully invariant normal subgroup of G and if M : Z → Aut(Z) = {1,−1}
is the homomorphism defined by M(k) = (−1)k for all k ∈ Z then G is
the semidirect product of H and G := Z via M . So let f : G → G be an
endomorphism. Then fH : H → H and f̄ : G/H ∼= G → G are defined by
elements of Mat1,1(Z), i.e. by integers u and w. In other words, fH(a) = ua
for all a ∈ H and f̄(b) = wb for all b ∈ G/H ∼= G (see [2, Example 4]).

We will calculate RO(2)(f) when u = 2 and w = 3. Using the exact
sequence in the previous example for n = 2, we can identify the 2-periodic
point classes of f̄ , i.e., the elements of R(f̄2), with the elements of Z8. Thus

RO(2)(f̄) = {[0](2)
f̄
, [1](2)

f̄
, [2](2)

f̄
, [4](2)

f̄
, [5](2)

f̄
},

where [0](2)
f̄

= {[0]f̄2}, [1](2)
f̄

= {[1]f̄2 , [3]f̄2}, [2](2)
f̄

= {[2]f̄2 , [6]f̄2}, [4](2)
f̄

=

{[4]f̄2} and [5](2)
f̄

= {[5]f̄2 , [7]f̄2}. For period 1, the set RO(1)(f̄) = R(f̄) ∼=
Z2 is {[0]f̄ , [1]f̄}. Since ῑ1,2 is multiplication by 1 + 3 = 4, the f̄ -orbits [0](2)

f̄

and [4](2)
f̄

are reducible to 1, the others are irreducible. Thus any orbit of

RO(2)(f̄) has the full depth property, and by the previous example, we have

]RO(2)(f) = 2]RO(2)(fH) + 3]R(f2
H).

Furthermore, the set RO(2)(fH) is {[0](2)
fH
, [1](2)

fH
}, where [0](2)

fH
= {[0]f2

H
}

and [1](2)
fH

= {[1]f2
H
, [2]f2

H
}; and the set R(f2

H) ∼= Z3 is {[0]f2
H
, [1]f2

H
, [2]f2

H
}.

Therefore
]RO(2)(f) = 13.

2. Nielsen type essential n-orbit numbers. Let X be a compact
connected ANR. Let f : X → X be a map. The set of fixed point classes
will be denoted by FP(f).
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Let n > 0 be a given integer. Fixed point classes of the iterate fn : X →
X will also be called n-periodic point classes of f . Then f acts on the set
FP(fn) by Afn 7→ f(Afn). The f -orbit of a class Afn will be called an
n-orbit class, denoted by A(n)

f . The set of n-orbit classes will be denoted by
O(n)(f).

The length of the orbit A(n)
f is the smallest integer ` > 0 such that

Afn = f `(Afn). Clearly ` divides n because Afn = fn(Afn).
Standard fixed point index theory provides an integer index ind(Afn) for

each periodic point class Afn . A periodic point class Afn is essential if its
index is nonzero. We let E(fn) be the set of essential periodic point classes
of f . Then N(fn), the Nielsen number of fn, is the cardinality of E(fn).

Definition 2.1. Let n > 0 be a given integer. Then f acts on E(fn) by
Ffn 7→ f(Ffn). The f -orbit of an essential fixed point class Ffn of fn will
be called an essential n-orbit class, denoted by F (n)

f . Since ind(f(Ffn)) =

ind(Ffn), the index ind(F (n)
f ) of an essential n-orbit class equals

`(F (n)
f ) · ind(Ffn),

where `(F (n)
f ) is the length of F (n)

f . The set of essential n-orbit classes will

be denoted by EO(n)(f).
We define the essential n-orbit number EO (n)(f) to be the cardinality

of the set EO(n)(f). This number is a homotopy invariant (see [6, III.3.3,
III.3.4]). It is a Nielsen type number in the general sense of [6, III.4.8].

Let x0 be the base point in X, and take a path w from x0 to f(x0) as the
base path for f . The induced endomorphism fx0∗ : π1(X,x0)→ π1(X,x0) is
defined by

fx0
∗ (〈γ〉) := 〈wf(γ)w−1〉 for any loop γ at x0.

Note that although the base path w is not shown in the notation, the en-
domorphism fx0∗ depends on the homotopy class of w. For n > 1, (fn)x0∗ =
(fx0∗ )n if the base path for fn is taken to be wf(w) · · · fn−1(w).

It is well known that every fixed point class of f is assigned a Reidemeis-
ter class in R(fx0∗ ), called its coordinate. We get an injection

ρ : FP(f) ↪→R(fx0
∗ ),

where R(fx0∗ ) is the Reidemeister set in π1(X,x0) as in Section 1, defined
by

ρ(Af ) := [cf(c−1)w−1]fx0∗

for any path c from x0 to a point x in Af . Thus we also get an injection

ρ : O(n)(f) ↪→RO(n)(fx0
∗ ),
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defined by

ρ(A(n)
f ) := [cfn(c−1)fn−1(w−1) · · · f(w−1)w−1](n)

f
x0∗

for any path c from x0 to a point x in A(n)
f . If ` |n and an `-orbit class B(`)

f

lies inside an n-orbit class A(n)
f , then their coordinates are related by

ρ(A(n)
f ) = ι`,n(ρ(B(`)

f )),

where ι`,n is the level-change function of Section 1, hence ρ(A(n)
f ) is reducible

to level `. The depth of an n-orbit class A(n)
f is defined to be the depth of

its coordinate ρ(A(n)
f ).

Recall the effect of a homotopy. For a homotopyH = {ht : X → X}0≤t≤1

connecting f = h0 and g = h1, we have gx0∗ = fx0∗ if the base path for g
is taken to be wH(x0) (i.e. w followed by the trace of H), where H(x0)
stands for the path {ht(x0)}0≤t≤1. Now an n-periodic point class Afn of f
corresponds to an n-periodic point class Bgn of g under the homotopy H if
and only if ρ(Afn) = ρ(Bgn) in the (same) set R((fx0∗ )n) = R((gx0∗ )n).

Reducing Lemma 2.2. Let X be a compact connected ANR, and f :
X → X be a map. Suppose x ∈ Fix(fn) lies in an n-orbit class A(n)

f of
depth d. Then there exists a homotopy H = {ht : X → X}0≤t≤1 connecting
f = h0 and g = h1 such that

(1) x ∈ Fix(gd).
(2) The loop Hn(x) = {hnt (x)}0≤t≤1 is contractible in X.
(3) H equals f outside an arbitrarily given neighbourhood of the point

fd−1(x).

Note that in (2) the notation Hn = {hnt : X → X} stands for the
homotopy from fn = hn0 to gn = hn1 consisting of hnt , the n-fold iterate of
ht : X → X. The loop Hn(x) = {hnt (x)}0≤t≤1 is the trace of the point x
under this homotopy.

Proof. Take the point x as the base point, and take a path w from x
to f(x) as the base path for f . Denote the induced endomorphism fx∗ :
π1(X,x) → π1(X,x) by ϕ. For any k > 0, using wk := wf(w) · · · fk−1(w)
as the base path for the iterate fk, we have (fk)x∗ = (fx∗ )k = ϕk.

The n-periodic point class Afn containing x has coordinate ρ(Afn) =
[〈w−1

n 〉]ϕn (by using the constant path at x as the path c in the definition
of ρ).

The depth assumption means that there exists a loop β at x such that

〈w−1
n 〉 = 〈β〉ϕd(〈β〉) · · ·ϕn−d(〈β〉).

Let u be the path βwd from x to fd(x).
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The depth assumption ensures that the points {f i(x) | 0 ≤ i < d}
are all different. (If not, f i(x) = f j(x) for some 0 ≤ i < j < d. Then
x = fn(x) = fn−if i(x) = fn−if j(x) = f j−ifn(x) = f j−i(x). So x = fk(x)
where k = gcd(n, j − i). Now that Afn contains a k-periodic point x, its
coordinate ρ(Afn) would be reducible to the level k which is smaller than
the depth d. This contradicts the definition of depth.)

By the homotopy extension property of ANR spaces, there exists a ho-
motopy H = {ht : X → X}0≤t≤1, differing from f only in a small neigh-
bourhood of the point fd−1(x), such that h0 = f and hdt (x) = u(1 − t) for
all t. Let g = h1. Clearly gd(x) = u(0) = x.

It remains to verify (2). The trace of the homotopy Hd = {hdt : X → X}
is Hd(x) = u−1. Let m := n/d; then Hn = (Hd)m. We shall construct a
homotopy that contracts the trace Hn(x) to a point. The symbol ' means
homotopy between paths, relative to end points. Note that two paths can
be multiplied only under conditions on their end points, and the product of
paths is not commutative. Since on the cube Im the diagonal is homotopic
to a product of m edges, we have

Hn(x) = {(hdt )m(x)}t∈I '
0∏

i=m−1

{f idhdt g(m−i−1)d(x)}t∈I

=
0∏

i=m−1

f id(Hd(x)) since gd(x) = x

'
0∏

i=m−1

f id(w−1
d β−1) since Hd(x) = u−1 ' w−1

d β−1

'
0∏

i=m−1

(w−1
(i+1)dwidf

id(β−1)) since w(i+1)d = widf
id(wd)

= w−1
n

0∏

i=m−1

(widf id(β−1)w−1
id ).

Hence

〈Hn(x)〉 = 〈w−1
n 〉

0∏

i=m−1

(f id)x∗(〈β−1〉) = 〈w−1
n 〉

0∏

i=m−1

ϕid(〈β−1〉) = 1.

This completes the proof of the lemma.

We will need the mod K version of the Nielsen theory. If f,X and x are
as above, and if K is an fx∗ -invariant normal subgroup of π1(X,x), then we
denote the induced homomorphism on π1(X,x)/K by fx∗/K . We then have

the set RO(n)(fx∗/K) of Reidemeister fx∗/K -orbits, and the mod K essential
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n-orbit number EO (n)
K (f), that is, the cardinality of the set EO(n)

K (f) of mod
K essential n-orbit classes. We also have an injection

ρK : O(n)
K (f) ↪→RO(n)(fx∗/K).

We will omit the subscript K when the normal subgroup K is clear from
the context.

In this paper we will assume that all of our fibrations F ↪→ E → B (with
projection p : E → B) are Hurewicz fibrations with path connected fibres
(see [7]). We say that f : E → E is a fibre preserving map provided there is
a well defined map f̄ : B → B with pf = f̄p. When such a map exists it is
unique, and when B is a path connected locally path connected space it is
enough that for all b ∈ B the restriction of f takes the fibre Fb := p−1(b) to
another fibre. We will refer to the pair (f, f̄) as a fibre preserving map. If
(f, f̄) is a fibre preserving map, then for any b ∈ Fix(f̄n) we will denote the
restricted map on Fb by fnb . For x ∈ E let j : Fp(x) → E be the inclusion
and let K denote the kernel of the homomorphism

j∗ : π1(Fp(x), x)→ π1(E, x).

Proposition 2.3. Let p : E → B be a fibration of compact connected
ANR’s with path connected fibres, and let f : E → E be a fibre preserving
map. If x ∈ E is in an essential n-orbit class F (n)

f of f , and p(x) is a fixed
point of f̄ `, where ` |n, then the sequence (with m := n/`)

(EO(m)
K (f `p(x)),KF

(m)
f`p(x)

)
jE−→ (EO(m)(f `),F (m)

f`
)
pE−→ (EO(m)(f̄ `),F (m)

f̄`
)

is an exact sequence of pointed sets, where jE and pE are induced by the
inclusion j : Fp(x) → E and the projection p : E → B respectively , and the
base points are the essential orbit classes containing either x or p(x).

Note that f `p(x) means the map (f `)p(x) : Fp(x) → Fp(x), because (fp(x))`

does not make sense.

Proof. If x is in an essential n-orbit class of f , then x is in an essential
m-orbit class of f `. Applying [4, Theorem 1.1] to fn = (f `)m, we have a
commutative diagram of pointed sets

(EK((f`p(x))
m),KF (f`

p(x))
m ) (E((f`)m),F(f`)m ) (E((f`)m),F

(f
`
)m

)

(EO(m)
K (f`p(x)),KF

(m)
f`
p(x)

) (EO(m)(f`),F (m)
f`

) (EO(m)(f`),F (m)
f`

)

��

jE //

��

pE //

��
jE // pE //

where the vertical maps are projections and the upper sequence is exact.
Thus the proposition follows from the exactness of the upper sequence. Note
that pE is not necessarily surjective.
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We call a subset ξ ⊂ Fix(f̄n) a set of essential n-orbit representatives
for f̄ if ξ contains exactly one point from each essential n-orbit class F (n)

f̄
∈

EO(n)(f̄).
For each b ∈ ξ, let d be the depth of the essential f̄ -orbit class F (n)

f̄

containing b. Now b and f̄d(b) are in the same fixed point class of f̄n (because
the depth is always a multiple of the length, of the f̄ -orbit class F (n)

f̄
), but

not necessarily f̄d(b) = b. By the Reducing Lemma, there exists a homotopy
H = {ht : B → B}t∈I connecting f̄ = h0 to some g = h1 such that
b ∈ Fix(gd), and the n-orbit class of f̄ containing b corresponds to the
n-orbit class of g containing b because the trace Hn(x) is a contractible
loop. We can do this for all b ∈ ξ simultaneously, because the H above only
changes f̄ in a small neighborhood of the f̄ -orbit of b.

By the homotopy lifting property of the fibration p, the homotopy H in
B lifts to a fibre preserving homotopy H = {ht : E → E}t∈I connecting
f = h0 to some g = h1.

Theorem 2.4. Suppose p : E → B is a fibration of compact connected
ANR’s with path connected fibres, and f : E → E is a fibre preserving map.
Let ξ = {b1, . . . , bk} be a set of essential n-orbit representatives for f̄ . If
Fix((f̄n)bi∗ ) = {1} for every bi ∈ ξ, then

EO (n)(f) =
∑

bi∈ξ
EO (mi)

K (gdibi ),

where g is the fibre preserving map from the Reducing Lemma, K is the
kernel of the homomorphism j∗ : π1(Fbi) → π1(E) induced by the inclu-
sion of the fibre, di is the depth of the n-orbit class of f̄ containing bi,
and mi = n/di. In the condition Fix((f̄n)bi∗ ) = {1}, the endomorphism
(f̄n)bi∗ : π1(B, bi) → π1(B, bi) is meant to have the constant path at bi as
base path.

Note that when bi ∈ Fix(f̄di), the term EO (mi)
K (gdibi ) in the summation

can be replaced by EO (mi)
K (fdibi ), because we do not need to use the Reducing

Lemma at bi.

Proof. By homotopy invariance we have EO (n)(f) = EO (n)(g). So with-
out loss of generality (by taking g for f) we may assume that bi ∈ Fix(f̄di)
and g is the same as f .

For each bi ∈ ξ, let F (n)
f̄ ,i

be the essential n-orbit class containing it.

Clearly EO(n)(f) =
⋃
i p
−1
E (F (n)

f̄ ,i
). So we only need to show

|p−1
E (F (n)

f̄ ,i
)| = EO (mi)

K (fdibi ) when Fix((f̄n)bi∗ ) = {1}.
In the following proof we shall drop the subscript i from our notation.
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Suppose b ∈ ξ is in the essential n-periodic point class Ff̄n which in turn

is in the essential n-orbit class F (n)
f̄

. Since d is the depth of F (n)
f̄

, Ff̄n alone

constitutes an essential m-orbit class F (m)
f̄d
⊂ F (n)

f̄
. Suppose p−1

E (F (m)
f̄d

) 6= ∅.
Choose F (m)

fd
∈ p−1
E (F (m)

f̄d
) and x ∈ F (m)

fd
such that p(x) = b. Let j :

Fb ↪→ E be the inclusion of the fibre. We have the exact sequence

1→ π1(Fb, x)/K
j∗→ π1(E, x)

p∗→ π1(B, b)→ 1.

Let KF
(m)
fdb
∈ EO(m)

K (fdb ) be the mod K essential orbit class containing x.
Then by Proposition 2.3 we have a commutative diagram of exact sequences
in the category of pointed sets:

(EO(m)
K (fdb ),KF ) (EO(m)(fd),F (m)

fd
) (EO(m)(fd),F (m)

fd
)

(RO(m)((fdb )x∗/K), ρ(KF )) (RO(m)((fd)x∗), ρ(F (m)
fd

)) (RO(m)((fd)b∗), [1])

jE //

ρ

��

pE //

ρ

��
ρ

��
jx∗ // p∗ //

The notation KF stands for KF
(m)
fdb

and [1] stands for [1](m)
(f̄d)b∗

. Note that

here we regard fd as a self-map of the pair (E,Fb). The base path is taken
to be a path in Fb from x to fd(x), whose image in B is the constant
path at b. Hence the coordinate of F (m)

f̄d
is the [1](m)

(f̄d)b∗
in the lower left

corner.
When Fix((f̄d)bm∗ ) = Fix((f̄n)b∗) = {1}, Corollary 1.6 tells us jx∗ is

injective, and so jE is injective. Since p∗ and σ preserve essentiality, we
have a commutative diagram of exact sequences in the category of pointed
sets:

1→ (EO(m)
K (fdb ),KF

(m)
fd
b

) (EO(m)(fd),F (m)
fd

) (EO(m)(fd),F (m)
fd

)

(EO(n)(f),F (n)
f ) (EO(n)(f),F (n)

f
)

jE // pE //

σ

��
σ

��
pE //

By Lemmas 1.12 and 1.7, σ restricts to a bijection from p−1
E (F (m)

f̄d
) to

p−1
E (F (n)

f̄
). We thus get the desired equality |p−1

E (F (n)
f̄

)| = EO (m)
K (fdb ).

Let IEO (n)(f) denote the number of irreducible essential f -orbit classes
of f . Note that IEO (1)(f) = N(f), and IEO (n)(f) = (1/n)NPn(f) (as
defined in [6, p. 69]). The proof of Theorem 2.4 also leads to the following
consequence, which is comparable to [3, Theorem 3.4].
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Corollary 2.5. Under the conditions of Theorem 2.4, we also have

IEO (n)(f) =
∑

bi∈ξ
IEO (mi)

K (gdibi ).

The principal application is to fibrations over tori. It should be useful in
calculations on nil and solvmanifolds.

Corollary 2.6. Suppose p : E → B is a fibration over a torus (of any
dimension). Then for any fibre preserving map f : E → E, the summation
formulae of Theorem 2.4 and Corollary 2.5 hold true:

EO (n)(f) =
∑

bi∈ξ
EO (mi)

K (fdibi ), IEO (n)(f) =
∑

bi∈ξ
IEO (mi)

K (fdibi ).

Proof. For the torus map f̄ , the conditions of Theorem 2.4 are always
satisfied, because torus maps are n-toral in the sense of [5, Definition 3.4
and Remark 3.6]. Moreover, if an essential orbit class of a torus map is
reducible, it always reduces to an essential orbit class of the depth level, so
we can assume bi ∈ Fix(f̄di).

On the Klein bottle, Corollary 2.5 can be applied to establish the fol-
lowing interesting example (cf. [3, Example 4.1]). We omit the details.

Example 2.7 (The Klein bottle). Represent the Klein bottle K2 as the
quotient R2/G, where G is the group of automorphisms on R2 generated by
α : (x, y) 7→ (x, y + 1) and β : (x, y) 7→ (x+ 1,−y).

Given any odd integer r, the map (x, y) 7→ (rx,−y) on R2 induces a
well defined self-map f of K2. This f is fibre preserving with respect to the
fibration S1 ↪→ K2 p→ S1, where p is induced by the projection on the first
factor. (It corresponds to the case w = r and u = −1 in Example 1.16.)
Note that f induces a standard map f̄ of degree r on the base, and so f̄n

has exactly N(f̄n) = |rn − 1| fixed points.
Then, for n = 2k, k ≥ 1, we have

EO (n)(f) = IEO (n)(f) =
1
n
N(fn) =

|rn − 1|
n

.
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