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On the closure of Baire classes
under transfinite convergences

by

Tamás Mátrai (Budapest)

Abstract. Let X be a Polish space and Y be a separable metric space. For a fixed
ξ < ω1, consider a family fα: X → Y (α < ω1) of Baire-ξ functions. Answering a question
of Tomasz Natkaniec, we show that if for a function f : X → Y , the set {α < ω1: fα(x) 6=
f(x)} is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on
a characterization of Σ0

η sets which can be interesting in its own right.

1. Introduction. It is a fact of life that the class of continuous real
functions is not closed under pointwise convergence: instead, we obtain a
realization of the Baire-1 functions. On the other hand, it is an easy exercise
that the pointwise limit of a sequence of continuous functions with length
ω1 is necessarily continuous.

This problem and other properties of the pointwise convergence of trans-
finite sequences of real functions have been first considered by W. Sierpiński
[7]. In particular, he studied which class of functions is closed under such
convergences. Since most of the classes, for example the class of Baire-ξ
functions for ξ ≥ 2, are not, T. Natkaniec [6] introduced a stronger no-
tion of pointwise convergence. We recall the precise setting in the following
definition.

Definition 1. Let λ be a cardinal, (X, τ) be a Polish space, (Y, d) be a
separable metric space, and consider an ideal I on λ. We say that a sequence
of functions fα: X → Y (α < λ) I-converges to the function f : X → Y , in
notation fα →I f , if

{α < λ: fα(x) 6= f(x)} ∈ I
for every x ∈ X.
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Similarly, we write fα →d
I
f if for every ε > 0 and x ∈ X we have

{α < λ: d(f(x), fα(x)) > ε} ∈ I.
In the case of the ordinary ω1 convergence, as used in [3] and [7], we have

λ = ω1 and I = [ω1]≤ω, that is, the ideal of countable subsets of ω1. However,
our motivating theorem, answering [6, Problem 1, p. 490], is related to the
particular case when the ideal consists of the finite subsets of ω1, that is,
I< = [ω1]<ω.

Theorem 2. Let (X, τ) be a Polish space, (Y, d) be a separable metric
space, and for a fixed ξ < ω1 consider a family fα: X → Y (α < ω1) of
Baire-ξ functions. If f : X → Y is such that fα →d

I<
f , then f is Baire-ξ.

We note here that the original question asked by T. Natkaniec referred
to I<-convergence. However, it is easy to see that I<-convergence implies
d
I<-convergence, so the result above is formally stronger than required. The
sufficiency of dI<-convergence was pointed out to the author by Petr Holický.

As shown by W. Sierpiński ([7, Theorem 1, p. 133 and Theorem 2,
p. 137]), for the class of continuous and Baire-1 functions Theorem 2 also
holds for I = [ω1]≤ω instead of I<. On the other hand, it is independent
for every 2 ≤ ξ < ω1 whether there is an [ω1]≤ω-convergent sequence of
Baire-ξ functions whose limit function is Borel but not Baire-ξ (observe that
d
I<-convergence implies [ω1]≤ω-convergence). The first part of the following
theorem has already been proved by W. Sierpiński ([7, Section 6, pp. 139
and 140]) and further discussed by P. Komjáth ([3, Theorem 3, p. 499]).
Its second part, related to Problem 3 in [6, p. 490], is a simple analogue of
Theorem 2.

Theorem 3. Let (X, τ) be a Polish space and (Y, d) be a separable met-
ric space.

(i) (W. Sierpiński, P. Komjáth). Assuming the continuum hypothesis,
there exists an [ω1]≤ω-convergent sequence of real Baire-2 functions
whose limit function is not Borel.

(ii) Let λ < 2ℵ0 be an infinite cardinal with cf(λ) > ω and set J =
[λ]<λ. For a fixed ξ < ω1, consider a family fα: X → Y (α < λ) of
Baire-ξ functions and a Borel function f : X → Y . If fα →d

J
f and

in our model the union of λ meager sets is meager in Polish spaces,
then f is necessarily Baire-ξ.

The assumption on the additivity of meager sets holds under MA(λ) (see
e.g. [1, Theorem 1.2, p. 505] or [5, Theorem, p. 170]). The convergence of
transfinite sequences of Baire-2 functions of length ω2 has also been inves-
tigated by P. Komjáth (see [3, Theorems 4 and 5, p. 500]). It is consistent
(with 2ℵ0 = ω2 and MA(ω1)) that every real function can be obtained as
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such a limit. It is also consistent, under more complicated assumptions, that
the limit function is necessarily Baire-2.

It is not surprising, and we will follow this direction, that the proofs of
Theorem 2 and Theorem 3(ii) go via the analogous statements for charac-
teristic functions, i.e. for sets of given Borel classes. As usual, Π0

ξ(τ) (Σ0
ξ(τ)

resp.) stands for the ξth multiplicative (additive resp.) Borel class in (X, τ),
starting with Π0

1(τ) = closed sets, Σ0
1(τ) = open sets. With this notation

our key lemma, which might be considered as the main result of this paper,
can be stated as follows.

Theorem 4. Let τC1 denote the product topology on 2ω; let (X, τ) be a
Polish space. For every 2 ≤ ξ < ω1, there exist a Π0

ξ(τC1) set Pξ ⊆ 2ω and
a Polish topology τξ on 2ω which is finer than τC1 such that Pξ is nowhere
dense and closed in the topology τξ, and if a Borel set A ⊆ X is

(i) in Σ0
ξ(τ), then whenever for a continuous one-to-one mapping

ϕ: (2ω, τC1) → (X, τ) the set ϕ−1(A) ∩ Pξ is of second category
in Pξ in the relative topology τξ|Pξ , then ϕ−1(A) ⊆ 2ω is of second
category in the topology τξ;

(ii) not in Σ0
ξ(τ), then there is a continuous one-to-one mapping

ϕ: (2ω, τC1) → (X, τ) such that ϕ(Pξ) ⊆ A and ϕ−1(A) ⊆ 2ω is
of first category in the topology τξ.

Moreover , if λ < 2ℵ0 is a cardinal and in our model the union of λ meager
sets is meager in Polish spaces, then the first statement holds for every (not
necessarily Borel) set A which can be obtained as a union of λ many Σ0

ξ(τ)
sets.

Informally, this theorem says that a fixed proper Π0
ξ(τ) set is so far

from being a Σ0
ξ(τ) set that even Baire category can distinguish them in a

suitable topology (a similar result was obtained by S. Solecki in [8, Theorem
2.2, p. 526]). This approach explains the appearance of the condition on the
additivity of meager sets in Theorem 3(ii). The last statement is necessary
to prove Theorem 3(ii), and in other words it states that our assumption on
the additivity of meager sets implies that if the union of λ many Σ0

ξ(τC1)
sets is Borel, then it is Σ0

ξ(τC1) (see also [8, Corollary 2.3, p. 526] and [9]).
Theorem 4 can also be regarded as a qualitative analogue of the following

result (see e.g. [4, p. 433] for the ξ ≥ 3 case and [2, Theorem 21.22, p. 161]
for the ξ = 2 case), that we will use in the proof.

Theorem 5 (A. Louveau, J. Saint Raymond). Let 3≤ ξ< ω1 and (X, τ)
be a Polish space. If Pξ ⊆ 2ω is Π0

ξ(τC1) but not Σ0
ξ(τC1) and A0, A1 ⊆ X is

any pair of disjoint Borel sets, then either A0 can be separated from A1 by
a Σ0

ξ(τ) set or there is a continuous one-to-one map ϕ: (2ω, τC1)→ X with
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ϕ(Pξ) ⊆ A0 and ϕ(2ω \ Pξ) ⊆ A1. The same conclusion holds for ξ = 2 if
P2 ⊆ 2ω is the complement of a dense countable set.

Our reference for the basic notions of descriptive set theory is [2]. In the
next section we prove Theorems 2 and 3(ii), while the proof of Theorem 4
will be given in the last section.

2. I-convergent functions. In order to establish the connection be-
tween function classes and sublevel sets we will use the following classical
result (see e.g. [2, Chapter II, Theorem 24.3, p. 190]).

Theorem 6. Let (X, τ) be a Polish space and (Y, d) be a separable met-
ric space. Then for every 1 ≤ ξ < ω1, a function f : X → Y is Baire-ξ if
and only if f−1(U) ⊆ X is Σ0

ξ+1(τ) for every open set U ⊆ Y .

In the metric space (Y, d), the open ball centered at x ∈ Y with radius ρ
is denoted by Bd(x, ρ). After these preparations, Theorems 2 and 3(ii) are
simple corollaries of Theorem 4.

Proof of Theorem 2. By [7, Theorem 1, p. 133 and Theorem 2, p. 137],
the statement holds for ξ ≤ 1. So fix 2 ≤ ξ < ω1 and suppose that fα →d

I<
f

for a family fα: X → Y (α < ω1) of Baire-ξ functions.
Suppose that f is not Baire-ξ. Being the pointwise limit of {fα: α < ω},

f is clearly Borel, so by Theorem 6, there is an open ball Bd(x, ρ) ⊆ Y such
that f−1(Bd(x, ρ)) is Borel but not Σ0

ξ+1(τ). Set

H(ε) = f−1(Bd(x, ρ− ε)), Hα(ε) = f−1
α (Bd(x, ρ− ε))

for every α < ω1 and 0 < ε < %. Note that by Theorem 6, Hα(ε) is in
Σ0
ξ+1(τ) for every α < ω1 and 0 < ε < %.

Since H(0) is not Σ0
ξ+1(τ), by Theorem 4(ii) there is a continuous one-

to-one map ϕ: (2ω, τC1)→ (X, τ) such that

(i) ϕ(Pξ+1) ⊆ H(0),
(ii) ϕ−1(H(0)) ⊆ 2ω is of first category in the topology τξ+1.

By (i), there is an ε0 > 0 such that ϕ−1(H(ε0)) ∩ Pξ+1 is of second
category in the topology τξ+1|Pξ+1 . Let J1(ε) denote the set of those α < ω1

for which ϕ−1(Hα(ε)) is of second category in the topology τξ+1.
We prove that ω1\J1(ε) is finite for every ε < ε0. Suppose that this is not

true and take a countably infinite set J ′(ε) ⊆ ω1 \ J1(ε). By the definition
of dI<-convergence, ε < ε0 implies that

H(ε0) ⊆ H ′(ε) :=
⋃

α∈J ′(ε)
Hα(ε),

so ϕ−1(H ′(ε))∩Pξ+1 is of second category in Pξ+1 in the topology τξ+1|Pξ+1 ;
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that is, since H ′(ε) is Σ0
ξ+1(τ), by Theorem 4.1, ϕ−1(H ′(ε)) is of second

category in τξ+1. This is a contradiction, since by the definition of J1(ε),
ϕ−1(H ′(ε)) is τξ+1-meager.

So J1(ε) is of cardinality ω1 for every ε < ε0. In particular, given that
(2ω, τξ+1) has countable base, there is a τξ+1-open set U ⊆ 2ω such that
for a countably infinite set J ′′ ⊆ J1(ε0/2) the set ϕ−1(Hα(ε0/2)) is residual
in U in the topology τξ+1 whenever α ∈ J ′′. Hence for

H ′′ =
⋂

α∈J ′′
Hα(ε0/2),

ϕ−1(H ′′) is also τξ+1-residual in U , so by (ii) we can find a point x0 ∈
H ′′ \H(0). Thus fα (α < ω1) is not d

I<-convergent since

J ′′ ⊆ {α < ω1: d(f(x0), fα(x0)) > ε0/2}
is infinite; a contradiction. The proof is complete.

Proof of Theorem 3(ii). Again, for ξ ≤ 1 the statement follows from the
proofs in [7]; so let ξ ≥ 2. Now f is Borel by assumption; and the proof is
the same as for Theorem 2, until the definition of J1. Now we show that
card(λ \ J1(ε)) < λ for every ε < ε0.

Suppose that this is not true and take a set J ′(ε) ⊆ λ \ J1(ε) of cardi-
nality λ. By the definition of dJ -convergence, ε < ε0 implies that

H(ε0) ⊆ H ′(ε) :=
⋃

α∈J ′(ε)
Hα(ε),

so ϕ−1(H ′(ε))∩Pξ+1 is of second category in Pξ+1 in the topology τξ+1|Pξ+1 ;
that is, by the extension of Theorem 4(i), since H ′(ε) is the union of λ
many Σ0

ξ+1(τ) sets Hα(ε) (α ∈ J ′(ε)), ϕ−1(H ′(ε)) is of second category in
τξ+1. Now this contradicts the assumption that the union of λ meager sets is
meager in (2ω, τξ+1), since by the definition of J1(ε), ϕ−1(Hα(ε)) (α ∈ J ′(ε))
is τξ+1-meager.

We continue as above; J1(ε) is of cardinality λ for every ε < ε0. In
particular, given that cf(λ) > ω and (2ω, τξ+1) has countable base, there is
a τξ+1-open set U ⊆ 2ω such that for a set J ′′ ⊆ J1(ε0/2) of cardinality λ
the set ϕ−1(Hα(ε0/2)) is τξ+1-residual in U whenever α ∈ J ′′. Since in our
model the intersection of λ many τξ+1-residual sets is again residual, for

H ′′ =
⋂

α∈J ′′
Hα(ε0/2),

ϕ−1(H ′′) is also τξ+1-residual in U , so by (ii) we can find a point x0 ∈ H ′′ \
H(0). Again, this contradicts the d

J -convergence. The proof is complete.
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3. Distinguishing Borel classes. We will define recursively a sequence
of compact Polish spaces homeomorphic to (2ω, τC1), Borel sets of increasing
complexity and additional Polish topologies which will serve as test sets
and topologies. During this construction we will successively refine Polish
topologies by turning countably many pairwise disjoint closed sets into open
sets. We do this as described in [2], that is, the open sets of the old topology
together with their portions on the members of our collection of closed sets
serve as a base of a new, finer topology. We will use the fact that the topology
obtained this way is also Polish.

We will also need a precise notion of basic open sets in our resulting
spaces. In what follows, if a basis Gi is fixed in the space (Xi, σi) for every
i ∈ I, which are meant to be the basic open sets in Xi, then the basic open
sets of (

∏
i∈I Xi,

∏
i∈I σi) are the open sets of the form

∏

i∈J
Gi ×

∏

i∈I\J
Xi,

where J ⊆ I is finite and Gi ∈ Gi for every i ∈ J . Similarly, if the basic open
sets G are fixed in (X,σ) and F is a countable collection of pairwise disjoint
closed subsets of X, then the basic open sets of the finer topology obtained
as described above are of the form G∩F or G with G ∈ G, F ∈ F . Observe
that the basic open sets thus defined form a basis.

We will have to return to the topologies on the coordinate spaces in prod-
uct spaces. If (X,σ), (Y, τ) are arbitrary topological spaces and (X ,S) =
(X × Y, σ × τ), then we define PrX(S) = σ. The projection of product sets
in product spaces is defined analogously,

Now we can start the construction. We set C1 = 2ω and

P1 = {x ∈ C1: ∀m ∈ ω (x(m) = 1)}.
We denote by τC1 the product topology on C1; so (C1, τC1) is a Polish space.
Set τ1 = τC1 on C1.

For every ordinal ξ < ω1 we fix once and for all a sequence

ξ1 ≤ · · · ≤ ξi ≤ . . . < ξ (i < ω)(1)

of ordinals: if ξ is limit, let ξ = limi→∞ ξi, while for ξ successor, ξ = ξi + 1
for every i < ω. To avoid complicated notations, we do not indicate the
dependence of the sequence on ξ; it will always be clear which pair of an
ordinal and a sequence is considered.

Suppose that the sets Cη and Pη and their topologies are defined for
every η < ξ. Then let Cξ =

∏∞
i=0Cξi and

Pξ = {x ∈ Cξ: ∀m ∈ ω (x(m, ·) ∈ Cξm \ Pξm)},(2)

τCξ =
∞∏

i=0

τCξi , τ<ξ =
∞∏

i=0

τξi ,(3)
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and let τξ be the coarsest topology extending τ<ξ such that

Uξ,N =
N−1∏

i=0

(Cξi \ Pξi)× PξN ×
∞∏

i=N+1

Cξi(4)

⊆
N−1∏

i=0

Cξi × CξN ×
∞∏

i=N+1

Cξi = Cξ

is open for every N < ω. It is important that the sets Uξ,N (N < ω) are
pairwise disjoint. Note also that this construction fits into the framework
presented in the introduction of this section since after having turned Uξ,i
into an open set for i < N ,

Uξ,N =
(N−1∏

i=0

Cξi × PξN ×
∞∏

i=N+1

Cξi

) ∖ (N−1⋃

i=0

Uξ,i

)

is indeed closed in this intermediate refinement of τ<ξ .
In the following six claims we prove some relations between Pξ and the

topologies τCξ , τξ and τ<ξ .

Claim 7. For every 1 ≤ ξ < ω1, Pξ ∈ Π0
ξ(τCξ).

Proof. We prove the statement by induction on ξ. For ξ = 1 the set P1
is a single point, which is clearly τC1-closed.

Let now ξ ≥ 2 and suppose that Pη ∈ Π0
η(τCη) for every η < ξ. Then

Pξ =
⋂

m<ω

{x ∈ Cξ: x(m, ·) ∈ Cξm \ Pξm}.(5)

Since τCξ is the product of the topologies τCξm and Pξm is Π0
ξm

(τCξm ) by the
induction hypothesis, Pξ is the intersection of sets of additive class lower
than ξ, so the statement follows.

Claim 8.

(i) For every 1 ≤ ξ < ω1, Pξ ⊆ Cξ is nowhere dense closed , hence
meager in the topology τξ.

(ii) For ξ ≥ 2, Pξ ⊆ Cξ is a dense Gδ, hence residual in the topology
τ<ξ .

Proof. We prove the two statements together, by induction on ξ. For
ξ = 1, P1 is a single point, which is clearly closed and nowhere dense.

Let now ξ ≥ 2 and suppose that (i) holds for every η < ξ. We prove (ii)
for ξ.

By (4) and (5), we have

Pξ = Cξ \
⋃

m<ω

Uξ,m.(6)
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By the induction hypothesis, Pξm is nowhere τξm-dense and closed for every
m < ω, so, since τ<ξ is the product of the topologies τξm , Uξ,m is nowhere
τ<ξm-dense for every m < ω. Also, Uξ,m is a finite intersection of τ<ξ -open
and τ<ξ -closed sets, thus it is an Fσ set in the topology τ<ξ for every m < ω.
Hence (6) shows that Pξ is τ<ξ -dense and Gδ.

Consider now statement (i) for ξ. To obtain τξ, we made open every set
on the right hand side of (6), so Pξ is closed. Again using the fact that Pξm is
nowhere τξm-dense, we infer that

⋃
m<ω Uξ,m meets every τ<ξ -open set, hence

it is also τξ-dense, so Pξ is nowhere τξ-dense. This finishes the proof.

Claim 9. For every 1 ≤ ξ < ω1, τξ|Pξ = τ<ξ |Pξ .
Proof. By definition, Uξ,N ∩Pξ = ∅ (N < ω), so the statement follows.

Claim 10. For 2 ≤ ξ < ω1, every basic τ<ξ -open [basic τξ-open, resp.]
subset G of Cξ is in Σ0

1(τCξ) ∪ Π0
η(τCξ) [Π0

ξ(τCξ), resp.] for some η < ξ
depending on G.

Proof. We prove the statements by induction on ξ. For ξ = 2, τ<2 = τC2 ,
so the basic τ<2 -open sets are Σ0

1(τC2), as stated. Every new basic open set
of τ2 compared to τ<2 is a finite intersection of τC2-open and τC2-closed sets,
so the basic τ2-open sets are indeed in Π0

2(τC2).
Take now ξ ≥ 3 and suppose that the statements are true for every η < ξ.

By (3) and the induction hypothesis, the τ<ξ -open sets can be obtained as
finite intersections of sets in Σ0

1(τCξ) ∪ Π0
ξi

(τCξ) with ξi < ξ, which clearly
gives sets in Π0

η(τCξ) for η < ξ.
Consider now the topology τξ; again it is enough to determine the Borel

class of the Uξ,N ’s. By Claim 7, (4) shows that Uξ,N is a finite intersection
of Σ0

ξi
(τCξ) and Π0

ξN
(τCξ) sets, which is a Π0

ξ(τCξ) set, as required.

Claim 11. If G is basic τξ-open and G ∩ Pξ 6= ∅ then G is also basic
τ<ξ -open.

Proof. Since Uξ,N (N < ω) is disjoint from Pξ, the statement follows
from the definition of τξ.

Claim 12. For every 1 ≤ ξ < ω1 and N < ω,

τξ|Uξ,N = Pr∏N−1
i=0 Cξi

(τ<ξ |∏N−1
i=0 Cξi\Pξi

)× τξN |PξN × Pr∏∞
i=N+1 Cξi

(τ<ξ ).

Proof. The sets Uξ,N (N < ω) are pairwise disjoint, so

τξ|Uξ,N = τ<ξ |Uξ,N .
By (3), PrCξN (τ<ξ ) = τξN while by (4), PrCξN (Uξ,N ) = PξN and

Pr∏N−1
i=0 Cξi

(Uξ,N ) =
N−1∏

i=0

Cξi \ Pξi , Pr∏∞
i=N+1 Cξi

(Uξ,N ) =
∞∏

i=N+1

Cξi ,
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so we get

τ<ξ |Uξ,N = Pr∏N−1
i=0 Cξi

(τ<ξ |Uξ,N )× PrCξN (τ<ξ |Uξ,N )× Pr∏∞
i=N+1 Cξi

(τ<ξ |Uξ,N )

= Pr∏N−1
i=0 Cξi

(τ<ξ |∏N−1
i=0 Cξi\Pξi

)× τξN |PξN × Pr∏∞
i=N+1 Cξi

(τ<ξ ),

as required. This finishes the proof.

We will prove Theorem 4 through the following lemma, which states
the same result in a more technical way, which fits better into an inductive
argument.

Lemma 13. Fix 1 ≤ ξ < ω1. Let (Z, σ) be an arbitrary Polish space and
G ⊆ Z × Cξ be a basic σ × τξ-open set with

G ∩ (Z × Pξ) 6= ∅.
(i) If ξ ≥ 2 and Q ⊆ Z × Cξ is Π0

ϑ(σ × τCξ) for some ϑ < ξ, and
Q∩ (Z ×Pξ) is relatively σ× (τξ|Pξ)-residual in G∩ (Z ×Pξ), then
Q is σ × τξ-residual in a σ × τξ-open set G′ satisfying

(7) G ∩ (Z × Pξ) = G′ ∩ (Z × Pξ).
(ii) If for a set W ∈ Σ0

ξ(σ × τCξ), W ∩ (Z × Pξ) is relatively σ × (τξ|Pξ)-
residual in G∩(Z×Pξ), then W is σ×τξ-residual in a σ×τξ-open set
H ⊆ Z×Cξ such that G∩ (Z×Pξ) is contained in the σ× τξ-closure
of H.

Proof. Once we prove the statement concerning Π0
ϑ(σ × τCξ) sets for

given ϑ < ξ < ω1, the statement for Σ0
ξ(σ × τCξ) sets automatically follows.

To see this, write
W =

∞⋃

α=0

Qα,

where Qα is in Π0
ϑα

(σ × τCξ) with ϑα < ξ for every α < ω, and suppose
that W ∩ G ∩ (Z × Pξ) is relatively σ × (τξ|Pξ)-residual in G ∩ (Z × Pξ).
For every α < ω, let Hα denote the maximal σ× τξ-open set in which Qα is
σ× τξ-residual. Then by (i), the σ× τξ-open set H =

⋃∞
α=0Hα meets every

open set intersecting G ∩ (Z × Pξ), which proves the statement.
So we need only prove (i). We do this by induction on ξ, namely we prove

(i) for a fixed ξ < ω1 by assuming that (ii) holds for every η < ξ. For ξ = 1,
by the Baire Category Theorem, H = W can be chosen.

Let now ξ ≥ 2 and suppose that (ii) holds for every η < ξ (1). Consider
a Π0

ϑ(σ× τCξ) set Q ⊆ Z×Cξ for some ϑ < ξ and suppose that Q∩ (Z×Pξ)
is σ × (τξ|Pξ)-residual in G ∩ (Z × Pξ) for a basic σ × τξ-open set G with
G ∩ (Z × Pξ) 6= ∅. By Claim 11, G is in fact a basic σ × τ<ξ -open set.

(1) To be precise, we assume that the statements hold for every η < ξ and Polish
space (Z, σ), no matter how we have fixed in (1) the sequence of ordinals ηi (i < ω) for
every η < ξ.
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By Claim 9, the restrictions of the topologies τξ and τ<ξ to Pξ coincide,
so Q ∩G ∩ (Z × Pξ) is also relatively σ × τ<ξ -residual in G ∩ (Z × Pξ). But
by Claim 8(ii), Pξ is a τ<ξ -residual subset of Cξ, so

Q ∩G is necessarily σ × τ<ξ -residual in G.(8)

Let 0 < I < ω be minimal so that ϑ ≤ ξI . We show that

G′ = G ∩
(
Z ×

I−1∏

i=0

(Cξi \ Pξi)× CξI ×
∞∏

i=I+1

Cξi

)
(9)

meets the requirements. It is clearly σ × τξ-open and (7) holds, since

Z × Pξ ⊆ Z ×
I−1∏

i=0

(Cξi \ Pξi)× CξI ×
∞∏

i=I+1

Cξi .

Suppose that Q∩G′ is not σ× τξ-residual in G′, that is, Q∩ G̃ is σ× τξ-
meager for some basic σ× τξ-open set G̃ ⊆ G′; by passing to a proper basic
σ× τξ-open subset we can assume that G̃ is not σ× τ<ξ -open. Let G̃0 be the
basic σ × τ<ξ -open set such that

G̃ = G̃0 ∩ (Z × Uξ,J ) = G̃0 ∩
(
Z ×

J−1∏

i=0

Cξi × PξJ ×
∞∏

i=J+1

Cξi

)

for some J < ω. This decomposition exists since Uξ,N (N < ω) are pairwise
disjoint. Note that I ≤ J by (9), and we have G̃0 ⊆ G. To summarize, we
have shown that

Q ∩ G̃0 ∩ (Z × Uξ,J ) is σ × τξ-meager in G̃0 ∩ (Z × Uξ,J).(10)

Set

Z = Z ×
J−1∏

i=0

Cξi ×
∞∏

i=J+1

Cξi ,

σ = σ × Pr∏J−1
i=0 Cξi

(τ<ξ )× Pr∏∞
i=J+1 Cξi

(τ<ξ )

Q = (Z × Cξ) \Q ⊆ Z × CξJ , G = G̃0 ⊆ Z × CξJ .
The space (Z, σ) is clearly Polish, and G is a basic σ × τξJ -open subset of
Z × CξJ . From ϑ ≤ ξI ≤ ξJ < ξ, Q is a Σ0

ξJ
(σ × τCξJ ) set.

According to (10) and Claim 12, Q is σ × (τξJ |PξJ )-residual in G ∩ (Z ×
PξJ ), so by the induction hypothesis, Q is σ × τξJ -residual in some σ ×
τξJ -open set H ⊆ Z × CξJ such that the σ × τξJ -closure of H contains
G ∩ (Z × PξJ ); so in particular, H ∩ G 6= ∅. Let H = H ⊆ Z × Cξ. Since
τξJ = PrCξJ (τ<ξ ) by definition, we have H ∩ G̃0 6= ∅ and Q ∩ H ∩ G̃0 is

σ×τ<ξ -meager in H∩G̃0 ⊆ G. This contradicts (8). The proof is complete.
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This lemma proves in particular that Pξ is a proper Π0
ξ(τCξ) set.

Corollary 14. For every 1 ≤ ξ < ω1, Pξ is in Π0
ξ(τCξ) \ Σ0

ξ(τCξ).

Proof. Clearly, Pξ ⊆ Cξ is τξ|Pξ -residual, but by Claim 8(i), Pξ is τξ-
meager. So by Lemma 13, Pξ cannot be Σ0

ξ(τCξ).

Proof of Theorem 4. First we prove (i) and (ii) in the case ξ = 2 since it
is exceptional in Theorem 5. Then we show (i) and (ii) for 3 ≤ ξ < ω1 and
finally we treat the extension to all 2 ≤ ξ < ω1.

So let ξ = 2. We set

U ′2,N = {x ∈ 2ω: ∀n ≥ N (x(n) = 0)} (N < ω),

P2 = 2ω \
⋃

N<ω

U ′2,N .

We define the topology τ2 as the refinement of τC1 by turning each point of
the finite sets U ′2,N (N < ω) into an open set. Clearly, P2 is the complement
of a dense countable subset in (2ω, τC1), so in particular P2 is Π0

2(τC1) and
τC1-residual. Being the complement of the dense τ2-open set

⋃
N<ω U

′
2,N , it

is also τ2-meager.
LetA⊆X be Σ0

2(τ) and take a continuous one-to-one mapping ϕ: (2ω, τC1)
→ (X, τ) such that ϕ−1(A) ∩ P2 is of second category in P2 in the relative
topology τ2|P2 . Then ϕ−1(A) ⊆ (2ω, τC1) is Σ0

2(τC1) and ϕ−1(A) ∩ P2 is of
second category in τ2|P2 ; thus ϕ−1(A) is of second category in τC1 as well.
Since a Σ0

2(τC1) set in (2ω, τC1) is of second category only if its interior is
nonempty, ϕ−1(A) contains a nonempty τC1-open set so ϕ−1(A)∩U ′2,N 6= ∅
for some N < ω. Then ϕ−1(A), having nonempty interior, is of second cat-
egory in τ2, as required.

If A is not Σ0
2(τ), we apply Theorem 5 for A0 = A, A1 = X \ A. These

sets cannot be separated by a Σ0
ξ(τ) set, so since P2 is the complement

of a countable dense subset of (2ω, τC1), there is a continuous one-to-one
mapping ϕ: 2ω → X with ϕ(P2) ⊆ A, ϕ(2ω \ P2) ⊆ X \ A. So as we have
seen above, ϕ−1(A) = P2 is indeed τ2-meager.

We turn to the ξ ≥ 3 case. The Polish space (Cξ, τCξ) is obviously homeo-
morphic to (C1, τC1) (see e.g. [2, Theorem 7.4, p. 35]). We show that (Pξ, τξ)
satisfies the requirements for every 3 ≤ ξ < ω1.

Let A ⊆ X be Σ0
ξ(τ) for some ξ < ω1 and take a continuous one-to-one

mapping ϕ: Cξ → X such that ϕ−1(A) ∩ Pξ is of second category in Pξ in
the relative topology τξ|Pξ . Then ϕ−1(A) ⊆ Cξ is Σ0

ξ(τCξ) and ϕ−1(A) ∩ Pξ
is τξ|Pξ -residual in G ∩ Pξ for some basic τξ-open set G. So according to
Lemma 13(i), ϕ−1(A) is of second category in τξ, as required.

Suppose now that A is not Σ0
ξ(τ). We apply Theorem 5 for A0 = A

and A1 = X \ A. These sets cannot be separated by a Σ0
ξ(τ) set, so since
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Pξ is Π0
ξ(τCξ) but not Σ0

ξ(τCξ), there is a continuous one-to-one mapping
ϕ: Cξ → X with ϕ(Pξ) ⊆ A, ϕ(2ω\Pξ) ⊆ X\A. So according to Claim 8.1(i),
ϕ−1(A) = Pξ is indeed τξ-meager.

Finally, suppose that for some cardinal λ < 2ℵ0 , in our model the union
of λ meager sets is meager in Polish spaces. Let Ai (i < λ) be Σ0

ξ(τ) for some
2 ≤ ξ < ω1 and set A =

⋃
i<λAi. Since ϕ−1(A) ∩ Pξ is of second category

in Pξ in the relative topology τξ|Pξ , by our assumption ϕ−1(Ai) ∩ Pξ is also
of second category in (Pξ, τξ|Pξ) for some i < λ. So by the first statement,
ϕ−1(Ai)⊆ϕ−1(A) is of second category in τξ. This finishes the proof.
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