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Fixed points on torus fiber bundles over the circle

by

D. L. Gonçalves (São Paulo), D. Penteado (São Carlos) and
J. P. Vieira (Rio Claro)

Abstract. The main purpose of this work is to study fixed points of fiber-preserving
maps over the circle S1 for spaces which are fibrations over S1 and the fiber is the torus T .
For the case where the fiber is a surface with nonpositive Euler characteristic, we establish
general algebraic conditions, in terms of the fundamental group and the induced homo-
morphism, for the existence of a deformation of a map over S1 to a fixed point free map.
For the case where the fiber is a torus, we classify all maps over S1 which can be deformed
fiberwise to a fixed point free map.

INTRODUCTION

Given a fibration E → B and a fiber-preserving map f : E → E over B,
the question if f can be deformed over B to a fixed point free map has been
considered by many authors (see for example [Do-74], [F-H-81] and [Go-87]).
In [F-H-81], E. Fadell and S. Husseini showed that the above problem can
be stated in terms of obstructions (including higher ones). This is obtained
under the hypothesis that the base, the total space and the fiber F are
manifolds, and the dimension of F is greater than or equal to 3. The case
where the fiber has dimension 2 is not considered. This case, even when
the base is a point, is still a main open problem; when the total space is a
surface with negative Euler characteristic it is known that the vanishing of
the Nielsen number is not equivalent to the existence of a deformation to a
fixed point free map (see [Ni-27], [Ji-85] and [Ke-87]).

Consider a fiber-preserving map f : M →M , where M is a fiber bundle
over the circle S1 and the fiber is a closed surface S. Such fiber bundles are
obtained from S × [0, 1] by identifying (x, 0) with (φ(x), 1), where φ is a
homeomorphism of S. The main purpose of this work is to study in detail
the case where the fiber is a closed surface. We develop a few generalities
when S 6= S2 and S 6= RP 2. For the cases when the fiber is either the
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sphere S2 or the projective plane RP 2 the classical obstruction theory can
be used. Then we specialize to the case where the fiber is a torus.

In this latter case we denote the total space by MA. We classify the
fiber-preserving maps f : MA → MA over S1, i.e. p ◦ f = p, which can
be deformed to a fixed point free g by a fiberwise homotopy over S1. The
homotopy class of f is given in terms of the induced homomorphism f# :
π1(MA)→ π1(MA) on the fundamental groups. This is Theorem 4.1.

In [Pe-88], for fiber-preserving maps, one defines the abelianized obstruc-
tion to deforming a fiber-preserving map over B to a fixed point free map
as a cohomology class, and then computes this class on the principal torus
bundle. It is shown that, in general, the vanishing of this class is not sufficient
to guarantee that the map can be deformed over S1 to a fixed point free map.
We analyze this question for the fiber bundles MA→ S1 in [G-P-V-03].

This paper is organized into four sections. In Section 1 we consider the
general case of a surface bundle over the circle S1. We solve the problem
in terms of obstructions and a certain algebraic diagram of groups (see Re-
marks 1.1 and Proposition 1.4). The fundamental groups of several spaces
which are relevant to our algebraic diagram are computed (see Proposi-
tions 1.8 and 1.9). In Section 2 we restrict to the case where the fiber is
a torus. We classify all T -bundles over S1 and bundle maps which, when
restricted to the fiber, can be deformed to a fixed point free map. This is
Theorem 2.1. Then we compute the fundamental group of T -bundles mi-
nus the zero section S1. In terms of generators of this group, we obtain
a system of equations which has a solution if and only if the map can be
deformed fiberwise to a fixed point free map. This is Theorem 2.2. In Sec-
tion 3 we discuss what we call the main equation, i.e. an equation such that
the existence of its solution is equivalent to the fact that the corresponding
fiber-preserving map can be deformed to a fixed point free map. First we
reduce the study of all those equations to the study a certain family of equa-
tions. This is done in Theorem 3.3 and Corollary 3.4. The main equation
can be regarded as an equation in a subgroup of the free group on two gen-
erators. Then we consider this equation in the abelianization of this group
and deduce some necessary conditions for the existence of a solution. This
is Corollary 3.8. In Section 4 we prove the main result, which is Theorem
4.1. The calculation is done for all six cases according to the classification
of fiber-preserving maps.

1. PRELIMINARY AND GENERAL RESULTS

1.1. The general problem. Let f : E → E be a fiber-preserving map
over B. When is f deformable over B to a fixed point free map g by a
fiberwise homotopy over B?
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E. Fadell and S. Husseini [F-H-81] considered this problem in the case
where the fiber F , the base space B and the total space M are closed
manifolds. They considered the fiber square M ×B M → M , i.e. the pull
back fiber bundle of p : M → B by p : M → B. Then the inclusion
M ×BM −∆→M ×BM , where ∆ is the diagonal in M ×BM , is replaced
by the fiber bundle q : EB(M)→M×BM , whose fiber is denoted by F . So
we have the following diagram:

(1.1)

F

��

F

��
EB(f)

qf

��

// EB(M)

q

��
M

σ
<<x

x
x

x
x 1 // M

(1,f) // M ×B M

where qf : EB(f) → M is the fiber bundle induced from q by (1, f). From
[F-H-81] we have

Theorem 1.1. The map f is deformable to a fixed point free map g
over B if and only if there exists a lift σ in diagram (1.1).

Remarks 1.1. (1) The fiber F has homotopy groups

πj−1(F) ∼= πj(M×BM,M×BM −∆) ∼= πj(F,F − x),

where x is a point in F .

(2) Let dimF = k. If k > 2, in [F-H-81] classical obstruction theory was
used to find a cross section. Hence, there is the primary obstruction
to finding a cross section:

OB(f) ∈ Hk(M ; {πk−1(F)}),
which is the primary (obstruction) fixed point index of f . This class is
the obstruction to constructing an extension of a cross section from
the (k − 1)-skeleton to the k-skeleton of M . There may be other
obstructions that preclude finding a global cross section.

(3) When the dimension of the fiber is two, in [Pe-97] a cohomology
class AB(f) ∈ H2(M ; {H1(F)}) is defined, called the abelianized
obstruction to deforming f over B to a fixed point free map, where
{H1(F)} is the induced abelianized local system of coefficients on M .

(4) When the fiber is the sphere S2, then π2(S2, S2 − x) is isomorphic
to Z and we have a primary obstruction defined in dimension 2. So
this case can be treated as in item (2).
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(5) When the fiber is a surface with Euler characteristic ≤ 0 then we
will see by Proposition 1.5 that it is enough to build a cross section
over the 2-skeleton. Proposition 1.6 gives a necessary and sufficient
condition for the existence of such a partial section.

1.2. Classification of surface bundles over S1. Let S be a closed
surface and φ : S → S a homeomorphism which has one fixed point de-
noted by x0 (in Corollary 1.3, we will see that there is no loss of generality
in making such a hypothesis). We denote by M(φ) the quotient space ob-
tained from S× I by identifying (x, 0) with (φ(x), 1). The elements of M(φ)
are denoted by 〈x, t〉. This space is an S-bundle over S1 with fiber S and
projection p : M(φ)→ S1 = I/0∼1, given by p(〈x, t〉) = 〈t〉.

Proposition 1.2. Let φ1, φ2 : S → S be two homeomorphisms. Then
M(φ1) is homeomorphic to M(φ2) by a fiber-preserving homeomorphism
over S1 if and only if φ1 is isotopic to a conjugate of φ2.

Proof. Suppose that φ1 and h ◦ φ2 ◦ h−1 are isotopic. So we have a map
G : S × I → S × I such that G( , 0) = φ1 and G( , 1) = h ◦ φ2 ◦ h−1. Let
G′( , t) = h−1 ◦G( , t), t ∈ {0, 1}. We have

G′( , 1) ◦ φ1 = h−1 ◦ h ◦ φ2 ◦ h−1 ◦ φ1 = φ2 ◦ h−1 ◦ φ1 = φ2 ◦G′( , 0).

Hence we have a homeomorphism over S1 between M(φ1) and M(φ2). The
converse is similar and we leave its proof to the reader.

Corollary 1.3. The classes of S-bundles over S1 are classified by the
conjugacy classes of isotopy classes of homeomorphisms which preserve base
points.

Proof. From [F-L-P-79, exposé 2] we know that every homeomorphism
is isotopic to a homeomorphism which is base-point-preserving. So the result
follows from Proposition 1.2.

1.3. Fixed point free fiber maps of surface bundles over S1. We
will assume from now on that the surface has Euler characteristic ≤ 0. If
f : M(φ) → M(φ) is a map over S1, we define f0 : S → S by f0(x) = y if
f(〈x, 0〉) = 〈y, 0〉. This map is well defined since 〈y1, 0〉 = 〈y2, 0〉 if and only
if y1 = y2.

Proposition 1.4. The map φ◦f0 ◦φ−1 is homotopic to f0. Conversely ,
if f0 : S → S is a map with φ ◦ f0 ◦ φ−1 homotopic to f0, then there exists
a map f : M(φ)→M(φ) over S1 such that f restricted to the fiber is f0.

Proof. Define f1(x) = y if f(〈x, 1〉) = 〈y, 1〉. Since 〈x, 0〉 = 〈φ(x), 1〉, it
follows that 〈f0(x), 0〉 = 〈f1 ◦ φ(x), 1〉, which implies that f1 = φ ◦ f0 ◦ φ−1.
Now we observe that if t /∈ {0, 1} then f(〈x, t〉) = 〈g(x, t), t〉. Extending
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g to a map g : S × I → S by continuity, we have g(x, 0) = f0(x) and
g(x, 1) = f1(x), and the first part follows. The converse is quite similar.
Define f by the homotopy which connects f0 and φ ◦ f0 ◦ φ−1.

Proposition 1.5. If M = M(φ), then there exists a cross section σ (see
diagram (1.1)) over M if and only if it exists over the 2-skeleton.

Proof. One direction is clear. So suppose that we have a cross section
over the 2-skeleton. Since the homotopy groups of the pair (S, S− y) vanish
in dimensions greater than or equal to 3, by a standard obstruction argument
the result follows.

Proposition 1.6. There is a cross section over the 2-skeleton if and
only if the following diagram of fundamental groups admits a lifting ψ:

(1.2)

π1(F)

��

∼= π2(S, S − x0)

π1(ES1(M(φ)))

q

��
π1(M(φ))

ψ
66lllllll

(1,f)
// π1(M(φ)×S1 M(φ))

Proof. This follows from [Ba-77, Theorem 4.3.1, p. 265].

Let s0 : S1 → M(φ) be given by s0(t) = 〈x0, t〉. This is a section of the
bundle p : M(φ) → S1, hence 1 × (s0 ◦ p) is also a section for the pullback
M(φ)×S1M(φ)→M(φ). With respect to these sections we have:

Proposition 1.7. We have a short exact sequence 1 → π1(S) →
π1(M(φ)) → π1(S1) → 1 which splits, and the action Z → Aut(π1(S))
which comes from the section s0 is given by c · α = cαc−1 = φ#(α), where
c = p#〈s0〉 is the generator of π1(S1). Hence π1(M(φ)) ∼= π1(S) o Z,
a semidirect product.

Proof. By the homotopy long exact sequence of the fibration, the short
exact sequence follows since the base and the fiber are K(π, 1)’s. Since Z
is free the short exact sequence splits. Hence it remains to calculate the
action. Let γ : I → S × I be the path γ(t) = (x0, t). The loop obtained by
the juxtaposed paths γ ∗ (φ(α), 1) ∗ γ−1 is homotopic to the loop (φ(α), 0).
In the quotient space M(φ), this leads to c · α = cαc−1 = φ#(α), and the
result follows.

Proposition 1.8. The fundamental group π1(M(φ)×S1M(φ)) is iso-
morphic to the semidirect product π1(S)o π1(M(φ)). Further , the action of
π1(M(φ)) on π1(S) is given by β · α = βαβ−1 = p#(β) · α. The last action
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is the one which comes from the bundle p : M(φ) → S1, i.e. the action is
given by the following composition:

π1(M(φ))
p#−→ π1(S1)

Γ→ Aut(π1(S))

where if we denote by c the generator of π1(S1) then Γ (c) = φ, so that if
p#(β) = ck then p#(β) ◦ α = φk(α).

Proof. The result follows by naturality and the fact that M(φ)×S1M(φ)
→ M(φ) is the pullback of p : M(φ) → S1. A splitting of the short exact
sequence

0→ π1(S)
i1#−→ π1(M(φ)×S1M(φ))

p2#−→ π1(M(φ))→ 0

is S1 = (s0 ◦ p, 1M(φ))# and the isomorphism Φ1 : π1(M(φ)×S1M(φ)) →
π1(S)o π1(M(φ)) is given by Φ1(γ) = (i−1

1#(γ.S1 ◦ p2#(γ−1)), p2#(γ)).

Let σ(s0) be the subset of M(φ) given by 〈x0, t〉, 0 ≤ t ≤ 1. So we
have the bundles p : M(φ) − σ(s0) → S1, where we denote the projection
also by p and the fiber is S − x0. Another useful space is the pullback
M(φ)×S1(M(φ)− σ(s0)), and we will calculate its fundamental group.

Proposition 1.9. The fundamental group π1(M(φ)×S1(M(φ)−σ(s0)))
is isomorphic to the semidirect product π1(S)o π1(M(φ)− σ(s0)). Further ,
the action of π1(M(φ) − σ(s0)) on π1(S) is given by β · α = βαβ−1 =
p#(β) · α, where the last action is the one which comes from the bundle
p : M(φ)− σ(s0)→ S1 as in Proposition 1.8.

Proof. Similar to the proof of Proposition 1.8. In this situation the fi-
bration provides the short exact sequence

0→ π1(S)
i1#−→ π1(M(φ)×S1(M(φ)− σ(s0)))

p2#−→ π1(M(φ)− σ(s0))→ 0

and the homomorphism s2 = (s0◦p, 1M(φ)−σ(s0))# is a section, and we define
an isomorphism

Φ2 : π1(M(φ)×S1(M(φ)− σ(s0)))→ π1(S)o π1(M(φ)− σ(s0))

by Φ2(γ) = (i−1
1#(γ.S2 ◦ p2#(γ−1)), p2#(γ)). The result about the action

follows by naturality.

The above proposition shows the relevance of π1(M(φ)− σ(s0)).

2. THE TORUS CASE AND REDUCTIONS OF THE LIFTING

In this section we restrict to the case where the fiber is the torus denoted
by T . Features of the torus are used to facilitate computations. We use some
homeomorphisms of the torus to describe all T -bundles over S1. We also use
the group structure of T to simplify the analysis of our algebraic problem.
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Let T be defined as the quotient space R× R/Z× Z; we denote by
( x
y

)

and
[ x
y

]
the elements of R× R and T , respectively.

Let A be a homeomorphism of T induced by an operator in R2 that
preserves Z × Z. We identify A with a matrix with integer coefficients and
determinant either 1 or −1.

As in Section 1 let MA be the quotient space of T × [0, 1], where we
identify

([ x
y

]
, 0
)

with
([
A
( x
y

)]
, 1
)
.

The class of
([ x

y

]
, t
)

in the quotient is denoted by
〈[ x

y

]
, t
〉
. The space

MA is a fiber bundle over the circle S1, where the fiber is the torus. The
projection map p : MA→ S1 is given by p

(〈[ x
y

]
, t
〉)

= 〈t〉 ∈ [0, 1]/0'1
∼= S1.

Let f : MA→MA be a map over S1, i.e. p ◦ f = p, and we consider the
question raised in 1.1: when is f deformable to a fixed point free map g by
a fiberwise homotopy over S1?

From Section 1 we know that the problem is equivalent to finding a lift
in the following algebraic diagram:

π1(F)

��

∼= π2(T, T − 1)

π1(ES1(MA))

q#

��

∼= π1(MA×S1 MA−∆)

π1(MA)

s
66mmmmmm

(1,f)#

// π1(MA×S1 MA)

with suitable base points.
The base point of the domain of f is

〈[
0
0

]
, 0
〉
, denoted by 0, and we can

suppose that f(0) is
〈[ q

q

]
, 0
〉
, denoted by q. Otherwise we can replace the

map f by a map f1 homotopic to f which has the property above. This can
be done using the homotopy lifting property of the fibration p : M(A)→ S1.

We denote by B the matrix of the homomorphism induced on the fun-
damental group by the restriction of f to the fiber T . The next theorem
provides a relationship between the matrices A and B.

Theorem 2.1. (1) π1(MA,0) = 〈a, b, c0 : [a, b] = 1, c0ac0
−1 = aa1ba2 ,

c0bc0
−1 = aa3ba4〉.

(2) B commutes with A.
(3) If f restricted to the fiber is deformable to a fixed point free map then

the determinant of B − I is zero, where I is the identity matrix.
(4) If v is an eigenvector of B associated to 1 (for B 6= Id) then A(v) is

also an eigenvector of B associated to 1.
(5) Consider w = A(v) if the pair v, w generates Z×Z, otherwise let w

be another vector so that v, w span Z×Z. Define the linear operator
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P : R × R → R × R by P (v) =
(

1
0

)
and P (w) =

(
0
1

)
. Consider an

isomorphism of fiber bundles (also denoted by P ) P : MA→ MA1,
where A1 = P ◦ A ◦ P−1. Hence MA is homeomorphic to MA1

over S1. Then we have one of the cases of the table below , with
B1 = P ◦B ◦ P−1 and B1 6= I, except in case I :

Case I A1 = ( a1 a3
a2 a4 ), B1 = ( 1 0

0 1 ) Case IV A1 = ( 1 a3
0 −1 ), B1 = ( 1 b3

0 b4
)

a3 6= 0 a3(b4 − 1) = −2b3

Case II A1 = ( 1 0
0 1 ), B1 = ( 1 b3

0 b4
) Case V A1 = (−1 a3

0 −1 ), B1 = ( 1 b3
0 b4

)

a3(b4 − 1) = 0

Case III A1 = ( 1 a3
0 1 ), B1 = ( 1 b3

0 1
) Case VI A1 = (−1 a3

0 1 ), B1 = ( 1 b3
0 b4

)

a3(b4 − 1) = 2b3

Proof. Consider the following loops in MA with base point 0:

a(t) =
〈[

t
0

]
, 0
〉
, b(t) =

〈[
0
t

]
, 0
〉
, c0(t) =

〈[
0
0

]
, t
〉
,

for t ∈ [0, 1]. From Proposition 1.7 it follows that π1(MA) ∼= π1(T )oZ, and a
presentation is π1(MA,0) = 〈a, b, c0 : [a, b] = 1, c0ac0

−1 = aa1ba2 , c0bc0
−1 =

aa3ba4〉.
Recall that B =

(
b1 b3
b2 b4

)
is the matrix of the homomorphism induced on

the fundamental group of the fiber T by the restriction of f to T , and f is
a map over S1. Then the induced homomorphism f# on π1(MA,0) is given

by f#(a) = ab1bb2 , f#(b) = ab3bb4 and f#(c) = ac1bc2c.
Since f is a map over S1 it follows from Proposition 1.4 that B commutes

with A.
Since f is deformable over S1 to a fixed point free map g, the Lef-

schetz number of f |T is 0, so det(B − I) = 0. Now (4) follows from (2). To
prove (5) define P

(〈[ x
y

]
, t
〉)

=
〈[
P
( x
y

)]
, t
〉
. Thus P#f#P

−1
# : π1(MA1,0)→

π1(MA1,0) maps the generator a(t) to a(t). So the first column of B1 is[
1
0

]
and therefore B1 =

(
1 b3
0 b4

)
.

Now the commutativity of B1 with A1 yields the table. We remark that
Case I occurs when v and A(v) span Z× Z.

2.1. The fiber bundle isomorphism h. Now, we define a fiber bundle
isomorphism h : MA×S1 MA→MA×S1 MA by

h
(〈[ x

y

]
, t
〉
,
〈[

x′
y′
]
, t
〉)

=
(〈[ x

y

]
, t
〉
,
〈[

x′
y′
]
−
[ x
y

]
, t
〉)
.

This isomorphism maps MA×S1 MA −∆ onto MA ×S1 (MA− S1). This
last space is the fiber square of the maps p|MA−S1 : MA − S1 → S1 and

p : MA → S1, and the circle S1 in MA is the image of c0(t) =
〈[

0
0

]
, t
〉

for
all t ∈ [0, 1].
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So, we have the commutative diagram

(2.1)

T × T −∆ //

hα

vvllllllllllllll
T × (T − 1)

��

uujjjjjjjjjjjjjjjj

T //

��

T × T //

��

T × T

��
MA×S1 MA−∆ //

ι

{{wwwwwwwwwwwwwwwwwww

��

MA×S1 (MA− S1)

(1,i)

yyttttttttttttttttttttt

MA
(1,f)

//

γ

33gggggggggggggggggggggggg
MA×S1 MA

h // MA×S1 MA

Therefore, the problem of existence of the section σ in diagram (1.1) is equiv-
alent to the existence of a lift γ. By the same argument as in Proposition
1.6, the existence of γ is equivalent to the existence of a certain homomor-
phism on the level of fundamental groups. Since MA×S1 (MA− S1) is the
total space of the pull back of p by p|MA−S1, by the universal property of
the pullback and using the isomorphisms Φ1 and Φ2 of Propositions 1.8 and
1.9 respectively, it is easy to show the equivalence of the existence of the
lifting homomorphism in diagram (2.1) and the lifting homomorphism Γ
that makes the diagram below commutative:

(2.2)

1

��
π1(F(MA− S1))

��

∼= π2(T, T − 1)

π1(MA− S1)

��
π1(MA)

Γ
66nnnnnn
// π1(MA)

��
1

We will describe the horizontal map (p2 ◦ h ◦ (1, f))# : π1(MA)→ π1(MA)
in the next theorem in terms of generators. Here p2 : MA×S1 MA → MA
denotes the projection on the second factor.
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2.2. The generators of the fundamental groups in diagram (2.2).
The next theorem describes the groups and the maps of diagram (2.2).
Consider the following loops in MA with base point 0, and loops in MA−S1

or MA with base point q with q small positive and
[

0
0

]
6=
[ q
q

]
:

a(t) =
〈[

t
0

]
, 0
〉
, b(t) =

〈[
0
t

]
, 0
〉
, c0(t) =

〈[
0
0

]
, t
〉
,

e(t) =
〈[

q+t
q

]
, 0
〉
, d(t) =

〈[ q
q+t

]
, 0
〉
, c(t) = 〈

[
γ(t)

]
, t〉,

where γ(t) is (1− t)
( q
q

)
+ t
(
A
( q
q

))
if A

( q
q

)
6=
(−q
−q
)
; otherwise, it is an arc

which runs counterclockwise around the origin from
( q
q

)
to
(−q
−q
)
. Here, we

suppose that
(
A
( q
q

))
belongs to the square centered at the origin (0, 0) with

side two.
Finally, let W (t) be the circle around the origin having (q, q) as the base

point and oriented counterclockwise.
We denote the homotopy classes of the loops a(t), b(t), c0(t) in π1(MA,0)

by a, b, c0 respectively. We denote the homotopy classes of the loops e(t), d(t),
c(t) in π1(MA − S1,q) by e, d, c respectively, and in π1(MA,q) by e, d, c
respectively.

The next theorem describes the homomorphisms of diagram (2.2).

Theorem 2.2. Let A and B be as in one of the six cases given by Theo-
rem 2.1 and let f# be the homomorphism induced by f on the fundamental
group. Then:

(1) π1(MA×S1MA, (0,q)) = 〈a, b, e, d, ĉ : [a, b] = 1, [a, e] = 1, [a, d] = 1,
[b, e] = 1, [b, d] = 1, [e, d] = 1, ĉaĉ−1 = aa1ba2 , ĉbĉ−1 = aa3ba4 ,

ĉeĉ−1 = ea1d
a2
, ĉdĉ−1 = ea1d

a2〉, where ĉ is the homotopy class of
the loop given by the pair of loops (c0(t), c(t)).

(2)

π1(MA− S1,q)

Case II A = ( 1 0
0 1 ), B = ( 1 b3

0 b4
) with b3 6= 0 or b4 6= 1

〈e, d, c : cec−1 = e, cdc−1 = d〉
Case III A = ( 1 a3

0 1 ), B = ( 1 b3
0 b4

) with a3 6= 0 and b3 6= 0

〈e, d, c : cec−1 = e, cdc−1 = ea3d〉
Case IV A = ( 1 a3

0 −1 ), B = ( 1 b3
0 b4

) with a3(b4 − 1) = −2b3 and b4 6= 1

if a3 ≥ −1 then 〈e, d, c : cec−1 = eW, cdc−1 = d−1ea3〉
if a3 ≤ −2 then 〈e, d, c : cec−1 = We, cdc−1 = Wd−1ea3W−1〉

Case V A = (−1 a3
0 −1 ), B = ( 1 b3

0 b4
) with a3(b4 − 1) = 0 and b3 6= 0 or b4 6= 1

if a3 ≥ 1 then 〈e, d, c : cec−1 = W−1e−1, cdc−1 = d−1ea3W 〉
if a3 ≤ 0 then 〈e, d, c : cec−1 = e−1W−1, cdc−1 = Wd−1ea3〉

Case VI A = (−1 a3
0 1 ), B = ( 1 b3

0 b4
) with a3(b4 − 1) = 2b3 and b4 6= 1

〈e, d, c : cec−1 = e−1, cdc−1 = ea3dW−1〉

where W is homotopic to the loop e−1d−1ed.
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(3) The homomorphism (p2 ◦ h ◦ (1, f))# is given by

a 7→ e(b1−1)d
b2
, b 7→ eb3d

(b4−1)
, c0 7→ ec1d

c2
c.

(4) The homomorphism i# : π1(MA− S1)→ π1(MA) is given by

e 7→ e, d 7→ d, c 7→ c.

(5) The homomorphism Γ exists if and only if we can find elements
Z1, Z2, Z3 ∈ ker(π1(T − 1)→ π1(T )) such that

Γ (a) = Z1e
b1−1db2 , Γ (b) = Z2e

b3db4−1, Γ (c0) = Z3e
c1dc2c,

and 



[Γ (a), Γ (b)] = 1,

Γ (c0)Γ (a)Γ (c0
−1) = Γ (aa1ba2),

Γ (c0)Γ (b)Γ (c0
−1) = Γ (aa3ba4).

Proof. (1) It follows from Proposition 1.8 that

π1(M(A)×S1M(A), (0,q)) ∼= π1(T,0)o π1(M(A),q)

and a presentation is

〈a, b, e, d, ĉ : [a, b] = 1, [a, e] = 1, [a, d] = 1,

[b, e] = 1, [b, d] = 1, [e, d] = 1,

ĉaĉ−1 = aa1ba2 , ĉbĉ−1 = aa3ba4 ,

ĉeĉ−1 = ea1d
a2
, ĉdĉ−1 = ea1d

a2〉.
(2) We illustrate the cases V: a3 = 0 and VI: a3 > 1. For the other

cases the calculation is similar and we leave the details to the reader. Recall
that W is the loop around the origin which runs counterclockwise. So it
represents the class of the element e−1d−1ed.

Case V: a3 = 0. We are going to construct liftings of the paths c, e
and c−1 to (R2 − (Z × Z)) × I, denoted by c̃, ẽ and c̃−1, respectively, so
that the projection of the juxtaposed path c̃ẽc̃−1 on MA − S1 is cec−1. In
(R2 − (Z × Z)) × I we give a homotopy of the path c̃ẽc̃−1 to a new path
which clearly projects to e−1W−1. Consider

c̃(t) = (γ(t), t),

ẽ(t) =
(
A
(
q+t
q

)
, 1
)
,

c̃−1(t) =
(
γ(1− t)−

(
1
0

)
, 1− t

)
.

The sequence of diagrams below shows a homotopy between c̃ẽc̃−1 and a
path in the face (R2 − (Z× Z))× 0 of (R2 − (Z× Z))× I.
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−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

•

•

LL

•q

•



−1 0 1

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

(R2−(Z×Z))×1

−1 0 1

• •oo

◦

◦

◦

◦

c̃

ẽ

c̃−1

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

•

•

LL

•q

•



−1 0 1

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

(R2−(Z×Z))×1

−1 0 1

• •oo

◦

◦

◦

◦

c̃

ẽ

c̃−1

tt

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

• •qoo
aa
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−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

• •qoo
aa

oo   

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

•
aa

•q• oo

This last path when projected on MA − S1 gives e−1W−1 and therefore
cec−1 = e−1W−1.

Now the relation cdc−1 = Wd−1 is obtained as follows. We are going to
construct liftings of the paths c, d and c−1 to (R2 − (Z × Z)) × I, denoted

by c̃, d̃ and c̃−1, respectively, so that the projection of c̃d̃c̃−1 on MA − S1

is cdc−1. In (R2 − (Z× Z))× I we give a homotopy of c̃d̃c̃−1 to a new path
which clearly projects to Wd−1.

Consider
c̃(t) = (γ(t), t), d̃(t) =

(
A
( q
q+t

)
, 1
)
,

c̃−1(t) =
(
γ(1− t)−

(
0
1

)
, 1− t

)
.

The sequence of diagrams below shows a homotopy between c̃d̃c̃−1 and a
path in the face (R2 − (Z× Z))× 0 of (R2 − (Z× Z))× I.

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

q
•

•



−1 0 1

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

(R2−(Z×Z))×1

−1 0 1

◦

◦

c̃

•

•
��

•

•

LL

d̃

◦

◦

c̃−1
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−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

q
•

•



−1 0 1

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

(R2−(Z×Z))×1

−1 0 1

◦

◦

c̃

•

•
��

•

•

LL

d̃

◦

◦

c̃−1

��

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

q
•

))

•��

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

q
•

))

•��

q
•
OO

q
•
��

This last path when projected onMA−S1 givesWd−1 and therefore cdc−1 =
Wd−1.

Case VI: a3 > 1. We are going to construct liftings of the paths c, e
and c−1 to (R2− (Z×Z))× I, denoted by c̃, ẽ and c̃−1, respectively, so that
the projection of c̃ẽc̃−1 on MA− S1 is cec−1. In (R2 − (Z× Z))× I we give
a homotopy of c̃ẽc̃−1 to a new path which clearly projects to e−1.

Consider

c̃(t) = (γ(t), t), ẽ(t) =
(
A
(
q+t
q

)
, 1
)
, c̃−1(t) =

(
γ(1− t)−

(
1
0

)
, 1− t

)
.

The sequence of diagrams below shows a homotopy between c̃ẽc̃−1 and a
path in the face (R2 − (Z× Z))× 0 of (R2 − (Z× Z))× I.
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−1 0 1 (R2−(Z×Z))×0

1 ◦ ◦ ◦

0 ◦ ◦ ◦

−1 ◦ ◦ ◦

(R2−(Z×Z))×1

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

−1 0 1

•

• •

•

��

oo

__

c̃

ẽ

c̃−1

−1 0 1 (R2−(Z×Z))×0

1 ◦ ◦ ◦

0 ◦ ◦ ◦

−1 ◦ ◦ ◦

(R2−(Z×Z))×1

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

−1 0 1

•

• •

•

��

oo

__

c̃

ẽ

c̃−1
oo

−1 0 1 (R2−(Z×Z))×0

◦ ◦ ◦ 1

◦ ◦ ◦ 0

◦ ◦ ◦ −1

• •q• oo
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This last path when projected on MA−S1 gives e−1 and therefore cec−1 =
e−1.

Now the relation cdc−1 = ea3dW−1 is obtained as follows. We are going
to construct liftings of the paths c, d and c−1 to (R2− (Z×Z))× I, denoted

by c̃, d̃ and c̃−1, respectively, so that the projection of c̃d̃c̃−1 on MA − S1

is cdc−1. In (R2 − (Z× Z))× I we give a homotopy of c̃ẽc̃−1 to a new path
which clearly projects to ea3dW−1.

Consider

c̃(t) = (γ(t), t),

d̃(t) =
(
A
( q
q+t

)
, 1
)
,

c̃−1(t) =
(
γ(1− t) +

( a3
1

)
, 1− t

)
.

We observe that since q was chosen such that Aq belongs to the square

centered at the origin (0, 0) with side two, the path d̃ must pass by a point
with x-coordinate between a3 − 1 and a3 and with y-coordinate 1.

The sequence of diagrams belows shows a homotopy between c̃d̃c̃−1 and
a path in the face (R2 − (Z× Z))× 0 of (R2 − (Z× Z))× I.

−1 0 1 a3 − 1 a3 a3 + 1 (R2−(Z×Z))×0

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦

(R2−(Z×Z))×1

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦
−1 0 1 a3 − 1 a3 a3 + 1

•

•

•

•
44

��

ZZ

c̃

d̃

c̃−1
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−1 0 1 a3 − 1 a3 a3 + 1 (R2−(Z×Z))×0

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦

(R2−(Z×Z))×1

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦
−1 0 1 a3 − 1 a3 a3 + 1

•

•

•

•
44

��

ZZ

c̃

d̃

c̃−1

44

−1 0 1 a3 − 1 a3 a3 + 1 (R2−(Z×Z))×0

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦

•

•
44

−1 0 1 a3 − 1 a3 a3 + 1 (R2−(Z×Z))×0

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦

•

•

//

WW



18 D. L. Gonçalves et al.

−1 0 1 a3 − 1 a3 a3 + 1 (R2−(Z×Z))×0

2 ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦ ◦

0 ◦ ◦ ◦ ◦ ◦ ◦

−1 ◦ ◦ ◦ ◦ ◦ ◦

•

••

//

WW OO
��

This last path when projected on MA − S1 gives ea3dW−1 and therefore
c̃d̃c̃−1 = ea3dW−1.

(3) In fact,

(p2 ◦ h ◦ (1, f))#(a) = (p2 ◦ h)#(1, f)#(a) = (p2 ◦ h)#(a, f#(a))

= (p2 ◦ h)#(a, (f |T )#(a)) = (p2 ◦ h)#([a(t)], [(f |T )(a(t))])

= (p2 ◦ h)#

([〈[
t
0

]
, 0
〉]
,
[
(f |T )

(〈[
t
0

]
, 0
〉)])

= (p2 ◦ h)#

([〈[
t
0

]
, 0
〉]
,
[〈[

B
(
t
0

)
+
( q
q

)]
, 0
〉])

=
[
(p2 ◦ h)(

〈[
t
0

]
, 0
〉
,
〈[
B
(
t
0

)
+
( q
q

)]
, 0
〉
)
]

=
[
(p2)

(〈[
t
0

]
, 0
〉
,
〈[
B
(
t
0

)
+
( q
q

)
−
(
t
0

)]
, 0
〉)]

=
[〈[

B
(
t
0

)
+
( q
q

)
−
(
t
0

)]
, 0
〉]

=
[〈[(

(b1−1)t
b2t

)
+
( q
q

)]
, 0
〉]

=
[〈[

q+(b1−1)t
q

]
, 0
〉]
.
[〈[ q

b2t

]
, 0
〉]

= e(b1−1)d
b2
.

Similarly we argue for b and c0.
(4) The proof is trivial.
(5) First we observe that if Γ (a) = x then i#(x) = i# ◦ Γ (a) = (p2 ◦

h ◦ (1, f))#(a) = e(b1−1)d
b2

. On the other hand, i#(eb1−1db2) = e(b1−1)d
b2

.

Therefore xd−b2e1−b1 = Z1, where Z1 ∈ π1F(MA − S1) ∼= π2(T, T − 1) =
ker(π1(T − 1)→ π1(T )). Similarly we argue for b and c0. Now the equations





[Γ (a), Γ (b)] = 1,

Γ (c0)Γ (a)Γ (c−1
0 ) = Γ (aa1ba2),

Γ (c0)Γ (b)Γ (c−1
0 ) = Γ (aa3ba4)

follow from the relations on π1(MA).

Proposition 2.3 (Case I). Let f : MA→MA be a map over S1 where
f corresponds to case I where the matrix B is the identity. Then f can
always be deformed to a fixed point free map by a fiberwise homotopy.
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Proof. Define a lift for (p2 ◦ h ◦ (1, f))# by

Γ (a) = 1, Γ (b) = 1, Γ (c0) = ec1dc2c.

Now we derive a necessary algebraic condition for f to be deformable to
a fixed point free map.

Proposition 2.4. If f : MA→MA corresponds to the remaining cases
other than I and f can be deformed to a fixed point free map by a fiberwise
homotopy , then Z1 = 1. In this case in order to have the homomorphism Γ
it is necessary and sufficient to solve the equation

Γ (c0)Γ (b)Γ (c−1
0 ) = Γ (aa3ba4) = Γ (aa3)Γ (ba4) = Γ (ba4).

Proof. In the remaining cases, since (b1−1, b2) = (0, 0) and (b3, b4−1) 6=
(0, 0), we have Γ (a) = Z1. But by Theorem 2.2(5), [Z1, Γ (b)] = 1. If Z1 6= 1
then we must have Z1 = uα and Γ (b) = uβ, where u ∈ π2(T, T − 1). But

this is impossible, since iπ ◦ Γ (b) = (p2 ◦ h ◦ (1, f))π(b) = eb3d
(b4−1) 6= 1. On

the other hand, iπ ◦ Γ (b) = iπ(uβ) = 1 since u ∈ π2(T, T − 1). Therefore
Z1 = 1; the second part is immediate.

3. GENERALITIES AND PROPERTIES OF THE MAIN EQUATION

In this section we first write in a more explicit form the main equa-
tion given by Proposition 2.4, interpreted as an equation in the free group
π2(T, T − 1). We derive some general results which are useful in solving
the equation. Then we study the main equation in the abelianization of
π2(T, T −1). We derive a necessary condition for the existence of a solution.

3.1. Main equation. Consider the equation given by Proposition 2.4.
Let E, D be any elements such that j#(E) = j#(ec1dc2) and j#(D) =

j#(eb3db4−1). Then we have:

Proposition 3.1. Let E and D as above. Then the equation given by
Proposition 2.4 can be written either

(1) in the form

Z3EcZ2Dc
−1E−1Z−1

3 = (Z2D)a4, or

(2) in the form

Z3.EcZ2c
−1E−1.E(cDc−1D−a4)E−1.[E,Da4 ]

.Da4Z−1
3 D−a4.D(a4−1)/2Z−a4

2 D(1−a4)/2 = 1.

Furthermore, cDc−1D−a4 ∈ ker j# and the existence of a solution of the
above equation is independent of the choices of E and D, for Z2, Z3 ∈ ker j#.

Proof. (1) As j#(E) = j#(ec1dc2) and j#(D) = j#(eb3db4−1), there exist

αE , αD ∈ ker j# so that ec1dc2 = αEE and eb3db4−1 = αDD. Now the
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equation

Γ (c0)Γ (b)Γ (c0
−1) = Γ (ba4)

is

Z3e
c1dc2cZ2e

b3db4−1c−1d−c2e−c1Z−1
3 = (Z2e

b3db4−1)a4 .

Substituting ec1dc2 = αEE and eb3db4−1 = αDD we obtain

Z3αEcZ2αDDc
−1E−1α−1Z3

−1 = (Z2αDD)a4.

For simplicity, we denote Z3αE and Z2αD again by Z3 and Z2 and so we
obtain the equation

Z3EcZ2Dc
−1E−1Z−1

3 = (Z2D)a4 .

(2) The equation above is the same as

Z3EcZ2c
−1E−1EcDc−1D−a4E−1EDa4E−1D−a4Da4Z−1

3 (Z2D)−a4 = 1

and therefore

Z3.EcZ2c
−1E−1.E(cDc−1D−a4)E−1.[E,Da4 ].Da4Z−1

3 (Z2D)−a4 = 1.

Now it is sufficient to observe that

(Z2D)−a4 = D−a4 .D(a4−1)/2Z−a4
2 D(1−a4)/2

since a4 = ±1.
To prove that cDc−1D−a4 ∈ ker j# it suffices to see that j#(cDc−1D−a4)

= cj#(D)c−1j#(D−a4) = 0, where the last equality is obtained by using the
action of c and the fact that π1(T ) is abelian.

For the last part observe that any two choices of eitherE’s orD’s differ by
elements of ker j#. So, the equation given by Proposition 3.1 has a solution
for one choice if and only if it has a solution for the other choice, and the
result follows.

Motivated by the proposition above we make:

Definition 3.2. An input datum for the main equation given by Propo-
sition 2.4 is a quadruple (b3, b4, c1, c2).

From Proposition 3.1 we see that the existence of a solution of the main
equation depends only in the input. Also, observe that the input defines the
map f .

By | |e, | |d : π1(T − 1)→ Z we denote the homomorphisms which map a
word w to the sum of the exponents of the generator e and the sum of the
exponents of d, respectively.

The next theorem shows that, for a fixed group π1(MA), the existence
of a solution for one equation implies the existence of a solution of other
equations. This is done in terms of the inputs (b3, b4, c1, c2). More precisely:
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Theorem 3.3. Let A and B be fixed.

(1) The equation given by Proposition 3.1 has a solution for given E,D
if and only if it has a solution for wEcw−1c−1, wDw−1.

(2) The equations given in (1) have the coordinates c1, c2 of the input
related as follows:

{ |wEcw−1c−1|e = |E|e + |wcw−1c−1|e,
|wEcw−1c−1|d = |E|d + |wcw−1c−1|d.

Proof. (1) In fact, there exists a lifting homomorphism Γ in diagram
(2.2) for the input data (A,B,E,D) if and only if there exist Z2, Z3 ∈
π2(T, T − 1) so that

Z3EcZ2Dc
−1E−1Z−1

3 = (Z2D)a4

if and only if for all w ∈ π1(T − 1),

wZ3EcZ2Dc
−1E−1Z−1

3 w−1 = w(Z2D)a4w−1 = (wZ2Dw
−1)a4

= (wZ2w
−1wDw−1)a4 .

Therefore

wZ3w
−1wEcw−1c−1cwZ2w

−1wDw−1wc−1E−1w−1wZ−1
3 w−1

= (wZ2w
−1wDw−1)a4

if and only if there exist Z2 = wZ2w
−1, Z3 = wZ3w

−1 ∈ π2(T, T − 1) so
that

Z3.wEcw
−1c−1cZ2wDw

−1wc−1E−1w−1Z
−1
3 = (Z2wDw

−1)a4

if and only if there exists a lifting homomorphism Γ in diagram (2.2) for the
input data (A,B,wEcw−1c−1, wDw−1).

(2) In fact, we have

|wEcw−1c−1|e = |wEw−1wcw−1c−1|e
= |wEw−1|e + |wcw−1c−1|e
= |E|e + |wcw−1c−1|e.

The other case is similar.

Corollary 3.4. Let H be the image of the homomorphism π1(T − 1)
→ Z⊕ Z which maps α to the pair (|cαc−1α−1|e, |cαc−1α−1|d). If two input
data (b3, b4, c1, c2) and (b3, b4, c

′
1, c
′
2) have the property that the pairs (c1, c2)

and (c′1, c
′
2) belong to the same equivalence class in Z⊕ Z/H, then there is

a solution for the equation with one of the inputs if and only if there is a
solution for the other.

Proof. Suppose that for the input datum (b3, b4, c1, c2) there is a solution,
and (b3, b4, c

′
1, c
′
2) is another input datum so that (c1, c2) and (c′1, c

′
2) belong
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to the same equivalence class in Z⊕ Z/H. Then there exists w ∈ π1(T − 1)
so that

(c′1, c
′
2)− (c1, c2) = (|cwc−1w−1|e, |cwc−1w−1|d).

Let E be such that (|E|e, |E|d) = (c1, c2). Then the equation has a solution
for a suitable D. Define E ′ = wEcw−1c−1. By Theorem 3.3(1), the main
equation also has a solution for E ′. Also by Theorem 3.3(2),

(|E′|e, |E′|d) = (|wEcw−1c−1|e, |wEcw−1c−1|d).
Therefore, for the input (b3, b4, c

′
1, c
′
2) we also have a solution and the result

follows.

Remark 3.1. Let A and B be given, and C be a set of representatives
of the equivalence classes of Z⊕ Z/H. In order to analyze all the cases it
suffices to analyze the equation for the set of inputs (b3, b4, c1, c2) such that
(c1, c2) runs over the set C.

3.2. Equation on the abelianization. Let π2 = π2(T, T − 1) denote
the kernel of the map j# : 〈e, d〉 = π1(T − 1) → π1T = 〈e, d : [e, d] = 1〉
and B = [e, d]. We will study the equation given by Proposition 2.4 on the
abelianization (π2)ab = π2/[π2, π2] of π2 and also on some quotients of this
group. Whenever the equation in one of these quotients has no solution,
we can infer that the original equation has no solution. The group π2 is
isomorphic to π1(F), where F → E(T −1)→ T is the fibration obtained by
making the inclusion T − 1 ↪→ T into a fibration. So the group π1(T ) acts
on H1(F) = π2/[π2, π2].

Proposition 3.5. (1) We have

H1(F) ∼= Zπ1(T ) ∼=
⊕

x,y∈Z
Bexdy ,

where Bexdy = B(x,y) = A(exdy[e, d]d−ye−x) is a generator of a copy
of Z. Here A : π2(T, T − 1) = π2 → π2/[π2, π2] = Zπ1(T ) is the
natural projection.

(2) If , by means of this isomorphism, an element of H1(F) corresponds
to the generator 1w of the copy Z, indexed by an element w ∈ π1(T ),
then the action of α ∈ π1(T ) on Bw is the generator of the copy of
Z indexed by the product αw, namely Bαw.

Proof. Let p : R2 → T be the universal covering map and let x̃0 and x0

be the base points of R2 − p−1(1) and T − 1, respectively.
From Remarks 1.1, π1(F) ∼= π2(T, T − 1;x0).
Take α′ ∈ π1(T − 1, x0) such that j#(α′) = α, where j# is the epimor-

phism induced by the inclusion j : T − 1 → T . We consider the following
diagram:
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π2(R2,R2 − p−1(1); x̃0)
∂

∼=
//

hα

∼=ttiiiiiiiiiiiiiiii
p# ∼=

π1(R2 − p−1(1); x̃0)

p|#

��

h
α
′

∼=uujjjjjjjjjjjjjjj

π2(R2,R2 − p−1(1); ỹ0)
∂

∼=
//

p# ∼=

��

π1(R2 − p−1(1); ỹ0)

p|#
��

π2(T, T − 1;x0) // //
τ
′
α
′

∼=ttiiiiiiiiiiiiiiii

��

π1(T − 1;x0)
τ
α
′

∼=ttjjjjjjjjjjjjjjj

π2(T, T − 1;x0) // ∂ // π1(T − 1, x0)

The map hα is the deck transformation corresponding to α and ỹ0 = hα(x̃0).
The isomorphism τ ′α′ is the action of α′.

From these isomorphisms, we conclude that H1(F) is the abelianization
of π2(R2,R2−p−1(1); x̃0) ∼= π1(R2−p−1(1); x̃0) ; therefore item (1) is proved.

Note that the left face of the diagram is not commutative, but if we look
at this diagram on homology groups that face is commutative.

Geometrically, if we suppose α = emdn, then hα translates a small circle
around the point (x, y) ∈ p−1(1), which represents a generator B(x,y) ∈
H1(R2− p−1(1)), to a circle around (x+m, y+ n). When we identify B(x,y)

in Zπ1(T ), this corresponds to the product α · (exdy) and (2) is proved.

We denote by | | the homomorphism E ◦A where A is the abelianization
homomorphism and E : Z(π1(T ))→ Z is the augmentation homomorphism,
i.e. E(Bw) = 1 ∈ Z for all w ∈ π1(T ).

Theorem 3.6. (1) |αZα−1| = |Z| for all α ∈ π1(T − 1) and Z ∈
π2(T, T − 1).

(2) |[ex1dy1 , ex2dy2 ]| = det

[
x1 x2

y1 y2

]
.

(3) |[Zex1dy1 ,Wex2dy2]| = |[ex1dy1 , ex2dy2 ]| for all Z,W ∈ π2(T, T − 1).
(4) If c ∈ π1(MA− S1) as in diagram (2.2) then

|cZc−1| = [sgn det(A)]|Z| for all Z ∈ π2(T, T − 1).

Proof. (1) By definition |αZα−1| = E ◦ A(αZα−1) = E(j#(α).A(Z)),

where j# : π1(T − 1) → π1(T ). So, if j#(α) = emdn and A(Z) = Bt1
(x1,y1)

then j#(α).A(Z) = Bt1
(x1+m,y1+n). Therefore,

|αZα−1| = E(j#(α).A(Z)) = E ◦ A(Z) = |Z|.
(2) We note that

(i) |[ex1dy1 , ex2dy2 ]| = |ex1 [dy1, ex2 ]e−x1ex2 [ex1 , dy2 ]e−x2 |
= |[dy1, ex2 ]|+ |[ex1 , dy2]|.
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(ii) From [dy1, ex2 ][ex2 , dy1 ] = 1, we have |[dy1, ex2 ]| = −|[ex2 , dy1 ]|.
(iii) From [ex, d−y]d−y[ex, dy]dy = 1, we have |[ex, d−y]| = −|[ex, dy]|.

Therefore, it is sufficient to prove |[ex, dy]| = xy when y ≥ 0. This follows
by induction on y.

(3) We have

|[Zex1dy1 ,Wex2dy2 ]|
= |Zex1dy1Wd−y1e−x1 [ex1dy1 , ex2dy2 ]ex2dy2Z−1d−y2e−x2W−1|
= |Z|+ |ex1dy1Wd−y1e−x1 |+ |[ex1dy1 , ex2dy2 ]|

+ |ex2dy2Z−1d−y2e−x2 | − |W |
= |Z|+ |W |+ |[ex1dy1 , ex2dy2 ]| − |Z| − |W | = |[ex1dy1 , ex2dy2 ]|.

(4) We have cBc−1 = cec−1cdc−1ce−1c−1cd−1c−1. We observe that in
any case cec−1 = αeε and cdc−1 = βea3dη with α, β ∈ π2(T, T − 1) and

A =

(
ε a3

0 η

)
, where εη = ±1.

It follows from (3) that |cBc−1| = |ea3[eε, dη] e−a3 | = sgn detA. In the
general case, Z can be written in the form

Z =
r∏

i=1

αiB
tiα−1

i .

So, cZc−1 =
∏r
i=1 cαic

−1(cBc−1)ticα−1
i c−1 and therefore

|cZc−1| = E ◦ A(cZc−1) = E
( r∏

i=1

B
|cBc−1|ti
j#(cαic−1)

)

=
r∑

i=1

|cBc−1|ti = |cBc−1|
r∑

i=1

ti = |cBc−1| |Z|.

Now we consider the equation given by Proposition 2.4. We will look at
it in the abelianization of π2(T, T − 1), which is Zπ1(T ), and in a quotient

of Zπ1(T ), namely ZH̃, where H̃ = Z⊕ Z/〈(c1, c2), (b3, b4 − 1)〉. Denote by

x the image of x ∈ π2(T, T − 1) either in Zπ1(T ) or in ZH̃. Then we have:

Proposition 3.7. Let E and D as in Proposition 3.1. Then the main
equation given in Proposition 2.4 is:

(1) of the form

Z3.EcZ2c
−1E−1.E(cDc−1D−a4)E−1.[E,Da4 ]

.Da4Z−1
3 D−a4 .D(a4−1)/2Z−a4

2 D(1−a4)/2 = 1

in the abelianization, where Z2, Z3 ∈ Zπ1(T ),



Fixed points on torus bundles 25

(2) of the form

cZ2c
−1.cDc−1D−a4 .[E,Da4 ].Z−a4

2 = 1

in ZH̃, where Z2 ∈ ZH̃.

Proof. In ZH̃, where H̃ = Z⊕ Z/〈(c1, c2), (b3, b4 − 1)〉, the equation

Z3.EcZ2c
−1E−1.E(cDc−1D−a4)E−1.[E,Da4]

.Da4Z−1
3 D−a4 .D(a4−1)/2Z−a4

2 D(1−a4)/2 = 1

reduces to cZ2c
−1.cDc−1D−a4 .[E,Da4].Z−a4

2 = 1, since ZH̃ is abelian and
in this quotient

EcZ2c
−1E−1 = cZ2c

−1, E(cDc−1D−a4)E−1 = cDc−1D−a4 ,

Da4Z−1
3 D−a4 = Z−1

3 , D(a4−1)/2Z−a4
2 D(1−a4)/2 = Z−a4

2 .

By applying the homomorphism | | to the left-hand side of the equation
given in Proposition 3.7(2) we obtain:

Corollary 3.8.

[sgn det(A)]|Z2|+ |cDc−1D−a4 |+ |[E,Da4]|+ |Z−a4
2 | = 0.

Proof. By Theorem 3.6(4), we have |cZ2c
−1| = [sgn det(A)]|Z2| and the

result follows.

4. THE MAIN RESULT: SOLUTIONS OF THE MAIN EQUATION

In this section we prove the main result of this work:

Theorem 4.1. A fiber-preserving map f : M(φ) → M(φ) can be de-
formed to a fixed point free map by a homotopy over S1 if and only if one
of the cases below holds:

(1) M(φ) is as in case I and f is arbitrary.
(2) M(φ) is as in one of cases II , III , IV and c1(b4 − 1)− c2b3 = 0.
(3) M(φ) is as in case V and

b4(b3 + 1) + c1(1− b4) + c2b3 − 1 ≡ 0 mod 2

except in the cases listed in the table below :

a3 (b3, b4) (c1, c2) E D

2r > 0 (2s, 1) ≡ (0, 0) 1 e2s

2r < 0 (2s, 1) ≡ (0, 0) [d−1, e−1] e2s

2r + 1 > 0 (2s, 1) ≡ (0, 0) 1 e2s

2r + 1 < 0 (2s, 1) ≡ (0, 0) [d−1, e−1] e2s

0 (2s, 1 + 2k) ≡ (0, 0) 1 dke2sdk



26 D. L. Gonçalves et al.

(4) M(φ) is as in case VI and either

(I) a3 is even and

(b4 − 1)(c1 − 1− c2r) = 0 mod 2

except when b4−1 = 2n1p1, where p1 ≥ 1 is odd , and c2 = 2n2p2,
where p2 is odd , 1 < n1 ≤ n2 and c1 − rc2 ≡ 0 mod 2, or

(II) a3 is odd and

k(1 + c2) = 0 mod 2

except when (b4 − 1)/L = 2p + 1 and c2 = 2q, where L =
gcd(b4 − 1, c2).

The rest of this section is devoted to the proof of this result. We briefly
describe our approach to decide if an equation has a solution or not.

1) First we compute the necessary condition given by Corollary 3.8 and
the set of equivalence classes as defined by Corollary 3.4.

2) Then we choose a set C of representatives of the equivalence classes
in Z⊕ Z/H given by Corollary 3.4. For some (c1, c2) ∈ C we find elements
E,D which correspond to the input (b3, b4, c1, c2) and satisfy

EcDc−1E−1D−a4 = 1.

This tells us that the equation given by Proposition 3.7(1), with E, D chosen
as above, admits the trivial solution Z2 = Z3 = 1, and allows us to write a
sufficient condition, in terms of the data, which guarantees the existence of
a solution.

3) For some classes (c1, c2) ∈ C we show that there is no solution by
looking at the main equation either in Zπ1(T ), which is the abelianization

of π2(T, T−1), or in ZH̃, where H̃ is Z⊕ Z/H and H contains the subgroup
〈(c1, c2), (b3, b4 − 1)〉. Then we use Corollary 3.4 and Proposition 3.7.

Case I: It was solved in Proposition 2.3.

Case II: A1 =
(

1 0
0 1

)
and B1 =

(
1 b3
0 b4

)
. The equation to be solved is

Z3EcZ2c
−1E−1E(cDc−1D−1)E−1[E,D]DZ3

−1D−1Z2
−1 = 1.

(1) The condition given by Corollary 3.8, called the necessary condition,
is

|cDc−1D−1|+ |[E,D]| = 0,

but for every D we have cDc−1D−1 = 1, so

|[E,D]| = 0 = det

(
c1 b3

c2 b4 − 1

)
.
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(2) The sufficient condition is

det

(
c1 b3

c2 b4 − 1

)
= 0.

We consider L = gcd(b3, b4 − 1) and let (k1, k2) be so that (b3, b4 − 1) =
L(k1, k2). If the above determinant is 0 then there exists t ∈ Z that (c1, c2) =
t(k1, k2). We take E = vt and D = vL, where v = ek1dk2 , and it is easy to
verify that [E,D] = 1 and cDc−1D−1 = 1, so the equation admits the trivial
solution Z2 = Z3 = 1.

Case III: A1 =
(

1 a3
0 1

)
and B1 =

(
1 b3
0 1

)
with b3 6= 0. The equation to be

solved is

Z3EcZ2c
−1E−1E(cDc−1D−1)E−1[E,D]DZ3

−1D−1Z2
−1 = 1.

(1) The necessary condition is

|cDc−1D−1|+ |[E,D]| = 0.

To compute |cDc−1D−1|, we take D = eb3 ; then cDc−1D−1 = 1. So, the
relation above becomes

|[E,D]| = 0 = det

(
c1 b3

c2 0

)
= −c2b3, b3 6= 0,

which implies c2 = 0.
(2) The sufficient condition is c2 = 0. If this condition is satisfied we take

E = ec1 and D = eb3 and so [E,D] = 1. Therefore, the equation admits the
trivial solution Z2 = Z3 = 1.

Case IV: A1 =
(

1 a3
0 −1

)
, B1 =

(
1 b3
0 b4

)
and a3(b4 − 1) = −2b3 with b4 − 1

6= 0. The equation to be solved is

Z3EcZ2c
−1E−1(E(cDc−1D)E−1[E,D−1])D−1Z3

−1DD−1Z2D = 1.

(1a) The necessary condition is

|cDc−1D|+ |[E,D−1]| = 0.

In order to calculate this condition, first we consider a3 ≥ −1. Since b3 =
−a3(b4 − 1)/2, 2 divides either a3 or b4 − 1. If 2 divides a3 consider v =
e−a3/2d, otherwise 2 must divide b4 − 1 and consider v = de−a3d. From the
presentation of the group for a3 ≥ −1 we have cvc−1 = v−1.

Therefore, if D = vb4−1 then cDc−1D = 1 so |cDc−1D| = 0.
Let a3 ≤ −2 and consider the presentation which corresponds to this

case. If we set β = e−1d−1e, then the presentation is given by

〈e, d, c : cec−1 = βeβ−1, cdc−1 = βea3d−1β−1〉.
Take v as in the previous case; similar calculations show that

cvc−1 = βdv−1d−1β−1 = [e−1, d−1]v−1[d−1, e−1].
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So, if we take D = vb4−1 or D = v(b4−1)/2, then cDc−1D = [[e−1, d−1],D]
and therefore |cDc−1D| = 0. Thus, the necessary condition is |[E,D−1]| =
0 = c1(b4 − 1) + c2b3.

(1b) The image of the map π1(T − 1) = 〈e, d〉 → Z⊕ Z given by

α 7→ (|αcα−1c−1|e, |αcα−1c−1|d)

is denoted by im(| |e, | |d). We have e 7→ (0, 0), d 7→ (−a3, 2), so

Z⊕ Z
im(| |e, | |d)

=
Z⊕ Z
〈(a3,−2)〉 .

(1c) We have

Z⊕ Z
〈(a3,−2)〉 =





〈(a3,−2), (−r, 1)〉
〈(a3,−2)〉

∼= Z if a3 = 2r + 1,

〈(−1, 0), (r,−1)〉
〈(2r,−2)〉

∼= Z⊕ Z2 if a3 = 2r.

(2a) The sufficient condition is |[E,D−1]| = 0 = c1(1 − b4) + c2b3. We
are going to prove this in the steps that follow.

(2b) If a3 = 2r + 1 then a complete set of representatives of E is given
by elements of the form (0, y), where the coordinates are relative to the base
((a3,−2), (−r, 1)) so (c1, c2) = (−yr, y).

These values must satisfy the necessary condition c1(1− b4) + c2b3 = 0.
Since a3(b4 − 1) = −2b3, b4 − 1 6= 0 and a3 = 2r + 1, it follows that b4 − 1
is even. The equation c1(1 − b4) + c2b3 = 0 with (c1, c2) = (−yr, y) now
reads

yr(b4 − 1) + y
−a3(b4 − 1)

2
= y

b4 − 1

2
[2r − 2r − 1] = 0,

which implies y = 0.
For a3 ≥ −1 and a3 = 2r + 1, take E = 1 and D = v(b4−1)/2, where

v = de−a3d, and for a3 ≤ −2 take E = [d−1, e−1] and D = v(b4−1)/2, where
v = de−a3d, so in either case we have EcDc−1E−1D = 1, therefore the
equation admits the trivial solution.

(2c) If a3 = 2r then a complete set of representatives of E is given by
elements of the form (x, y), where (x, y) are the coordinates relative to the
base ((−1, 0), (r,−1)) and y means y modulo 2.

So a set of representatives consists of the elements of the form either
(c1, c2) = (−x, 0) or (c1, c2) = (−x+ r, 1).

From the necessary condition c1(1 − b4) + c2b3 = 0 we conclude that if
E = (−x, 0) or E = (−x+r,−1) then x = 0. So, for E and D below, we have
EcDc−1E−1D = 1 and therefore the equation admits the trivial solution.
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a3 (c1, c2) E D

2r ≥ −1 (0, 0) 1 (e−rd)b4−1

2r ≥ −1 (−r, 1) e−rd (de−r)b4−1

2r ≤ −2 (0, 0) [e−1, d−1] (e−rd)b4−1

2r ≤ −2 (−r, 1) e−re−1de (de−r)b4−1

Case V: A1 =
(−1 a3

0 −1

)
, B1 =

(
1 b3
0 b4

)
and a3(b4 − 1) = 0. The equation

to be solved is

Z3EcZ2c
−1E−1(E(cDc−1D)E−1[E,D−1])D−1Z3

−1DD−1Z2D = 1.

(1a) The necessary condition is

2|Z2|+ |cDc−1D|+ |[E,D−1]| = 0.

Observe that |cDc−1D| depends on the choice of D, but |[E,D−1]| does not,
since if D1 = αD and E1 = βE with α, β ∈ π2(T, T − 1), then

|cD1c
−1D1| = 2|α|+ |cDc−1D|

and

|[E1,D
−1
1 ]| = |[E,D−1]|.

We conclude that the augmentation mod 2, denoted by | |2, is indepen-
dent of D, and in order to calculate this condition we can take D = eb3db4−1

and so |cDc−1D|2 + |[E,D−1]|2 = 0 or

b4(b3 + 1) + c1(1− b4) + c2b3 − 1 ≡ 0 mod 2.

(1b) The image of the map π1(T − 1) = 〈e, d〉 → Z⊕ Z given by

α 7→ (|αcα−1c−1|e, |αcα−1c−1|d)
is denoted by im(| |e, | |d). We have e 7→ (2, 0), d→ (−a3, 2).

(1c) If a3 = 2r, where r ≥ 0, then

Z⊕ Z
im(| |e, | |d)

=
〈(1, 0), (−r, 1)〉
〈2(1, 0), 2(−r, 1)〉

∼= Z2 ⊕ Z2.

Let (|E|e, |E|d) = (c1, c2). If c2 is odd, then a set of representatives of
E is {(−r, 1), (−r + 1, 1)}. If c2 is even, a set of representatives of E
is {(−2r + 1, 2), (0, 0)} or {(1, 0), (0, 0)}.

(1d) If a3 = 2r + 1 then

Z⊕ Z
im(| |e, | |d)

=
Z⊕ Z

〈2(1, 0), (−2r − 1, 2)〉 =
〈(1, 2), (0, 1)〉
〈(1, 2), (0, 4)〉

∼= 0⊕ Z4.

Let (|E|e, |E|d) = (c1, c2). If c2 is odd, a set of representatives of E is
{(0, 3), (0, 1)} or {(1, 1), (0, 1)}. If c2 is even, a set of representatives of E is
{(0, 0), (0, 2)}.
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(2a) For a3 = 2r, where r ∈ Z, the sufficient condition is (c1, c2) 6≡ (0, 0),
that is, c1 6≡ 0 mod 2 or c2 6≡ 0 mod 2. For a3 = 2r + 1, where r ∈ Z, it is
(c1, c2) 6≡ (0, 0), that is, c2 6≡ 0 mod 4.

(2b) For E and D specified below we have EcDc−1E−1D = 1, so the
equation in (1) admits the trivial solution Z2 = Z3 = 1:

a3 = 2r > 0 c2 (b3, b4) (|E|e, |E|d) = (c1, c2) E D

r even odd (b3, 1) (−r, 1) ≡ (0, 1) d eb3

r even odd (b3, 1) (−r + 1, 1) ≡ (1, 1) ed eb3

r odd odd (b3, 1) (−r + 1, 1) ≡ (0, 1) d eb3

r odd odd (b3, 1) (−r, 1) ≡ (1, 1) ed eb3

even (2s, 1) (−2r + 1, 2) ≡ (1, 0) de−2r+1d esdesd−1

a3 = 2r < 0 c2 (b3, b4) (|E|e, |E|d) = (c1, c2) E D

r even odd (b3, 1) (−r, 1) ≡ (0, 1) d(d−1e−1de) eb3

r even odd (b3, 1) (−r + 1, 1) ≡ (1, 1) ed(d−1e−1de) eb3

r odd odd (b3, 1) (−r + 1, 1) ≡ (0, 1) d(d−1e−1de) eb3

r odd odd (b3, 1) (−r, 1) ≡ (1, 1) ed(d−1e−1de) eb3

even (2s, 1) (−2r + 1, 2) ≡ (1, 0) de−2rde esdesd−1

a3 = 2r + 1 > 0 c2 (b3, b4) (|E|e, |E|d) = (c1, c2) E D

odd (b3, 1) (0, 3) ≡ (1, 1) ed eb3

odd (b3, 1) (0, 1) ≡ (0, 1) d eb3

even (2s, 1) (0, 2) ≡ (−2r, 2) de−2rd esdesd−1

a3 = 2r + 1 < 0 c2 (b3, b4) (c1, c2) E D

odd (b3, 1) (0, 3) ≡ (1, 1) ed(d−1e−1de eb3

odd (b3, 1) (0, 1) ≡ (0, 1) d(d−1e−1de) eb3

even (2s, 1) (0, 2) ≡ (−2r, 2) de−2r−1de esdesd−1

a3 = 0 (c1, c2) (b3, b4) E D

(0, 1) b3 odd, or eb3−2de eb3−1db4−1e

b4 − 1 = 2k and b3 even e−b3+1de dkedkeb3−1

(1, 0) b4 − 1 = 2k + 1, or d2ke d2keb3d

b4 − 1 = 2k and b3 = 2s d−b4+3e esdesd2k−1

(1, 1) b3 = 2s or de esdb4−1es

b4 − 1 = 2k de dkeb3dk

(3) There is no solution for the remaining cases. To see this, consider E,
D as given below:
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a3 (b3, b4) (c1, c2) E D

2r > 0 (2s, 1) ≡ (0, 0) 1 e2s

2r < 0 (2s, 1) ≡ (0, 0) [d−1, e−1] e2s

2r + 1 > 0 (2s, 1) ≡ (0, 0) 1 e2s

2r + 1 < 0 (2s, 1) ≡ (0, 0) [d−1, e−1] e2s

0 (2s, 2k + 1) ≡ (0, 0) 1 dke2sdk

We write the term

EcDc−1DE−1[E,D−1] = EcDc−1E−1D

in the generators B(x,y) of the abelianized group Zπ1(T ).

For a3 6= 0 we have EcDc−1E−1D = [d−1, e−2s], so

EcDc−1E−1D = [d−1, (e−1)2s] = B−1
(−1,−1)B

−1
(−2,−1)B

−1
(−3,−1) . . . B

−1
(−2s,−1).

If Z2 contains Bn
(x,y) as a summand then

EcZ2c
−1E−1 = Bn

(−x+a3y+a3−2,−y−2), D−1Z2D = Bn
(x−2s,y).

Let H = 〈(2s, 0)〉 be the subgroup of π = π1(T ) ∼= Z ⊕ Z. Now in Z(π/H)
the equation reduces to

EcZ2c
−1E−1EcDc−1E−1DD−1Z2D = 1

and

EcDc−1E−1D = [d−1, (e−1)2s] = B−1
(2s−1,−1)

B−1
(2s−2,−1)

B−1
(2s−3,−1)

. . . B−1
(0,−1)

.

In order to cancel the term B−1
(s−1,−1) or B−1

(2s−1,−1), either B(s−1,−1) or

B(2s−1,−1) must be a summand in Z2. Then

EcZ2c
−1E−1 = B1

(s−1,−1) or B1
(2s−1,−1),

D−1Z2D = B1
(s−1,−1) or B1

(2s−1,−1).

So, the total exponent in Z2 is even, therefore it is impossible to cancel
B−1

(s−1,−1) or B−1
(2s−1,−1).

For a3 = 0, we have

EcDc−1E−1D = cDc−1D = [e−1d−1, d−ke−2sd−k],

so
(cDc−1D)−1 = [d−ke−2sd−k, e−1d−1]

= [d−ke−2sd−k, e−1]e−1[d−ke−2sd−k, d−1]e,

and hence

cDc−1D = e−1[d−1, d−ke−2sd−k]e[e−1, d−ke−2sd−k]

= e−1d−k[d−1, e−2s]dke[e−1, d−ke−2s]d−ke−2s[e−1, d−k]e2sdk

= e−1d−k[d−1, e−2s]dke[e−1, d−k]d−ke−2s[e−1, d−k]e2sdk.
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We now use the formula [x, yn] = [x, y]y[x, y]y−1 . . . yn−1[x, y]y−n+1 for

the commutators [d−1, (e−1)
2s

] and [e−1, (d−1)
k
] (here we suppose that s > 0

and k > 0). We have

[d−1, (e−1)
2s

] = [d−1, e−1]e−1[d−1, e−1]e . . . e−2s+1[d−1, e−1]e2s−1.

In Zπ we have [d−1, e−1] = d−1e−1ded−1e−1 = B−1
(−1,−1) and therefore,

[d−1, (e−1)2s] = B−1
(−1,−1)B

−1
(−2,−1)B

−1
(−3,−1) . . . B

−1
(−2s,−1).

Next,

[e−1, (d−1)
k
]

= [e−1, d−1]d−1[e−1, d−1]dd−2[e−1, d−1]d2 . . . d−k+1[e−1, d−1]dk+1.

In Zπ we have

[e−1, d−1] = e−1d−1ede−1d−1de = B(−1,−1)

and therefore,

[e−1, (d−1)k] = B(−1,−1)B(−1,−2)B(−1,−3) . . . B(−1,−k).

Finally,

cDc−1D = (B−1
(−2,−1−k)B

−1
(−3,−1−k) . . . B

−1
(−2s−1,−1−k))

.(B(−1,−1)B(−1,−2)B(−1,−3) . . . B(−1,−k))

.(B(−1−2s,−1−k)B(−1−2s,−2−k)B(−1−2s,−3−k) . . . B(−1−2s,−k−k)).

Let H = 〈(2s, 0), (0, 2k)〉 be the subgroup of π ∼= Z ⊕ Z. Now look at
the equation in Z(π/H). The equivalence classes admit B(x,y) as a set of
representatives for 0 ≤ x ≤ 2s− 1 and 0 ≤ y ≤ 2k − 1. After projecting on
Z(π/H), we get

cDc−1D = (B−1
(2s−2,k−1)

B−1
(2s−3,k−1)

. . . B−1
(0,k−1)

B−1
(2s−1,k−1)

)

.(B(2s−1,2k−1)B(2s−1,2k−2)B(2s−1,2k−3) . . . B(2s−1,2k−k))

.(B(2s−1,k−1)B(2s−1,k−2)B(2s−1,k−3) . . . B(2s−1,0)).

The term B−1
(s−1,k−1)

B(2s−1,2k−1) is different from 0 since in this case

s 6= 0 or k 6= 0 and it cannot be cancelled using the variable Z2 (certainly
also using the variable Z3). In Z(π/H) this reduces to

cZ2c
−1cDc−1DD−1Z2D = 1.

If Z2 has the term B(s−1,k−1)B
−1
(2s−1,2k−1) then

cZ2c
−1 = B(−s+1−2,−k+1−2)B

−1
(−2s+1−2,−2k+1−2)

= B(−s−1,−k−1)B
−1
(−2s−1,−2k−1).
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In Z(π/H) we get

cZ2c
−1 = B(s−1,k−1)B

−1
(2s−1,2k−1)

and

D−1Z2D = B(s−1−2s,k−2k−1)B
−1
(2s−2s−1,2k−2k−1) = B(−s−1,−k−1)B

−1
(−1,−1)

= B(s−1,k−1)B
−1
(2s−1,2k−1),

which shows that we cannot make powers of B(s−1,k−1) and B(2s−1,2k−1)

become zero.

Case VI: A1 =
(−1 a3

0 1

)
, B1 =

(
1 b3
0 b4

)
and a3(b4−1) = 2b3 with b4−1 6= 0.

The equation to be solved is

Z3EcZ2c
−1E−1(E(cDc−1D−1)E−1[E,D])DZ3

−1D−1Z2
−1 = 1.

The augmentation homomorphism | | applied to the equation provides the
condition

−2|Z2|+ |cDc−1D−1|+ |[E,D]| = 0.

This condition modulo 2 is |cDc−1D−1|2 + |[E,D]|2 = 0 mod 2.
We consider two cases: a3 even and a3 odd.

Subcase a3 = 2r: Then 2r(b4 − 1)=2b3, A1 =
(−1 2r

0 1

)
, B1 =

(
1 r(b4−1)
0 b4

)

with b4 − 1 6= 0. We summarize the data of this case by

(A1, B1, |E|e, |E|d) =

((−1 2r

0 1

)
,

(
1 r(b4 − 1)

0 b4

)
, c1, c2

)
.

(1a) To calculate the necessary condition modulo 2, take v = erd so
cvc−1 = e−1ve. Now if D = vb4−1 then cDc−1D−1 = [e−1,D] and therefore

|cDc−1D−1|2 + |[E,D]|2 = det

(−1 r(b4 − 1)

0 b4 − 1

)
+ det

(
c1 r(b4 − 1)

c2 b4 − 1

)

= 0 mod 2

so

(b4 − 1)(c1 − 1− c2r) = 0 mod 2.

(1b) To solve the equation for the input datum

(A1, B1, |E|e, |E|d) =

((−1 2r

0 1

)
,

(
1 r(b4 − 1)

0 b4

)
, c1, c2

)

is equivalent to solving for the input datum

(A,B, |E|e, |E|d) =

((−1 0

0 1

)
,

(
1 0

0 b4

)
, c1 − rc2, c2

)
.
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To see this, it is sufficient to consider the isomorphism ϕ : G1 → G2 given
by

e 7→ e, d 7→ e−rd, c 7→ c,

where

G1 = 〈e, d, c : cec−1 = e−1, cdc−1 = e−1e2rde〉
is the group for the first datum, and

G2 = 〈e, d, c : cec−1 = e−1, cdc−1 = e−1de〉
is the group for the second datum.

(1c) Now we consider the input datum

(A,B, |E|e, |E|d) =

((−1 0

0 1

)
,

(
1 0

0 b4

)
, c1 − rc2, c2

)

satisfying the necessary condition

(b4 − 1)(c1 − 1− c2r) = 0 mod 2.

In this case the map π1(T − 1)→ Z⊕ Z given by

α 7→ (|αcα−1c−1|e, |αcα−1c−1|d)
maps e 7→ (2, 0) and d 7→ (0, 0).

We consider the quotient group Z⊕ Z/〈(2, 0)〉. So, it suffices to take E
so that (|E|e, |E|d) = (0, c2), (|E|e, |E|d) = (1, c2).

(2a) If |E|e = c1− rc2 ≡ 1 mod 2, then the problem has a solution. Take
D = db4−1 and E = dc2e so EcDc−1E−1D−1 = 1.

(2b) If |E|e = c1 − rc2 ≡ 0 mod 2, then the necessary condition implies
that b4−1 is even, i.e. b4−1 = 2k. Let L = gcd(b4−1, c2). If (b4 − 1)/L = 2p,
then c2/L = 2q − 1 and in this case the equation has a solution. Take
v = cdc−1 = e−1de and note that cvc−1 = d. Now, if D = (dLvL)p and
E = v−L(vLdL)q, then

EcDc−1E−1D−1 = E(vLdL)pE−1D−1 = v−L(vLdL)pvLD−1 = 1.

(3) Now suppose b4 − 1 = 2n1p1, where p1 ≥ 1 is odd, and c2 = 2n2p2,
where p2 is odd, with 1 < n1 ≤ n2 and c1 − rc2 ≡ 0 mod 2, where the last
condition is equivalent to c1 ≡ 0 mod 2, since c2 is even. Let us show that
in this case we have no solution.

Let D = db4−1 and E = dc2 . Then

E(cDc−1D−1)E−1[E,D] = EcDc−1E−1D−1 = dc
2
cdb4−1c−1d−c2d1−b4

= dc2e−1db4−1ed−c2d1−b4

= dc2 [e−1, db4−1]d−c2.
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But since [e−1, d] = B−1
(−1,0) and [e−1, d−1] = B(−1,−1) we have

[e−1, db4−1] =

{
B−1

(−1,0)B
−1
(−1,1)B

−1
(−1,2) . . . B

−1
(−1,b4−2) if b4 − 1 ≥ 1,

B(−1,−1)B(−1,−2)B(−1,−3) . . . B(−1,1−b4) if b4 − 1 ≤ −1.

Therefore,

EcDc−1E−1D−1

=

{
B−1

(−1,c2)B
−1
(−1,1+c2)B

−1
(−1,2+c2) . . . B

−1
(−1,b4−2+c2) if b4 − 1 ≥ 1,

B(−1,−1+c2)B(−1,−2+c2)B(−1,−3+c2) . . . B(−1,1−b4+c2) if b4 − 1 ≤ −1.

The equation is

Z3EcZ2c
−1E−1EcDc−1E−1D−1DZ−1

3 D−1Z−1
2 = 1.

If we define Z2 = Bn
(x,y) and Z3 = Bm

(z,w) we have cZ2c
−1 = B−n(−x−2,y),

since cB(0,0)c
−1 = B−1

(−2,0). So, EcZ2c
−1E−1 = B−n(−x−2,y+c2) and DZ−1

3 D−1

= B−m
(z,w+b4−1)

.

In fact, consider the subgroup H = 〈(0, L)〉 of Z ⊕ Z, where L =
gcd(b4 − 1, c2) and (b4 − 1)/L = 2p + 1. Now, we look at the equation in
Z(π/H). In Zπ the equation

Z3EcZ2c
−1E−1EcDc−1E−1D−1DZ−1

3 D−1Z−1
2 = 1

is given by

1 = Bm
(z,w)B

−n
(−x−2,y+c2)B

−1
(−1,c2)B

−1
(−1,1+c2)B

−1
(−1,2+c2) . . .

. . . B−1
(−1,b4−2+c2)B

−m
(z,w+b4−1)B

−n
(x,y).

After projecting it on Z(π/H) we get

B−n(−x−2,y)B
−2p−1
(−1,0) B

−2p−1
(−1,1) · · ·B

−2p−1
(−1,L−1)B

−n
(x,y) = 1.

In Z(π/H) we have EcZ2c
−1E−1 = B−n(−x−2,y). Therefore, the sum of the

exponents of all B(−1,i) for i = 0, . . . , L−1 which appear in EcZ2c
−1E−1Z−1

2

is even. On the other hand, this sum is −2p − 1, which is odd. So, there is
no solution.

Subcase a3 = 2r+1: Then b4−1 = 2k 6= 0 and therefore b3 = (2r+1)k,

A1 =

(−1 2r + 1

0 1

)
, B1 =

(
1 (2r + 1)k

0 b4

)
, a3(b4 − 1) = 2b3.

We summarize the input datum of this case by

(A1, B1, |E|e, |E|d) =

((−1 2r + 1

0 1

)
,

(
1 (2r + 1)k

0 b4

)
, c1, c2

)
.
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(1a) To calculate the necessary condition modulo 2, take v = de2r+1d
so cvc−1 = e−1d−1vde. Now, if D = vk then cDc−1D−1 = [e−1d−1,D] and
therefore

|cDc−1D−1|2 + |[E,D]|2 = det

(−1 (2r + 1)k

−1 2k

)
+ det

(
c1 (2r + 1)k

c2 2k

)

= 0 mod 2
so

k(1 + c2) = 0 mod 2.

(1b) To solve the equation for the input datum

(A1, B1, |E|e, |E|d) =

((−1 2r + 1

0 1

)
,

(
1 (2r + 1)k

0 2k + 1

)
, c1, c2

)

is equivalent to solving it for the input datum

(A,B, |E|e, |E|d) =

((−1 1

0 1

)
,

(
1 k

0 2k + 1

)
, c1 − rc2, c2

)
.

To see this it is sufficient to consider the isomorphism ϕ : G1 → G2 given
by

e 7→ e, d 7→ e−rd, c 7→ c,

where
G1 = 〈e, d, c : cec−1 = e−1, cdc−1 = e−1e2r+1de〉

is the group for the first datum, and

G2 = 〈e, d, c : cec−1 = e−1, cdc−1 = e−1ede〉
is the group for the second datum.

(1c) Now, we consider the input datum

(A,B, |E|e, |E|d) =

((−1 1

0 1

)
,

(
1 k

0 2k + 1

)
, c1 − rc2, c2

)

satisfying the necessary condition

k(1 + c2) = 0 mod 2.

In this case the map π1(T − 1)→ Z⊕ Z given by

α 7→ (|αcα−1c−1|e, |αcα−1c−1|d)
maps e 7→ (2, 0) and d 7→ (−1, 0).

We consider the quotient group
Z⊕ Z

〈(2, 0), (−1, 0)〉 =
Z⊕ Z
〈(1, 0)〉 .

So, it suffices to take E so that (|E|e, |D|d) = (a, c2), where a is fixed and
c2 ∈ Z.

(2a) If |E|d = c2 ≡ 1 mod 2, i.e. c2 = 2p − 1, then the problem has a
solution. Take D = (ded)k and E = (ded)pd−1 so EcDc−1E−1D−1 = 1.
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(2b) If |E|e = c2 ≡ 0 mod 2, i.e. c2 = 2p, the necessary condition implies
that k is even. Let L = gcd(b4− 1, c2); it is even as c2 = 2p. If (b4 − 1)/L =
2p1 then c2/L = 2q + 1, and in this case the equation has a solution.

Indeed, first we observe that if w1 = ded and w2 = cw1c
−1 = dde =

dw1d
−1 then cw2c

−1 = w1 so c(w1w2)xc−1 = (w2w1)x.

Now, if D = (w
L/2
1 w

L/2
2 )p1 and E = w

L/2
1 (w

L/2
2 w

L/2
1 )q then

EcDc−1E−1D−1 = 1.

(3) If (b4 − 1)/L = 2p + 1 and c2 = 2q we are going to prove that the
equation has no solution.

It is sufficient to prove that it has no solution for D = wk1 and E = wq2.
We have

EcDc−1E−1D−1 = wq2w
k
2(wq2)−1w−k1 = [d, (ded)k],

where

[d, (ded)k] =

{
B−1

(0,1)B
−1
(1,3) . . . B

−1
(k−1,2k−1) for k ≥ 1,

B−1
(−1,−1)B

−1
(−2,−3) . . . B

−1
(k,2k+1) for k ≤ −1.

The equation to be solved is

Z3EcZ2c
−1E−1EcDc−1E−1D−1DZ−1

3 D−1Z−1
2 = 1.

If Z2 = Bn
(x,y) and Z3 = Bm

(z,w) we obtain the following calculation for

the terms of the above equation:

Z3 EcZ2c
−1E−1 EcDc−1E−1D−1 DZ−1

3 D−1 Z−1
2

Bm(z,w) B−n(−x−1+y+c2/2,y+c2) [d, (ded)k] B−m(z+k,w+2k) B−n(x,y)

We consider the subgroup H = 〈(1, 0), (0, L)〉 of Z ⊕ Z, where L =
gcd(b4− 1, c2) = gcd(2k, 2q) and 2k/L = (b4 − 1)/L = 2p+ 1. Now, we look
at the equation in Z(π/H).

So, for k ≥ 1, in terms of representative classes, the equation in Zπ is

Bm
(z,w)B

−n
(−x−1+y+c2/2,y+c2)B

−1
(0,1)B

−1
(1,3) . . . B

−1
(k−1,2k−1)B

−m
(z+k,w+2k)B

−n
(x,y) = 1.

After projecting it on Z(π/H) we get

B−n
(x,y)

B
−(2p+1)
(0,1)

B
−(2p+1)
(1,3)

. . . B
−(2p+1)
(L/2−1,2L/2−1)

B−n
(x,y)

= 1.

In Z(π/H) we have EcZ2c
−1E−1 = B−n(x,y). Therefore, the sum of the expo-

nents of all B(i−1,2i−1), for i = 1, . . . , L/2, which appear in EcZ2c
−1E−1Z−1

2

is even. On the other hand, this sum is −(2p+ 1), which is odd. So, there is
no solution.

We note that if k ≥ 1 then, for all i = 1, . . . , L/2, the B(i−1,2i−1) are
different classes in Z(π/H). In fact, if 1 ≤ i < j ≤ L/2 then (j− 1, 2j− 1)−
(i−1, 2i−1) = α(1, 0) +β(0, L) and we do not have a solution in Z because
1 ≤ j − i < L/2 so L - 2(j − i).
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If k ≤ −1, the computation is the same, because in Z(π/H) we have

B−1
(−1,−1)B

−1
(−2,−3) . . . B

−1
(k,2k+1) = B−1

(0,1)B
−1
(1,3) . . . B

−1
(k−1,2k−1).
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