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Covering lo
ally 
ompa
t groups byless than 2
ω many translates of a 
ompa
t nullsetbyMárton Elekes and Árpád Tóth (Budapest)

Abstra
t. Gruenhage asked if it was possible to 
over the real line by less than
ontinuum many translates of a 
ompa
t nullset. Under the Continuum Hypothesis theanswer is obviously negative. Elekes and Stepr	ans gave an a�rmative answer by showingthat if CEK is the well known 
ompa
t nullset 
onsidered �rst by Erd®s and Kakutanithen R 
an be 
overed by cof(N ) many translates of CEK. As this set has no analogue inmore general groups, it was asked by Elekes and Stepr	ans whether su
h a result holds forun
ountable lo
ally 
ompa
t Polish groups. In this paper we give an a�rmative answer inthe abelian 
ase.More pre
isely, we show that if G is a nondis
rete lo
ally 
ompa
t abelian group inwhi
h every open subgroup is of index at most cof(N ) then there exists a 
ompa
t set Cof Haar measure zero su
h that G 
an be 
overed by cof(N ) many translates of C. Thisresult, whi
h is optimal in a sense, 
overs the 
ases of un
ountable 
ompa
t abelian groupsand of nondis
rete separable lo
ally 
ompa
t abelian groups.We use Pontryagin's duality theory to redu
e the problem to three spe
ial 
ases; the
ir
le group, 
ountable produ
ts of �nite dis
rete abelian groups, and the groups of p-adi
integers, and then we solve the problem on these three groups separately.In addition, using representation theory, we redu
e the nonabelian 
ase to the 
lasses ofLie groups and pro�nite groups, and we also settle the problem for Lie groups. (M. Abértre
ently gave an a�rmative answer for pro�nite groups, so the nonabelian 
ase is also
omplete.)1. Introdu
tion. Under the Continuum Hypothesis the real line obvi-ously 
annot be 
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244 M. Elekes and Á. Tóthmeasure zero. On the other hand, it is well known that in some models of settheory there exists su
h a 
overing [BJ℄. Moreover, we 
an obviously assumethat the set is Gδ. Gruenhage [Gr℄ asked whether su
h a 
overing 
an be
onstru
ted with an Fσ or 
losed or 
ompa
t nullset (using of 
ourse someextra set-theoreti
 assumption).Question 1.1 (Gruenhage). Let C ⊂ R be a 
ompa
t set of Lebesguemeasure zero and A ⊂ R be of 
ardinality less than 2ω. Does that imply
C + A 6= R?We remark that it is well known that in some models of set theory R
an be 
overed by less than 2ω many 
ompa
t nullsets ([BJ℄ or [BS℄), but inthese 
overings the sets are not translates of ea
h other.We also remark that already [Mi℄ 
onsiders 
ardinal invariants of 
losedmeasure zero sets, and [MS℄, [Pa℄ and [Sh℄ deal with �translative 
ardinalinvariants�; that is, when the small sets 
onsidered are translates of ea
hother. For another very 
losely related paper see [Zi℄.Gruenhage gave an a�rmative answer to Question 1.1 when C is the
lassi
al Cantor set [Gr℄, and later Darji and Keleti [DK℄ generalized hisresults to the 
lass of 
ompa
t nullsets of pa
king dimension less than 1.Then Elekes and Stepr	ans [ES℄ answered all versions of Gruenhage's ques-tion in the negative as follows.Definition 1.2. De�ne

CEK =

{ ∞∑

n=2

dn

n!

∣∣∣∣ dn ∈ {0, 1, . . . , n − 2} ∀n

}
.The letters E and K stand for Erd®s and Kakutani.Definition 1.3. Let N denote the set of Lebesgue nullsets of the realline, and let cof(N ) = min{|H| : H ⊂ N , ∀N ∈ N ∃H ∈ H, N ⊂ H}.It is not hard to see that ω < cof(N ) ≤ 2ω (see [BJ℄).Theorem 1.4 (Elekes�Stepr	ans). R 
an be 
overed by cof(N ) manytranslates of the 
ompa
t nullset CEK.As cof(N ) < 2ω is 
onsistent with the axioms of set theory [BJ℄, weobtain the following.Corollary 1.5. It is 
onsistent with the axioms of set theory that lessthan 
ontinuum many translates of a 
ompa
t set of measure zero 
over thereal line.As CEK has no analogue in more general groups, it was asked in [ES℄whether su
h a result holds for un
ountable lo
ally 
ompa
t Polish groups.The main goal of this paper is to show that the answer is a�rmative in theabelian 
ase (Corollary 2.7). Note that 
ountable lo
ally 
ompa
t groups are



Covering groups by translates of a nullset 245not interesting from this viewpoint, and that the assumption that the groupis Polish is natural, sin
e our problem a
tually 
onsiders a 
ardinal invariant(see [BJ℄), and this topi
 is usually dis
ussed in the framework of Polishspa
es.First we use Pontryagin's duality theory to redu
e the problem to threespe
ial 
ases: the 
ir
le group, 
ountable produ
ts of �nite dis
rete groups,and the groups of p-adi
 integers; then we solve the problem separately forthese groups.In Se
tion 3 we dis
uss the nonabelian version of our problem. We redu
ethe nonabelian 
ase to the 
ases of Lie groups and pro�nite groups, and weshow that every nondis
rete Lie group in whi
h every open subgroup is ofindex at most cof(N ) 
an be 
overed by cof(N ) many left translates of a
ompa
t set of Haar measure zero.Note that a set is of left Haar measure zero i� it is of right Haar measurezero.All groups are ta
itly assumed to be Hausdor�.Remark 1.6. The referee pointed out the following interesting fa
ts.1. Our method of redu
ing the problem to some spe
ial groups is fairlygeneral. Therefore it may well be appli
able to show that all lo
ally 
ompa
tgroups possess a 
ertain property, supposing that whenever a fa
tor group
G/H has the property then G itself does.2. The use of cof(N ) is not optimal, one 
an show that 
onsistently it
an be improved. In fa
t, it 
ould be repla
ed with the least 
ardinality κfor whi
h for every pair f, g : ω → ω 
onverging to in�nity every f -slalom
an be 
overed by κ many g-slaloms (see De�nition 2.9). However, as this isnot a very well known invariant, and most probably this is also not optimal,we still prefer to use cof(N ).3. Question 1.1 is 
losely related to the following, whi
h essentially askswhether the set of translations we use 
an be arbitrary. Is it true that forevery un
ountable X ⊂ R there exists a 
ountable set Y and a 
losed nullset
F su
h that (X +Y )+F = R? On 
an easily show that this is in fa
t equiva-lent to the following: Is it true that for every un
ountable X ⊂ R there existsan Fσ nullset A so that X + A = R? On 
an very easily give a 
onsistentnegative answer to these questions (e.g. if cov(N ) = 2ω > ω1), but a negativeanswer in ZFC would be interesting. On the other hand, a 
onsistent a�r-mative answer would prove the 
onsisten
y of the so-
alled Borel Conje
ture+ Dual Borel Conje
ture, whi
h is a longstanding open problem.2. The abelian 
aseRemark 2.1. It may be instru
tive to bear in mind that the proof (justas in Se
tion 3 in the nonabelian 
ase) will 
onsist of two parts. First we prove



246 M. Elekes and Á. Tótha purely analyti
 result by 
onstru
ting a 
ompa
t nullset and showing thatevery so-
alled �slalom� 
an be 
overed by a translate of that set, and thenwe apply a purely set-theoreti
 result stating that 
onsistently less than 2ωmany slaloms 
an 
over the spa
e.A topologi
al group is LCA if it is lo
ally 
ompa
t and abelian.Definition 2.2. We say that a lo
ally 
ompa
t group G is ni
e if thereexists a 
ompa
t set C ⊂ G of Haar measure zero su
h that G 
an be 
overedby cof(N ) many left translates of C.The aim of this se
tion is to prove the following.Theorem 2.3. Suppose that G is a nondis
rete LCA group in whi
hevery open subgroup is of index at most cof(N ). Then G is ni
e; that is,there exists a 
ompa
t set C ⊂ G of Haar measure zero su
h that G 
an be
overed by cof(N ) many translates of C.Remark 2.4. Both 
onditions of the theorem are ne
essary. First, if Gis dis
rete then the only nullset is the empty set, so no 
overing by nullsetsexists. Se
ondly, if there is an open subgroup of index κ then at least κmany 
ompa
t nullsets are needed to 
over G, sin
e a 
ompa
t set 
an onlyinterse
t �nitely many 
osets.In fa
t, as �cof(N ) = ω1 and 2ω = ω2� is 
onsistent with the axioms ofset theory [BJ℄, we a
tually obtain the following 
onsistent 
hara
terization.Corollary 2.5. It is 
onsistent with the axioms of set theory that anLCA group G 
an be 
overed by less than 2ω many translates of a 
ompa
tnullset i� G is nondis
rete and has no open subgroup of index at least 2ω.Before the proof of Theorem 2.3 we formulate two more 
orollaries.Corollary 2.6. Every un
ountable 
ompa
t abelian group and everynondis
rete separable LCA group is ni
e; that is, it 
an be 
overed by cof(N )many translates of a 
ompa
t nullset.As cof(N ) < 2ω is 
onsistent with the axioms of set theory [BJ℄, and everyPolish spa
e is separable, we obtain the following, whi
h answers Question3.2 in [ES℄ in the abelian 
ase.Corollary 2.7. It is 
onsistent with the axioms of set theory that everyun
ountable lo
ally 
ompa
t abelian Polish group 
an be 
overed by less than
2ω many translates of a 
ompa
t nullset.In the rest of this se
tion we prove Theorem 2.3. First we need twote
hni
al lemmas.



Covering groups by translates of a nullset 247Lemma 2.8. Let n ≥ 0 be an integer , G be a �nite group, and A and Sbe subsets of G su
h that
(

1 −
1

n + 3

)
|G| ≤ |A| and |S| ≤ n + 2.Then there exists g ∈ G su
h that S ⊂ gA.Proof. Clearly S 6⊂ gA i� g ∈ S(G \ A)−1. So it is enough to 
he
k that

S(G \ A)−1 6= G, whi
h is 
lear, sin
e
|S(G \ A)−1| ≤ |S| · |G \ A| ≤ (n + 2)

|G|

n + 3
< |G|.For a sequen
e (Xn)n∈N of sets,×n∈N

Xn denotes their Cartesian prod-u
t.Definition 2.9. For every n ∈ N let Xn be an arbitrary set, and �x afun
tion f : N → N \ {0}. An f -slalom is a set of the form
S = ×

n∈N

Sn, where Sn ⊂ Xn, |Sn| ≤ f(n) (n ∈ N).Lemma 2.10. Let f0 : N → N\{0} be su
h that lim∞ f0 = ∞, and let Xn

(n ∈ N) be 
ountable sets. Then ×n∈N
Xn 
an be 
overed by cof(N ) many

f0-slaloms.Proof. [BJ, 2.3.9℄ states that there exist a system of fun
tions fα : N →
N\{0} (α < cof(N )) with ∑

n∈N+ fα(n)/n2 < ∞, and for every α < cof(N )there exists an fα-slalom Sα = ×n∈N
(Sα)n ⊂ NN su
h that these slaloms
over NN mod �nite, that is, for every g ∈ NN there exists α < cof(N )su
h that {n ∈ N : g(n) /∈ (Sα)n} is �nite. For an f -slalom S ⊂ NN let

SS = {S′ ⊂ NN : S′ is an f -slalom, and {n ∈ N : Sn 6= S′
n} is �nite}.Clearly, every SS is 
ountable, and hen
e ⋃

α<cof(N ) SSα
is easily seen to bea set of cof(N ) many slaloms a
tually 
overing NN. So we 
an assume that⋃

α<cof(N ) Sα = NN. Put f(n) = n2 + 1. Clearly, {n ∈ N : fα(n) > f(n)}is �nite for every α, and therefore an argument similar to the previous oneshows that every fα-slalom 
an be 
overed by 
ountably many f -slaloms. So
NN 
an be 
overed by cof(N ) many f -slaloms.[GL, 2.10℄ states that if f, g : N → N \ {0} are su
h that lim∞ f =
lim∞ g = ∞, then the minimal number of f -slaloms needed to 
over NNequals the minimal number of g-slaloms needed to 
over NN. Therefore NN
an be 
overed by cof(N ) many f0-slaloms, hen
e ×n∈N

Xn 
an also be
overed by cof(N ) many f0-slaloms.In order to prove Theorem 2.3 we �rst need to prove it in two spe
ial
ases: for 
ountable produ
ts of �nite dis
rete (abelian) groups and for thegroups of p-adi
 integers.



248 M. Elekes and Á. TóthFor a sequen
e (Gn)n∈N of 
ompa
t groups, ⊗
n∈N

Gn is the (Cartesian)produ
t group with the produ
t topology.Theorem 2.11. For every n ∈ N let Gn be a dis
rete �nite group of atleast two elements. Then ⊗
n∈N

Gn is ni
e.Proof. Write N as the disjoint union of �nite sets Nn su
h that 2|Nn| >
2(n + 3), and de�ne G′

n =
⊗

k∈Nn
Gk. Then ⊗

n∈N
Gn =

⊗
n∈N

G′
n and

|G′
n| > 2(n + 3). Hen
e for every n ∈ N we 
an �nd an An ⊂ G′

n su
h that
(

1 −
1

n + 3

)
|G′

n| ≤ |An| ≤

(
1 −

1

2(n + 3)

)
|G′

n|.De�ne C =×n∈N
An. Then C is 
learly 
ompa
t, and ∏

n∈N

(
1− 1

2(n+3)

)
= 0implies that C is of Haar measure zero.Put f0(n) = n+2 (n ∈ N). By Lemma 2.10, ⊗

n∈N
G′

n 
an be 
overed by
cof(N ) many f0-slaloms. We will 
omplete the proof by showing that every
f0-slalom S =×n∈N

Sn ⊂
⊗

n∈N
G′

n 
an be 
overed by a left translate of C.For every n ∈ N we 
an apply Lemma 2.8 to n, G′
n, An and Sn, and so weobtain a gn ∈ G′

n su
h that Sn ⊂ gnAn. But then for g = (gn)n∈N ∈
⊗

n∈N
G′

nwe have S ⊂×n∈N
gAn = gC.We need 
ertain properties of the p-adi
 integers Zp that we 
olle
t herefor the 
onvenien
e of the reader. For a pre
ise treatment see e.g. [Ro℄. Theunderlying topologi
al spa
e is {0, 1, . . . , p − 1}N equipped with the prod-u
t topology (ea
h fa
tor is 
onsidered dis
rete). Addition is 
oordinate-wise with 
arried digits from the nth 
oordinate to the (n + 1)st; that is, if

x = (xn)n∈N, y = (yn)n∈N ∈ Zp then (x + y)0 = x0 + y0 if x0 + y0 ≤ p − 1while (x+y)0 = x0+y0−p if x0+y0 ≥ p. In the se
ond 
ase when 
al
ulating
(x+y)1 we add 1 to x1 +y1 and then 
he
k whether the sum is greater than
p − 1, et
., re
ursively.Theorem 2.12. For every prime p the group Zp of p-adi
 integers isni
e.Proof. If we forget about the group operation then we 
an write Zp =

×n∈N
Xn, where Xn = {0, 1, . . . , p − 1} for every n ∈ N.Write N as the disjoint union of the �nite intervals [kn, kn+1), where

{kn}n∈N is a stri
tly in
reasing sequen
e of nonnegative integers su
h that
pkn+1−kn > 2(n + 3). De�ne X ′

n = ×k∈[kn,kn+1) Xk. Then ×n∈N
Xn =

×n∈N
X ′

n and |X ′
n| > 2(n + 3). As above, for every n ∈ N we 
an �nd an

An ⊂ X ′
n su
h that

(
1 −

1

n + 3

)
|X ′

n| ≤ |An| ≤

(
1 −

1

2(n + 3)

)
|X ′

n|.Let C =×n∈N
An. Again, C is 
ompa
t and of Haar measure zero.



Covering groups by translates of a nullset 249Put f0(n) = ⌊(n+2)/2⌋ (n ∈ N) (⌊x⌋ is the integer part of x). By Lemma2.10,×n∈N
X ′

n 
an be 
overed by cof(N ) many f0-slaloms. We will 
ompletethe proof by showing that every f0-slalom S = ×n∈N
Sn ⊂ ×n∈N

X ′
n 
anbe 
overed by a translate of C.For every n ∈ N we de�ne a new group Gn (not a subgroup of Zp) asfollows. Let Gn = X ′

n = ×k∈[kn,kn+1) Xk, and for x = (xk)k∈[kn,kn+1) ∈ Gnand y = (yk)k∈[kn,kn+1) ∈ Gn put
(x +Gn

y)k = (x +Zp
y)k for every k ∈ [kn, kn+1);that is, we always forget about the last 
arried digit. One 
an 
he
k that Gnwith this addition is indeed a group. For example, to avoid all 
al
ulations,it is easy to see that this group is (
anoni
ally isomorphi
 to) pknZp/pkn+1Zpand also to pknZ/pkn+1Z, but we will not use this fa
t.Put 1n = χ{kn} (χH is the 
hara
teristi
 fun
tion of the set H). Fix

n ∈ N, and set S̃n = Sn ∪ (Sn +Gn
1n). As |Sn| ≤ ⌊(n + 2)/2⌋, we 
learlyhave |S̃n| ≤ n+2, hen
e we 
an apply Lemma 2.8 to n, Gn, An and S̃n, andso we obtain a gn ∈ Gn = ×k∈[kn,kn+1) Xk su
h that S̃n ⊂ An +Gn

gn. Let
xn be the inverse of gn in Gn. Then S̃n +Gn

xn ⊂ An. Put x = (xn)n∈N ∈

×n∈N
X ′

n. We 
laim that S +Zp
x ⊂ C, whi
h will 
omplete the proof. Fix

s = (sn)n∈N ∈ S. When we re
ursively 
al
ulate the digits of s +Zp
x, weneed to show that for every n ∈ N we have ((s +Zp

x)k)k∈[kn,kn+1) ∈ An, butthis is 
lear, as ((s+Zp
x)k)k∈[kn,kn+1) equals either ((sn +Gn

xn)k)k∈[kn,kn+1)or (sn +GN
xn +Gn

1n)k)k∈[kn,kn+1), depending on whether there is a 
arrieddigit at kn or not.Before proving Theorem 2.3 we need an algebrai
 fa
t about abeliangroups. It is formulated in Theorem 2.16, whi
h is well known, e.g. a moregeneral version appears in [KR℄, but for the sake of 
ompleteness we in
ludea proof below.Definition 2.13. Let G be an abelian group. For every n ∈ N let Gpn =
{g ∈ G : png = 0}, and also let Gp∞ =

⋃
n∈N

Gpn . We say that G is a p-groupif G = Gp∞ .Definition 2.14. Let p be a prime. An abelian group G is 
alled quasi-
y
li
 if it is generated by a sequen
e (gn)n∈N with the property that g0 6= 0and pgn+1 = gn for every n ∈ N. For a �xed prime p the unique (up toisomorphism) quasi
y
li
 group is denoted by Cp∞ .Note that Cp∞ = (Q/Z)p∞ = (R/Z)p∞ .Lemma 2.15. Let p be a prime and G be an in�nite abelian p-group su
hthat Gpn is �nite for every n ∈ N. Then G 
ontains Cp∞ as a subgroup.



250 M. Elekes and Á. TóthProof. We de�ne a graph on G as follows. For every nonzero g ∈ G we
onne
t pg with g. The resulting graph is 
learly a tree (with root 0) inwhi
h ea
h node has �nitely many immediate su

essors by the �niteness ofthe Gpn 's. So by König's lemma [Ku, 5.7℄ the tree has an in�nite bran
h,whi
h 
learly generates a quasi
y
li
 subgroup.For a sequen
e (Gn)n∈N of abelian groups, ⊕
n∈N

Gn is the dire
t sumgroup (that is, those elements of the produ
t that only have �nitely manynonzero 
oordinates) with the dis
rete topology.Theorem 2.16. Every in�nite abelian group G 
ontains a subgroup iso-morphi
 to one of the following :(i) Z,(ii) ⊕
n∈N

Gn, where ea
h Gn is a �nite abelian group of at least twoelements,(iii) Cp∞ for some prime p.Proof. If G 
ontains an element of in�nite order then G 
ontains Z as asubgroup. Therefore we may assume that G is a torsion group.Every torsion group is the dire
t sum of p-groups: G =
⊕

p prime Gp∞[Fu, 2.1℄.Suppose that |Gp∞ | ≥ 2 for in�nitely many primes p. For every su
h p we
an �nd a �nite nontrivial subgroup of Gp∞ , and hen
e we have a sequen
e
(Gn)n∈N of �nite nontrivial groups su
h that ⊕

n∈N
Gn ⊂ G. So we mayassume that |Gp∞ | = 1 for all but �nitely many primes. As G is in�nite,there is a prime p for whi
h Gp∞ is in�nite.Assume that Gp is in�nite. Then Gp is 
learly an in�nite-dimensionalve
tor �eld over Fp, therefore it 
ontains ⊕

n∈N
Cp as a subgroup (Cp is the
y
li
 group of p elements).So we may assume that Gp is �nite. Then we 
laim that Gpn is also �nitefor every n ∈ N. We prove this by indu
tion on n. The map g 7→ pg is ahomomorphism of Gpn+1 into Gpn with kernel Gp, so |Gpn+1 | ≤ |Gpn | · |Gp|,whi
h �nishes the indu
tion. Hen
e we 
an apply Lemma 2.15 to Gp∞ , anddedu
e that Cp∞ ⊂ Gp∞ ⊂ G. This �nishes the proof.The following lemma is 
ru
ial.Lemma 2.17. Let G be a lo
ally 
ompa
t group and H ⊂ G a 
ompa
tnormal subgroup. If G/H is ni
e then so is G.Proof. Let µG be a left Haar measure on G, and let π : G → G/H bethe 
anoni
al homomorphism. Then by [Ha, �63, Thm. C℄, µG ◦π−1 is a leftHaar measure on G/H. This shows that the inverse image of a nullset in

G/H under π is a nullset in G. Moreover, [Ha, �63, Thm. B℄ states that theinverse image of a 
ompa
t set under π is also 
ompa
t.
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e if C ⊂ G/H is a 
ompa
t nullset witnessing that G/H is ni
e then
π−1(C) ⊂ G is a 
ompa
t nullset witnessing that G is also ni
e.Remark 2.18. The following example shows that the lemma does nothold in general, that is, when H is a 
losed normal subgroup. Let H bea dis
rete group of 
ardinality greater than cof(N ) and let G = H × R.Then G/H is ni
e by Theorem 1.4, but G is not ni
e as every 
ompa
t setinterse
ts only �nitely many 
osets.Now we are ready to prove our main theorem.Proof of Theorem 2.3. By the prin
ipal stru
ture theorem for LCAgroups [Ru, 2.4.1℄, G has an open subgroup H whi
h is of the form
H = K ⊗ Rn, where K is a 
ompa
t subgroup and n ∈ N. By assump-tion the index of H is at most cof(N ), so it su�
es to prove that H is ni
e;therefore we 
an assume G = H.Suppose n ≥ 1. By [ES, 2.1℄, R is ni
e; let C be the 
ompa
t nullsetwitnessing this fa
t. Then it is easy to see that K × C × [0, 1]n−1 witnessesthat G = K ⊗ Rn is ni
e. Hen
e we 
an assume n = 0, so G is 
ompa
t.By Lemma 2.17 it is su�
ient to �nd a 
losed subgroup H ⊂ G su
h that
G/H is ni
e. By [Ru, 2.1.2℄ (and by the Pontryagin duality theorem [Ru,1.7.2℄) fa
tors of G are (isomorphi
ally homeomorphi
 to) the dual groupsof 
losed subgroups of Ĝ. As G is 
ompa
t, Ĝ is dis
rete [Ru, 1.2.5℄. Hen
eit su�
es to �nd a subgroup M ⊂ Ĝ su
h that M̂ is ni
e.By Theorem 2.16, Ĝ has a subgroup isomorphi
 either to Z, or to⊕

n∈N
Gn, where ea
h Gn is a �nite abelian group of at least two elements,or to Cp∞ for some prime p. We need to show that the duals of these groupsare ni
e.By [ES, 2.1℄, R is ni
e, whi
h easily implies that the 
ir
le group T is alsoni
e, so we are done in the �rst 
ase, sin
e Ẑ = T.In the se
ond 
ase note that Ĝ is �nite i� G is �nite, hen
e ea
h Ĝn is�nite. By [Ru, 2.2.3℄ the dual of a dire
t sum (equipped with the dis
retetopology) is the dire
t produ
t of the dual groups (equipped with the produ
ttopology), so (

⊕
n∈N

Gn)∧ =
⊗

n∈N
Ĝn, whi
h is ni
e by Theorem 2.11.Finally, the third 
ase is settled by Theorem 2.12, sin
e by [HR, 25.2℄,

Ĉp∞ = Zp.3. The nonabelian 
ase. The aim of this se
tion is to redu
e thegeneral 
ase to the 
ase of pro�nite groups, that is, inverse limits of �nitegroups (1).

(1) We have been informed by M. Abért that he re
ently proved that every in�nitepro�nite group is ni
e [Ab℄.



252 M. Elekes and Á. TóthTheorem 3.1. Suppose that every in�nite pro�nite group is ni
e. Thenevery nondis
rete lo
ally 
ompa
t group in whi
h every open subgroup is ofindex at most cof(N ) is also ni
e; that is, there exists a 
ompa
t set C ofHaar measure zero su
h that the group 
an be 
overed by cof(N ) many lefttranslates of C.Similarly to Corollary 2.5 we also have the following.Corollary 3.2. Suppose that every in�nite pro�nite group is ni
e. Thenit is 
onsistent with the axioms of set theory that a lo
ally 
ompa
t group G
an be 
overed by less than 2ω many left translates of a 
ompa
t nullset i� Gis nondis
rete and has no open subgroup of index at least 2ω.The main goal of this se
tion is to prove Theorem 3.1. We start with theLie 
ase. We use [MZ℄ as the main referen
e, so note that Lie groups are notassumed to be se
ond 
ountable.Theorem 3.3. Every nondis
rete Lie group in whi
h the identity 
om-ponent has index at most cof(N ) is ni
e; that is, it 
an be 
overed by cof(N )many left translates of a 
ompa
t set of Haar measure zero.Proof. Let G be a Lie group as in the theorem. We 
an 
learly assumethat G is 
onne
ted. Every 
ompa
t neighbourhood of e (the identity of
G) generates an open σ-
ompa
t subgroup, moreover, every open subgroupis a
tually 
lopen. As G is 
onne
ted, we �nd that G is σ-
ompa
t, hen
eit has the Lindelöf property. Therefore it su�
es to show that there is aneighbourhood of the identity that 
an be 
overed by cof(N ) many lefttranslates of a 
ompa
t set of Haar measure zero.Every nondis
rete Lie group 
ontains one-parameter subgroups, that is,
ontinuous homomorphi
 (not ne
essarily 
losed) images of R (see e.g. [MZ,2.22℄). Let H ⊂ G be the 
losure of su
h a subgroup. Then H is a 
losed
onne
ted 
ommutative subgroup of G. By [MZ, 4.11℄ ea
h 
losed subgroup ofa Lie group is itself a Lie group, and so H is a
tually a submanifold. If G = H,we 
an apply Theorem 2.3, so we 
an assume that H is a proper subgroup. Let
M be a submanifold transversal to H so that dim(H) + dim(M) = dim(G)and(1) H ∩ M = {e}.Lemma 3.4. There is a 
ompa
t set K ⊂ M whi
h is a neighbourhood of
e (in M ), so that if m : H × K → G is the restri
tion of the multipli
ationmap then(i) m(H × K) = HK is a neighbourhood of e,(ii) m : H × K → HK is a homeomorphism.Proof. It is well known that if we use the exponential map as a 
hartthen the derivative of the multipli
ation map G × G → G takes the form
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(x, y) 7→ x + y in the tangent spa
es [Wa℄. This implies that the derivativeof m is nonsingular at (e, e). Hen
e by the inverse fun
tion theorem, m is adi�eomorphism in a neighbourhood of (e, e). More pre
isely, there exist openneighbourhoods U , V and W of e in H, M and G, respe
tively, so that therestri
tion of m is a smooth bije
tion of U × V onto UV = W .This shows that (i) holds for any 
hoi
e of K that is a neighbourhoodof e.Now we 
laim that(2) H ∩ W ⊂ U.Indeed, if h = uv ∈ H ∩ UV then v = u−1h. As U ⊂ H we obtain v ∈ H,and as V ⊂ M by (1) we get v = e, so h = u.Choose a 
ompa
t neighbourhood K ⊂ V of e in M so that(3) KK−1 ⊂ W.We 
laim that K satis�es (ii), whi
h will �nish the proof of the lemma.First we show that the map m : H×K → HK is inje
tive. If h1k1 = h2k2then h−1

2 h1 = k2k
−1
1 =: h. Then 
learly h ∈ H, and by (3) we also have

h ∈ W , hen
e by (2) we obtain h ∈ U .Now we apply the fa
t that m is a bije
tion between U × K and UK(as K ⊂ V ) to the equality hk1 = ek2. Indeed, h, e ∈ U and k1, k2 ∈ K, so
k1 = k2 and h1 = h2, proving that m is inje
tive.Finally, we show that the inverse of m is also 
ontinuous. We use againthe fa
t that m is a smooth bije
tion between U ×K and UK. So let U1, K1be neighbourhoods of some h ∈ H and k ∈ K, respe
tively; then h−1U1 ×
K1k

−1 is a neighbourhood of (e, e). Hen
e its image h−1U1K1k
−1 
ontainsa neighbourhood W1 of e. Thus hW1k is a neighbourhood of hk 
ontainedin the image of U1 × K1 under m, proving that the inverse of m is also
ontinuous.Now we 
omplete the proof of Theorem 3.3.Fix a Haar measure µH on H, and 
onsider a 
ompa
t nullset C in H asin Theorem 2.3. The set CK is 
ompa
t, and cof(N ) many left translates of

CK 
over HK, whi
h is a neighbourhood of e in G. Therefore the proof ofthe theorem will be 
omplete on
e we show the following.Lemma 3.5. CK is of µG-measure zero, where µG is a left Haar measureon G.Proof. By the above lemma the multipli
ation map H × K → HK is ahomeomorphism, hen
e BK is Borel for every Borel set B ⊂ H. So we 
ande�ne the set-fun
tion
µ : B 7→ µG(BK) (B ⊂ H Borel).



254 M. Elekes and Á. TóthIt is easy to see that this is a left-invariant measure whi
h is �nite for 
ompa
tsets. We 
he
k that if A ⊂ H is a nonempty open (in H) set. Then µ(A) > 0.Let a ∈ A. Then a−1A is a neighbourhood of e in H. Clearly µ(A) =
µG(AK) = µG(a−1AK) > 0, sin
e a−1AK is a neighbourhood of e in G.By the uniqueness of Haar measure [Ke, 17.B℄, there exists c > 0 su
hthat µ = cµH , and so µG(CK) = µ(C) = cµH(C) = 0. This 
on
ludes theproof of the lemma, and hen
e of the theorem.Remark 3.6. Lemma 3.5 also follows from the 
onstru
tion of Haarmeasure via an invariant smooth volume form, but we de
ided to use thisalternative approa
h, whi
h establishes the lemma in a more dire
t fashion.The proof of the above theorem with minor modi�
ations shows that if
H is a 
losed subgroup of a separable Lie group G, and H 
an be 
overedby κ many left translates of a 
ompa
t nullset, then G 
an also be 
overedby κ many left translates of a 
ompa
t nullset. It would be interesting to seeif this remains true in general, and if so, if it 
ould be used to establish ourmain theorem for pro�nite groups.Next we 
onsider the 
ompa
t 
ase. The following fa
t is most probablywell known. It was 
ommuni
ated to us by Ken Kunen.Statement 3.7. Every in�nite 
ompa
t group has a fa
tor whi
h iseither an in�nite Lie group or an in�nite pro�nite group.Proof. More pre
isely we show that if G is an in�nite 
ompa
t groupthen either it has an in�nite Lie group fa
tor or G itself is pro�nite.Denote by U(n) the unitary group on Cn. By the Peter�Weyl theorem[HR, 27.40℄ the set of all representations of G in the U(n)'s separate pointsof G, hen
e G is (isomorphi
 to) the inverse limit of the images of theserepresentations. If all these images are �nite then G is pro�nite, and we aredone. Otherwise G has a fa
tor that is an in�nite 
ompa
t subgroup of some
U(n). But by [MZ, 4.11℄ ea
h 
losed subgroup of a Lie group is itself a Liegroup, so we are done.Now we are ready to prove Theorem 3.1.Definition 3.8. We say that a topologi
al group does not 
ontain ar-bitrarily small subgroups if there is a neighbourhood of the identity that
ontains no nontrivial subgroup.The identity 
omponent of G is denoted by G0.Proof of Theorem 3.1. First note that if H is a 
losed normal subgroupin a topologi
al group G and every open subgroup of G is of index at most
cof(N ) then the same is true for G/H and also for every open subgroupof G.
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rete lo
ally 
ompa
t group in whi
h everyopen subgroup is of index at most cof(N ). We have to 
over G by at most
cof(N ) many left translates of a 
ompa
t left nullset. By [MZ, 4.5, Cor.℄(a
tually, in every lo
ally 
ompa
t group G) there exists an open subgroup
G′ ⊂ G and a 
ompa
t normal subgroup H of G′ su
h that G′/H does not
ontain arbitrarily small subgroups.

G′ is 
learly nondis
rete, sin
e G is nondis
rete and G′ is open. As theindex of G′ is at most cof(N ), it is su�
ient to 
over G′ by at most cof(N )many left translates of a 
ompa
t nullset, hen
e we 
an assume G = G′.So H is a 
ompa
t subgroup of G su
h that G/H does not 
ontain arbi-trarily small subgroups.Now we separate two 
ases. First assume that H is open. It su�
es toshow that H is ni
e. As above, H 
annot be dis
rete, so it is in�nite. ByStatement 3.7 either H has an in�nite pro�nite fa
tor, in whi
h 
ase we aredone by assumption (and by Lemma 2.17), or H has a fa
tor whi
h is anin�nite Lie group. But an in�nite 
ompa
t Lie group is 
learly nondis
rete,and every open subgroup has �nite index, so we are done in this 
ase byTheorem 3.3 (and again by Lemma 2.17).So we 
an assume that H is not open, hen
e G/H is not dis
rete. ByLemma 2.17 it is su�
ient to show that G/H is ni
e. By [MZ, 4.2, Cor. 2℄ if alo
ally 
ompa
t group does not 
ontain arbitrarily small subgroups then theidentity 
omponent is open, hen
e (G/H)0 is open in G/H. By the remarkat the beginning of the proof the index 
ondition holds for G/H too, so it issu�
ient to show that (G/H)0 is ni
e.As G/H does not 
ontain arbitrarily small subgroups, the same holds forthe subgroup (G/H)0. By [MZ, 4.4, Thm.℄ a 
onne
ted lo
ally 
ompa
t groupthat does not 
ontain arbitrarily small subgroups is a Lie group, and 
learlyall these requirements hold for (G/H)0. Moreover, as G/H is nondis
rete,the same holds for the open subgroup (G/H)0. Hen
e Theorem 3.3 showsthat (G/H)0 is ni
e, �nishing the proof.We 
on
lude with some natural questions. Theorem 3.1 shows that the�rst two are equivalent (2).Question 3.9. Can we drop the assumption in Theorem 2.3 that thegroup is abelian?Or equivalently,Question 3.10. Suppose G is an in�nite pro�nite group. Is G ni
e?That is, 
an G be 
overed by cof(N ) many left translates of a 
ompa
t set ofHaar measure zero?
(2) M. Abért's result, mentioned in footnote 1, answers these questions a�rmatively[Ab℄.
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ourse in both questions it is also natural to repla
e cof(N ) by < 2ω.In that 
ase one 
an show that these questions are also equivalent to theoriginal Question 3.2 in [ES℄.Our last question is a reformulation of [ES, Question 3.4℄.Question 3.11. Suppose that κ is a 
ardinal and G1, G2 are un
ountablelo
ally 
ompa
t (abelian) separable (Polish) groups su
h that G1 
an be 
ov-ered by κ many translates of a suitably 
hosen 
ompa
t nullset. Is the sametrue for G2?A
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