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On the uniqueness of the uncentered
ergodic maximal function
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Paul Alton Hagelstein (Waco, TX)

Abstract. It is shown that if two functions share the same uncentered (two-sided)
ergodic maximal function, then they are equal almost everywhere.

1. Introduction. Let (X,Σ, µ) be a measure space, and let T : X → X
be a measure-preserving ergodic transformation. For an integrable function
f ∈ L1(X), the associated ergodic one-sided maximal function is denoted
by f∗ and defined by

f∗(x) = sup
n

1
n

n−1∑

k=0

f(T kx), x ∈ X.

The uniqueness of the one-sided ergodic maximal function was recently
established by Lasha Ephremidze in [2]. In particular, Ephremidze proved
the following.

Theorem 1. (a) If µ(X) <∞, f and g are in L1(X), and f∗ = g∗ a.e.,
then f(x) = g(x) for a.e. x ∈ X.

(b) If (X,Σ, µ) is a σ-finite measure space, µ(X) = ∞, f and g are in
L1(X), and f∗ = g∗ a.e., then f = g a.e. on {x ∈ X : f∗(x) > 0}.

In order to obtain these results, Ephremidze proved a uniqueness theorem
for the one-sided discrete Hardy–Littlewood maximal operator M1, defined
on L1(Z) by

M1f(n) = sup
n≤m

1
m− n+ 1

m∑

k=n

|f(k)|.

In particular, he proved the following:
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Proposition 2. If f and g are nonnegative functions in L1(Z) and
M1f = M1g, then f = g.

Ephremidze’s proof of this proposition is quite involved and in fact en-
tails many of the primary difficulties in his proof of Theorem 1. Also, the
techniques involved in his proof take strong advantage of the fact that M1 is
a one-sided maximal operator and do not carry over to yield similar unique-
ness results for the two-sided or uncentered discrete Hardy–Littlewood max-
imal operator.

The purpose of this paper is to prove the uniqueness of the uncentered
discrete Hardy–Littlewood maximal function and as a corollary of the proof
obtain the uniqueness of the uncentered ergodic maximal function on spaces
of finite measure. Moreover we will prove that two nonnegative integrable
functions on a space of infinite measure which share the same uncentered
ergodic maximal function must be equal almost everywhere.

We close the introduction by remarking that Roger Jones has very re-
cently in [3] provided an alternative proof of Theorem 1 utilizing techniques
involving the Kakutani skyscraper construction. His results, however, apply
only for one-sided and not two-sided ergodic maximal functions.

2. Uniqueness of the uncentered discrete maximal function

Definition 3. If f is a real-valued function on Z, the uncentered (or
two-sided) discrete Hardy–Littlewood maximal function of f is denoted by
Mf and defined by

Mf(n) = sup
j≤n≤k

1
k − j + 1

k∑

i=j

|f(i)|.

Our primary purpose in this section is to prove the following proposition.

Proposition 4. If f and g are nonnegative functions in Lp(Z) for some
p in [1,∞) and Mf = Mg, then f = g.

Before beginning the proof we remark that the above result does not
hold for p = ∞. For example, if f = χZ and g = χN, then Mf = Mg ≡ 1
although f 6= g.

Proof. It suffices to show that a nonnegative function f ∈ Lp(Z) is
uniquely determined by its maximal function Mf .

Note that for a nonnegative function f , Mf is identically 0 if and only
if f is identically 0.

Suppose Mf is not identically 0. We will inductively define a sequence
{aj} of positive real numbers, a corresponding sequence {E(aj)} of sets in Z,
and a corresponding sequence {Ij,k} of intervals in Z. Let a1 = sup{Mf(n) :
n ∈ Z}. Note that 0 < a1 = ‖f‖∞ ≤ ‖f‖p. Let E(a1) = {n ∈ Z : Mf(n)
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= a1} = {n ∈ Z : f(n) = a1}. Let a2 = sup{Mf(n) : n ∈ Z and n 6∈ E(a1)}.
Let E(a2) = {n ∈ Z : Mf(n) = a2}. Note that a2 > 0 as Mf never takes on
the value 0, and also that a2 < a1 since by Chebyshev’s inequality and the
weak type (p, p) boundedness of M we have |{n ∈ Z : Mf(x) > a2/2}| <∞.
(|·| here denotes the standard counting measure on Z.) Note that since there
are only finitely many integers n such thatMf(n) > a2/2,Mf actually takes
on the value a2.

Suppose a1 > a2 > · · · > ak have been determined, as well as the
associated sets E(a1), . . . , E(ak). Let

ak+1 = sup{Mf(n) : n ∈ Z and Mf(n) < ak}.
As before, we have 0 < ak+1 < ak, and we define E(ak+1) by

E(ak+1) = {n ∈ Z : Mf(n) = ak+1} .
So by induction the sequences of positive real numbers aj and sets E(aj) in
Z are determined.

Now, if p ∈ E(ak), then there exists an interval Ip containing p (i.e. a
set in Z of the form {p− j, p− j+ 1, . . . , p− 1, p, p+ 1, . . . , p+ k}) such that

1
|Ip|

∑

j∈Ip
f(j) = ak.

If several choices for Ip are available, we choose one such that Ip contains
as few points as possible.

We label the points of E(ak) as pk,1, pk,2, . . . , pk,|E(ak)|, and we let Ij,k
= Ipj,k .

We now successively find the values of f at p1,1, p1,2, . . . , p1,|E(a1)|, p2,1,
. . . , p2,|E(a2)|, p3,1, . . . .

As we have previously noted, since f ∈ Lp(Z) and a1 = ‖f‖∞, if
Mf(p) = a1 then f(p) = a1. Hence f(p1,1), f(p1,2), . . . , f(p1,|E(a1)|) all
equal a1.

Before we find the values f(p2,i), we prove the following useful claim
regarding how the sets Ij,k are positioned with respect toE(a1)∪· · ·∪E(aj−1)
and the points in E(aj).

Claim 5.

Ij,k ⊂
j−1⋃

i=1

E(ai) ∪ {pj,k}.

In particular , Ij,k does not intersect
⋃
i>j E(ai), nor does it contain any

point pj,l where l 6= k.

Proof. For our notational convenience, if I is an interval {r, r + 1, . . . ,
r + s} in Z, we let `(I) = r and r(I) = r + s.
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Now, we recall that by the definitions of Ij,k and pj,k, we have pj,k ∈ Ij,k,
Mf(pj,k) = aj , |Ij,k|−1∑

i∈Ij,k f(i) = aj , and that if I is an interval in Z
containing pj,k of size smaller than that of Ij,k then the average of f over I
is less than aj .

Now, if p ∈ Ij,k, then Mf(p) ≥ aj automatically holds, and so p ∈
E(a1) ∪ · · · ∪E(aj).

So it suffices to show that if l 6= k, then pj,l 6∈ Ij,k. This is seen by
contradiction. Suppose Ij,k did contain a point pj,l in E(aj) where l 6= k.
We assume without loss of generality that pj,k < pj,l. We then consider
the interval {pj,l, pj,l + 1, . . . , r(Ij,k)}. The average of f over this interval
cannot be less than or equal to aj , since otherwise the average of f over
{`(Ij,k), . . . , pj,l − 1} would be greater than or equal to aj , contradicting
either the fact that Mf(pj,k) = aj or the minimality condition on the size
of Ij,k. So the average of f over {pj,l, pj,l + 1, . . . , r(Ij,k)} must exceed aj .
But then pj,l ∈

⋃j−1
i=1 E(ai), and so pj,l 6∈ E(aj).

We are now in a position to find the values f(p2,1), . . . , f(p2,|E(a2)|). We
have p2,j ∈ I2,j and I2,j ⊂ E(a1) ∪ {p2,j}. As

Mf(p2,j) =
1
|I2,j|

[
f(p2,j) +

∑

n∈I2,j\{p2,j}
f(n)

]

and all the values of f(n) are known for n ∈ I2,j\{p2,j}, we see that f(p2,j)
is uniquely determined by Mf(p2,j).

We proceed by induction. Suppose f(p1,1), . . . , f(p1,|E(a1)|), f(p2,1), . . . ,
f(p2,|E(a2)|), . . . , f(pN,1), . . . , f(pN,|E(aN )|) have been determined. We now
find f(pN+1,1), . . . , f(pN+1,|E(aN+1)|). Well, for j ∈ {1, . . . , |E(aN+1)|} we
have

IpN+1,j ⊂ E(a1) ∪ · · · ∪ E(aN ) ∪ {pN+1,j}.
As

Mf(pN+1,j) =
1

|IN+1,j |
[
f(pN+1,j) +

∑

n∈IN+1,j\{pN+1,j}
f(n)

]

and all the values of f(n) are (by induction) known for n ∈ IN+1,j\{pN+1,j},
we see that f(pN+1,j) is uniquely determined.

In this manner we realize that the values of f(n) are known if n ∈⋃∞
i=1E(ai). As Mf(n) > 0 for all n and ai → 0 since Mf is in weak Lp(Z),

we deduce that each integer n lies in E(ai) for some i. Hence Mf uniquely
determines f .

One technical point we must deal with is that the uncentered ergodic
maximal operator allows for cancellation, whereas the uncentered discrete
Hardy–Littlewood maximal operator does not. Accordingly we define an as-
sociated discrete maximal operator that does allow for cancellation and for
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this operator provide a suitable uniqueness result which will in turn read-
ily yield the desired uniqueness result for the uncentered ergodic maximal
operator.

Definition 6. If f is a function on Z, the associated discrete uncentered
(two-sided) maximal function of f is denoted by M̃f and defined by

M̃f(n) = sup
j≤n≤k

1
k − j + 1

k∑

i=j

f(i).

We note that if f and g are in L1(Z) and M̃(f) = M̃(g), it does not
necessarily follow that f = g. For example, letting f = −χ{0} and g ≡ 0, we

have M̃f = M̃g ≡ 0, although f 6= g. We do have, however, the following
uniqueness result.

Proposition 7. Let f : Z→ R be such that for each x ∈ Z,

M̃f(x) =
1

k − j + 1

k∑

n=j

f(n)

for some j ≤ x ≤ k. Then M̃f uniquely determines f .

Proof. Let p ∈ Z. Let Ip be an interval containing p such that

M̃f(p) =
1
|Ip|

∑

n∈Ip
f(n).

Now, if q ∈ Ip then there exists an interval Ip,q containing q and contained
in Ip such that

M̃f(q) =
1
|Ip,q|

∑

n∈Ip,q
f(n).

This is easily seen by contradiction. Suppose such an interval Ip,q did not
exist. Let J be an interval containing q such that

M̃f(q) =
1
|J |
∑

n∈J
f(n).

Now, M̃f(q) > M̃f(p) as J could not be Ip itself. Assume without loss
of generality that r(J) > r(Ip) and `(J) ∈ Ip. Note that the average of
f over {r(Ip) + 1, . . . , r(J)} exceeds M̃f(q) and hence M̃f(p). But then
the average of f over {`(Ip), . . . , r(J)} exceeds M̃f(p), contradicting the
definition of M̃f(p).

Note that the proof of Proposition 4 now readily carries over to this
situation to uniquely determine f on Ip from M̃f . The only modification
necessary is that the use of the Chebyshev inequality and the weak type
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boundedness ofM is replaced by the knowledge that, given a point p ∈ Z and
associated interval Ip as above, there are only a finite number of averages of
f over intervals contained in Ip. Hence a finite sequence a1 > a2 > · · · > akp
of all the values of M̃f over Ip may be obtained, as well as the associated
sets E(ak) in Ip. The rest of the proof follows as before, taking advantage
of the fact that for all x ∈ Ip the intervals Ix may be chosen to be contained
in Ip.

So, if x ∈ Z, let Ix be the interval in Z containing x such that

M̃f(x) =
1
|Ix|

∑

n∈Ix
f(n).

As we can reconstruct f from M̃f on Ix, we can in particular find f(x).
Hence f is uniquely determined from M̃f .

3. Uniqueness of the uncentered ergodic maximal function. Let
(X,Σ, µ) be a measure space, and let T : X → X be a measure-preserving
ergodic transformation. For an integrable function f ∈ L1(X), the associated
uncentered (or two-sided) ergodic maximal function is denoted by f̃ and
defined by

f̃(x) = sup
j≤0≤k

1
k − j + 1

k∑

i=j

f(T ix), x ∈ X.

As in the one-sided case, the uniqueness of the uncentered ergodic maxi-
mal function depends on the measure of X itself. If X has finite µ-measure,
we obtain a positive result:

Theorem 8. If µ(X) <∞, f and g are in L1(X), and f̃ = g̃ a.e., then
f(x) = g(x) for a.e. x ∈ X.

Proof. We will use the following result of Ephremidze:

Lemma 9 ([2]). Let T be a measure preserving ergodic transformation of
a finite measure space (X,Σ, µ) and let

�
X h dµ = 0. Then µ(E) = 0, where

E =
{
x ∈ X :

n∑

k=0

h(T kx) < 0 for all n ≥ 0
}
.

We will also need the following lemma:

Lemma 10. Let h ∈ L1(X) and let

Fh =
{
x ∈ X : h̃(x) =

1
k − j + 1

k∑

i=j

h(T ix) for some j ≤ 0 ≤ k
}
.(1)
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Then µ(Fh) = µ(X), and consequently

µ({x ∈ X : Tnx ∈ Fh for all n ∈ Z}) = µ(X).(2)

Proof. Note that the pointwise ergodic theorem (see, e.g., [5]) tells us
that

lim
N→∞

1
N

N−1∑

k=0

h(T kx) =
1

µ(X)

�

X

h dµ ≡ λ0

for a.e. x ∈ X. So µ({x ∈ X : h̃(x) ≥ λ0}) = µ(X). Now, (h−λ0)̃ = h̃−λ0.
If

k∑

i=j

(h− λ0)(T ix) < 0

for all j ≤ 0 ≤ k, then
∑n

i=0(h−λ0)(T ix) < 0 for all n ≥ 0, which only occurs
on a set of measure zero by Lemma 9 and the fact that

�
X(h− λ0) dµ = 0.

So then a.e. x ∈ {z ∈ X : h̃(z) ≥ λ0} belongs to Fh. Hence (1) holds.
As

{x ∈ X : Tnx ∈ Fh for all n ∈ Z} =
∞⋂

n=−∞
T−n(Fj),

(2) holds as well.

Note that by Lemma 10 the set G ⊂ X defined by

G =
⋃

n∈Z
T−n({z ∈ X : f̃(z) 6= g̃(z)} ∪ F c

f ∪ F c
g )

is of measure zero. So if x 6∈ G, setting

αx(n) = f(Tnx), βx(n) = g(Tnx)

by Proposition 7 we have

f(x) = αx(0) = βx(0) = g(x).

So f(x) = g(x) almost everywhere on X.

We now consider the case where µ(X) =∞. Uniqueness in general does
not hold in this case. For example, if X = Z and T (x) = x + 1, by letting
f(n) = −χ{0}(n) and g(n) ≡ 0, we have f̃ = g̃ = 0 although f 6= g. We do
have the following uniqueness result, however:

Theorem 11. Let T be a measure preserving ergodic transformation of
a σ-finite measure space (X,Σ, µ), where µ(X) = ∞. If f, g ∈ L1(X) and
f̃ = g̃ a.e. on X, then f = g a.e. on {x ∈ X : f̃(x) > 0}.

Proof. We will need the following result of Ephremidze:
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Lemma 12 ([2]). Let T be a measure preserving ergodic transformation
of a σ-finite measure space (X,Σ, µ). If µ(Q0) <∞ and Qc

0 = X\Q0, then

µ
(
Q0 \

∞⋃

m=−∞
T−m(Qc

0)
)

= 0.

It suffices to show that f is uniquely determined almost everywhere on
{x ∈ X : f̃(x) > 0} from f̃ . Now, by the maximal ergodic theorem (see,
e.g., [4]), for each λ > 0 we have

µ({x ∈ X : f̃(x) > λ}) <∞.
Hence by Lemma 12 we have

µ
(
{x ∈ X : f̃(x) > λ} \

∞⋃

m=−∞
T−m{x ∈ X : f̃(x) ≤ λ}

)
= 0.

So for a.e. x in {x ∈ X : f̃(x) > λ} there exists m = m(x) such that
f̃(Tmx) ≤ λ < f̃(x). As λ > 0 is arbitrary, it follows that for a.e. x in
{x ∈ X : f̃(x) > 0} there exists m = m(x) such that f̃(Tm(x)) < f̃(x).

It suffices then to show that if f̃(x) > 0 and f̃(Tmx) < f̃(x) for some
m = m(x), then f(x) may be determined uniquely from M̃f . For notational
convenience, let

α(n) = f(Tnx), α̃(n) = f̃(Tnx).

It is enough to show that f(x) = α(0) may be uniquely determined from
α̃(n), n ∈ Z. To do this, we first show that there exists a finite interval I in
Z containing 0 such that

M̃α(0) =
1
|I|
∑

i∈I
f(i).

This is seen by contradiction. Suppose such an interval I did not exist.
Then there would exist a sequence {Ij} of intervals containing 0 such that
limj→∞ |Ij | =∞ and

lim
j→∞

1
|Ij|

∑

i∈Ij
f(i) = M̃α(0).

Note that these intervals may be chosen such that none contain the point
m ∈ Z. Without loss of generality we assume m > 0. But then

lim
j→∞

1
m− `(Ij) + 1

m∑

i=`(Ij)
f(i) = M̃α(0),

implying that α̃(m) ≥ α̃(0), contradicting the fact that f̃(Tmx) < f̃(x).
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So there does exist a finite interval I ⊂ Z containing 0 such that

M̃α(0) =
1
|I|
∑

i∈I
f(i).

Note that if j ∈ I, then there exists an interval Ij ⊂ I containing j such
that

M̃α(j) =
1
|Ij |

∑

i∈Ij
f(i).

This is seen by contradiction. Clearly M̃α(j) ≥ M̃α(0) as j ∈ I. So if the
desired interval Ij ⊂ I could not be found, there would exist an interval I ′j
containing j such that

1
|I ′j |

∑

i∈I′j

f(i) > M̃α(0).

We assume without loss of generality that `(I ′j) < `(I). But then

1
`(I)− `(I ′j)

`(I)−1∑

i=`(I′j)
f(i) ≥ M̃α(j) > M̃α(0),

and hence
1

r(I)− `(I ′j) + 1

r(I)∑

i=`(I′j)
f(i) > M̃α(0),

contradicting the definition of M̃α(0).
So if j ∈ I there exists an interval Ij ⊂ I containing j such that

M̃α(j) =
1
|Ij |

∑

i∈Ij
f(i).

As this implies that
(M̃α)χI = (M̃(αχI))χI ,

we then conclude by Proposition 7 that for n ∈ I, α(n) is uniquely deter-
mined by M̃α. As of course 0 ∈ I, the desired result follows.

Corollary 13. Let T be a measure preserving ergodic transformation
of a σ-finite measure space (X,Σ, µ) with µ(X) =∞. If f and g are nonneg-
ative functions in L1(X) and f̃ = g̃ almost everywhere, then f = g almost
everywhere.

Proof. f = g a.e. on {x ∈ X : f̃(x) > 0} = {x ∈ X : g̃(x) > 0} by the
above theorem. Since f and g are nonnegative, f and g are identically zero
on {x ∈ X : f̃(x) = 0} = {x ∈ X : g̃(x) = 0}. As X = {x ∈ X : f̃(x) > 0}
∪ {x ∈ X : f̃(x) = 0} because f is nonnegative, the result follows.
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