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Abstract. We prove an exact formula for the asymptotic dimension (asdim) of a
free product. Our main theorem states that if A and B are finitely generated groups with
asdimA = n and asdimB ≤ n, then asdim(A ∗B) = max{n, 1}.

1. Introduction. The asymptotic dimension of a metric space was de-
fined by Gromov in [9] in his study of asymptotic properties of finitely
generated groups. The asymptotic dimension (asdim) of a finitely gener-
ated group Γ is defined to be the asymptotic dimension of the metric space
|Γ |S associated to a finite generating set S. The metric is the word met-
ric, i.e., the maximal left-invariant metric with respect to the property that
dist(s, e) = 1 and dist(s−1, e) = 1 for all s ∈ S. Two finite generating sets
give rise to Lipschitz equivalent metrics. As asdim is a coarse invariant (so
in particular an invariant of Lipschitz equivalence), asdimΓ is well defined
without reference to a generating set.

In [13], Yu proved that if Γ has finite asymptotic dimension then the
coarse Baum–Connes conjecture and hence the Novikov higher signature
conjecture hold for Γ. This result caused a lot of work to be devoted to
showing the finiteness of asdim for various groups (see, for instance, [7], [4],
and [10]).

The first two authors showed in [1] that the finiteness of asdim is pre-
served by the construction of the amalgamated free product of groups. The
result was concerned with proving finite asdim and so the estimate given
there was quite rough. This estimate was improved in [2], and examples
were given to show that the upper bound could not be improved.

The purpose of this note is to prove a formula for the asdim of a free
product. The proof uses the asymptotic analog of large inductive dimension,
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called asymptotic inductive dimension (asInd), defined by the second author
in [5]. In particular we prove that asdim(A∗B) = max{asdimA, asdimB, 1}.
This formula agrees with the conjectured formula for the free product with
amalgamation given in [2].

In §2 we recall the definitions of asdim and asInd. In the next section, we
recall some technical results which are needed for the proof of the formula.
The formula itself appears as the main theorem in the final section.

2. Two notions of asymptotic dimension. In [9] Gromov gave three
definitions of asdim (asdim+ in his notation). We recall them here. A family
of subsets of a metric space is called d-disjoint if the distance between any
two members of the family is at least d.

Definition 1. Let X be a metric space. Then asdimX ≤ n if for every
(large) number d > 0 there exist n + 1 uniformly bounded families of d-
disjoint sets covering X.

Recall that the Lebesgue number of a cover U of a metric space X is
L(U) = inf{max{d(x,X \U) | U ∈ U} | x ∈ X}. Gromov’s second definition
is the following:

Definition 2. asdimX ≤ n if for any large number L > 0 there is a
uniformly bounded cover U of X with multiplicity≤ n+1 and with Lebesgue
number L(U) > L.

A map ψ : X → K from a metric space to a simplicial complex is
uniformly cobounded if diam{ψ−1(σ)} is uniformly bounded, where σ runs
over all simplices in K. Any countable simplicial complex K can be realized
in `2 = `2(Z) by sending each vertex to an element of an orthonormal basis
for `2. The simplicial complex K is called a uniform simplicial complex if it
is endowed with the metric inherited from `2.

Projecting to the nerve of the cover in the second definition, one arrives
at the final definition of asdim.

Definition 3. asdimX ≤ n if for any (small) ε > 0 there is a uniformly
cobounded ε-Lipschitz map φ : X → K, where K is a uniform simplicial
complex of dimension ≤ n.

The equivalence of these three definitions was proved explicitly in [2].
The asymptotic inductive dimension, asInd, of the metric space X was

defined by the second author in [5] in order to establish connections between
asdimX and Ind νX, where νX is the Higson corona of X.

Let ϕ : X → R be a function defined on a metric space X. For every
x ∈ X and every r > 0 let Vr(x) = sup{|ϕ(y) − ϕ(x)| | y ∈ Nr(x)}, where
Nr(A) is the r-neighborhood of the set A. A function ϕ is called slowly
oscillating whenever for every r > 0 we have Vr(x) → 0 as x → ∞ (the
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latter means that for every ε > 0 there exists a compact subspace K ⊂ X
such that |Vr(x)| < ε for all x ∈ X \K). Let X be the compactification of X
that corresponds to the family of all continuous bounded slowly oscillating
functions. The Higson corona of X is the remainder νX = X \ X of this
compactification.

For any subset A of X we denote by A′ its trace on νX, i.e. the intersec-
tion of the closure of A in X with νX. Obviously, the set A′ coincides with
the Higson corona νA.

Let X be a proper metric space. A subset W ⊂ X is called an asymp-
totic neighborhood of a subset A ⊂ X if limr→∞ d(X \ Nr(x0),X \W ) =
∞. Two sets A,B in a metric space are called asymptotically disjoint if
limr→∞ d(A \Nr(x0), B \Nr(x0)) =∞. In other words, two sets are asymp-
totically disjoint if the traces A′, B′ on νX are disjoint.

A subset C of a metric space X is an asymptotic separator between
asymptotically disjoint subsets A1, A2 ⊂ X if the trace C ′ is a separator in
νX between A′1 and A′2. By the definition, asIndX = −1 if and only if X is
bounded. Suppose we have defined the class of all proper metric spaces Y
with asIndY ≤ n−1. Then asIndX ≤ n if and only if for any asymptotically
disjoint subsets A1, A2 ⊂ X there exists an asymptotic separator C between
A1 and A2 with asIndC ≤ n−1. The dimension function asInd is called the
asymptotic inductive dimension.

3. Previous results. We will use the following result ([6], [8]).

Theorem 1. For a proper metric space with bounded geometry X we
have the equality

asIndX = asdimX

provided asdimX <∞.

We also collect some results from [2] which we shall need.

Proposition 1. For every k and every ε > 0 there exists a number
ν = ν(ε, k) such that for every cover U of a metric space X of order ≤ k+ 1
with Lebesgue number L(U) > ν the canonical projection to the nerve, pU :
X → Nerve(U), is ε-Lipschitz.

Proposition 2. For every simplicial map f : X → Y the mapping
cylinder Mf admits a triangulation with the set of vertices equal to the dis-
joint union of vertices of X and Y .

Proposition 3. For every n there is a constant cn so that for any sim-
plicial map g : X → Y of an oriented n-dimensional simplicial complex X
the quotient map q : X× [0, 1]→Mg of the product X× [0, 1] to the mapping
cylinder Mg is cn-Lipschitz , where X and Mg are given the uniform metrics
and X × [0, 1] has the product metric.
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Proposition 4. Let A ⊂ W ⊂ X be subsets in a geodesic metric space
X such that the r-neighborhood Nr(A) is contained in W and let f : W→Y
be a continuous map to a metric space Y . Assume that the restrictions
f |Nr(A) and f |W\Nr(A) are ε-Lipschitz. Then f is ε-Lipschitz.

Lemma 1. Let A be a closed subset of a geodesic metric space X. Let
r > 8ε and let V and U be covers of the r-neighborhood Nr(A) by uni-
formly bounded open sets such that V has order ≤ n + 1, Nerve(V) is ori-
entable, and L(U) > b(V) > L(V) ≥ ν(ε/4cn, n), where cn is the constant
from Proposition 3. Then there is an ε-Lipschitz map f : Nr(A) → Mg

to the mapping cylinder , supplied with the uniform metric, of a simpli-
cial map g : Nerve(V) → Nerve(U) between the nerves such that f is
uniformly cobounded , f |∂Nr(A) = q(pV |∂Nr(A), 0), and f |A = pU |A, where
pU : Nr(A) → Nerve(U) and pV : Nr(A) → Nerve(V) are the canonical
projections to the nerves.

Lemma 2. Let Γ act by isometries on a tree X with compact quotient
such that for all vertices x ∈ X, the stabilizers Γx are finitely generated and
asdimΓx ≤ n. Let x0 ∈ X, and define π : Γ → X by π(γ) = γx0. Then, for
every R > 0, asdimπ−1(BR(x0)) ≤ n.

In [1] and [2] the set π−1(BR(x0)) was called the R-stabilizer of x0.

4. Asdim of a free product. A free product is one of the simplest
examples of a fundamental group of a graph of groups. According to the
Bass–Serre theory, the free product acts isometrically and co-compactly on
a tree. The tree and the action are well understood (see [3], [12]).

Proposition 5. Let Γ = A ∗ B. Let X denote the tree on which the
group Γ acts by isometries, and let π : Γ → X be defined by π(γ) = γA. Let
W and W ′ be disjoint bounded subsets of X. Then π−1(W ) and π−1(W ′)
are asymptotically disjoint.

Proof. First, we observe that if xA and yA are distinct vertices in X,
then x−1y 6∈ A, so dist(xa, ya′) = ‖a−1x−1ya′‖ ≥ ‖a‖+ ‖a′‖.

Let γ ∈ Γ. As W and W ′ are bounded in X, the set {xeA | x ∈W ∪W ′}
is also bounded. So, we may take r so large that Br/2(γ) ⊂ Γ contains {xeA |
x ∈W ∪W ′}. Then dist(π−1(W )\Br(γ), π−1(W ′)\Br(γ)) ≥ r/2+r/2 = r.
Thus, limr→∞ dist(π−1(W ) \Br(γ), π−1(W ′) \Br(γ)) =∞, as required.

Theorem 2. Let A and B be finitely generated groups with asdimA = n
and asdimB ≤ n. Then asdim(A ∗B) = max{n, 1}.

Proof. If n = 0 then take generators a ∈ A and b ∈ B and consider
{(ab)k}k∈N. This subset of A ∗ B forms an isometrically embedded copy
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of 2Z, and so asdim(A∗B) ≥ 1. On the other hand, it was shown in [2] that
asdim(A ∗B) ≤ 1 in this case. Hence, we conclude asdim(A ∗B) = 1.

It remains to consider the case where n ≥ 1. In any case, A ⊂ A ∗B, so
asdim(A ∗B) ≥ n. Thus, it only remains to show that asdim(A ∗B) ≤ n.

Fix a symmetric generating set S = S−1 for Γ. We abuse notation and
implicitly identify Γ with the metric space |Γ |S. We view Γ as the funda-
mental group of the segment of groups with vertex groups labeled A and B
and with edge labeled {1}. Let X be the Bass–Serre tree associated to this
graph of groups. Let x0 be a base-point in X and let π : Γ → X be given
by π(γ) = γx0, where γx0 denotes the natural isometric action of Γ on X.

Let λ = max{dX(x0, sx0) | s ∈ S}. Then π is λ-Lipschitz. Since the
metric on Γ is discrete geodesic, it suffices to check the Lipschitz condition
on pairs at distance 1 from each other. Any such pair is of the form (γ, γs),
where s ∈ S. Now,

dX(π(γ), π(γs)) = dX(γx0, γsx0) = dX(x0, sx0) ≤ λ.
Given ε > 0 we will construct an ε-Lipschitz, uniformly cobounded map

ψ : Γ → K, where K is a uniform simplicial complex of dimension n.
Let cn−1 denote the constant of uniformization (from Proposition 3) of the
product Ln−1× [0, 1], where Ln−1 is a uniform (n−1)-dimensional complex.
Let ν = ν(ε/4cn−1, n− 1) be as in Proposition 1, and let r > max{ν, 8/ε}.

LetW be a disjoint cover of Γx0 such that both the λr-enlargement and
the 2λr-enlargement are covers of multiplicity 2. Denote the enlargements
by Nλr(W) and N2λr(W), respectively. To see that such a cover (with cor-
responding enlargements) exists, take the standard cover of the tree by two
families of 3d-bounded, d-disjoint sets (see [11, p. 130], for example) with d
much larger than 2λr.

Since the sets in W are uniformly bounded there is an R > 0 such that
for every W ∈ W there is a γW ∈ Γ so that N2λr(W ) ⊂ BR(γWx0). Thus,

π−1(N2λr((W )) ⊂ π−1(BR(γWx0)).

But π−1(BR(γWx0)) is isometric to π−1(BR(x0)), the R-stabilizer. By Lem-
ma 2, asdimπ−1(BR(x0)) ≤ n. Hence, asdimπ−1(N2λr(W )) ≤ n for all
W ∈ W.

Suppose that W and W ′ are distinct sets in W whose λr-enlargements
have non-empty intersection, so that W and W ′ define an edge e in
Nerve(Nλr(W)). Since asdimπ−1(N2λr(W )) ≤ n for all W , and since
π−1(N2λr(W )) is a subset of the finitely generated group Γ, we apply Theo-
rem 1 cited in the previous section to conclude that asIndπ−1(N2λr(W )) ≤ n
for all W. In π−1(Nλr(W ) ∪ Nλr(W ′)), the sets π−1(W ) and π−1(W ′) are
asymptotically disjoint, by Proposition 5. Thus, there is an asymptotic sep-
arator Ae in π−1(Nλr(W )∪Nλr(W ′)) separating π−1(W ) and π−1(W ′) with
asIndAe ≤ n− 1. Hence, asdimAe ≤ n− 1.
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Since Nr(Ae) is coarsely equivalent to Ae, we have asdimNr(Ae) ≤ n−1.
Take Ve to be a uniformly bounded cover of Nr(Ae) with multiplicity ≤ n
and Lebesgue number L > r. Take UW to be a cover of π−1(N2λr(W )) by
uniformly bounded sets with multiplicity ≤ n + 1 and Lebesgue number
greater than b(Ve), where b(Ve) is an upper bound for the diameter of the
sets in Ve. Define a similar cover for π−1(N2λr(W ′)).

The conditions on the Lebesgue numbers and the fact that

Nr(Ae) ⊂ π−1(N2λr(W )) ∩ π−1(N2λr(W
′))

imply that there are simplicial maps gW : Nerve(Ve) → Nerve(UW ) and
gW ′ : Nerve(Ve) → Nerve(UW ′). Take Me,W and Me,W ′ to be the uniform
mapping cylinders of the maps gW and gW ′ , respectively.

As r > 8/ε, we may apply Lemma 1 to Ae ⊂ Γ and the covers to obtain
ε-Lipschitz maps fe,W : Nr(Ae) → Me,W and fe,W ′ : Nr(Ae) → Me,W ′ to
the uniform mapping cylinders.

For each W ∈ W, construct a uniformly cobounded ε-Lipschitz map
φW : π−1(N2λr(W ))→ KW to the uniform n-dimensional simplicial complex
KW by taking the natural projection to the nerve of VW . Such a mapping
exists since r > ν, by Proposition 1.

We note that theNr(Ae) are disjoint for distinct edges in the nerve. Thus,
for each W ∈ W define ψW : π−1(N2λr(W ))→ KW ∪

⋃
W∈eMe,W = LW to

the uniform complex LW , with mapping cylinders attached as the union of
the map φW restricted to π−1(N2λr(W )) \⋃W∈eNr(Ae) and the restrictions
of fe,W to Nr(Ae) ∩ π−1(N2λr(W )), for all edges e in Nerve(Nλr(W)) which
contain W as a vertex.

We construct K by gluing together the LW . Clearly, the dimension of
K is at most n. The maps ψW : Γ → K agree on the common parts Ae so
they define a map ψ : Γ → K. The map ψ is ε-Lipschitz by Proposition 4,
and uniformly cobounded by Lemma 1.
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