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On the entropy for group actions on the circle

by

Eduardo Jorquera (Santiago)

Abstract. We show that for a finitely generated group of C2 circle diffeomorphisms,
the entropy of the action equals the entropy of the restriction of the action to the non-
wandering set.

1. Introduction. Let (X,dist) be a compact metric space and G a
group of homeomorphisms of X generated by a finite family of elements
Γ = {g1, . . . , gn}. To simplify, we will always assume that Γ is symmetric,
that is, g−1 ∈ Γ for every g ∈ Γ . For each n ∈ N we denote by BΓ (n)
the ball of radius n in G (with respect to Γ ), that is, the set of elements
f ∈ G which may be written in the form f = gim · · · gi1 for some m ≤ n and
gij ∈ Γ . For g ∈ G we let ‖f‖ = ‖f‖Γ = min{n : f ∈ BΓ (n)}

As in the classical case, given ε > 0 and n ∈ N, two points x, y in X are
said to be (n, ε)-separated if there exists g ∈ BΓ (n) such that dist(g(x), g(y))
≥ ε. A subset A ⊂ X is (n, ε)-separated if all x 6= y in A are (n, ε)-separated.
We denote by s(n, ε) the maximal possible cardinality (perhaps infinite) of
an (n, ε)-separated set. The topological entropy of the action at the scale ε
is defined by

hΓ (G � X, ε) = lim sup
n↑∞

log(s(n, ε))
n

,

and the topological entropy is defined by

hΓ (G � X) = lim
ε↓0

hΓ (G � X, ε).

Notice that, although hΓ (G � X, ε) depends on the system of generators,
the properties of having zero, positive, or infinite entropy are independent
of this choice.

The definition above was proposed in [5] as an extension of the classical
topological entropy of single maps (the definition extends to pseudo-groups
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of homeomorphisms, and hence is suitable for applications in foliation the-
ory). Indeed, for a homeomorphism f , the topological entropy of the action
of Z ∼ 〈f〉 equals twice the (classical) topological entropy of f . Neverthe-
less, the functorial properties of this notion remain unclear. For example,
the following fundamental question is open.

General Question. Is it true that hΓ (G � X) is equal to hΓ (G � Ω)?

Here Ω = Ω (G � X) denotes the non-wandering set of the action, or in
other words

Ω = {x ∈ X : for every neighborhood U of x, we have
f(U) ∩ U 6= ∅ for some f 6= id in G}.

This is a closed invariant set whose complement Ωc corresponds to the
wandering set of the action.

The notion of topological entropy for group actions is quite appropriate
in the case where X is a one-dimensional manifold. In fact, in this case,
the topological entropy is necessarily finite (cf. §2). Moreover, in the case of
actions by diffeomorphisms, the dichotomy htop = 0 or htop > 0 is well un-
derstood. Indeed, according to a result originally proved by Ghys, Langevin,
and Walczak, for groups of C2 diffeomorphisms [5], and extended by Hurder
to groups of C1 diffeomorphisms (see for instance [9]), we have htop > 0 if and
only if there exists a resilient orbit for the action. This means that there ex-
ists a group element f contracting an interval towards a fixed point x0 inside,
and another element g which sends x0 into its basin of contraction under f .

The results of this work give a positive answer to the General Question
above in the context of group actions on one-dimensional manifolds under
certain mild assumptions.

Theorem A. If G is a finitely generated subgroup of Diff2
+(S1), then

for every finite system of generators Γ of G, we have

hΓ (G � S1) = hΓ (G � Ω).

Our proof for Theorem A actually works in the Denjoy class C1+bv, and
applies to general codimension-one foliations on compact manifolds. In the
class C1+Lip, it is quite possible that we could give an alternative proof using
standard techniques from level theory [2, 6].

It is unclear whether Theorem A extends to actions of lower regularity.
However, it still holds under certain algebraic hypotheses. In fact (quite
unexpectedly), the regularity hypothesis is used to rule out the existence of
elements f ∈ G that fix some connected component of the wandering set
and which are distorted, that is,

lim
n→∞

‖fn‖
n

= 0.
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Actually, for the equality between the entropies it suffices to require that
no elememt in G be subexponentially distorted. In other words, it suffices
to require that, for each element f ∈ G with infinite order, there exist a
non-decreasing function q : N → N (depending on f) with subexponential
growth satisfying q(‖fn‖) ≥ n for every n ∈ N. This is an algebraic condition
which is satisfied by many groups, for example nilpotent or free groups. (We
refer the reader to [1] for a nice discussion of distorted elements.) Under this
hypothesis, the following result holds.

Theorem B. If G is a finitely generated subgroup of Homeo+(S1) with-
out subexponentially distorted elements, then for every finite system of gen-
erators Γ of G, we have

hΓ (G � S1) = hΓ (G � Ω).

The entropy of general group actions and distorted elements seem to be
related in an interesting manner. Indeed, though the topological entropy of
a single homeomorphism f may be equal to zero, if this map appears as
a subexponentially distorted element inside an acting group, then it may
create positive entropy for the group action.

2. Some background. In this work we will consider the normalized
length on the circle, and every homeomorphism will be orientation preserv-
ing.

We begin by noticing that if G is a finitely generated group of circle
homeomorphisms and Γ is a finite generating system for G, then for all
n ∈ N and all ε > 0 one has

(1) s(n, ε) ≤ 1
ε

#BΓ (n).

Indeed, let A be an (n, ε)-separated set of cardinality s(n, ε). Then for any
two adjacent points x, y in A there exists f ∈BΓ (n) such that dist(f(x), f(y))
≥ ε. For a fixed f , the intervals [f(x), f(y)] which appear have disjoint
interiors. Since the total length of the circle is 1, any given f can be used in
this construction at most 1/ε times, which immediately gives (1).

Notice that, taking the logarithm on both sides of (1), dividing by n,
and passing to the limit gives

hΓ (G � S1) ≤ grΓ (G),

where grΓ (G) denotes the growth of G with respect to Γ , that is,

grΓ (G) = lim
n→∞

log(#BΓ (n))
n

.

Some easy consequences of this fact are the following:



180 E. Jorquera

• If G has subexponential growth, that is, if grΓ (G) = 0 (in particular, if
G is nilpotent, or if G is the Grigorchuk–Maki group considered in [8]),
then hΓ (G � S1) = 0 for all finite generating systems Γ .
• In the general case, if #Γ = q ≥ 1, then from the relations

#BΓ (n) ≤ 1+
n∑
j=1

2q(2q−1)j−1 =

{
1 +

q

q−1
((2q − 1)n− 1), q ≥ 2,

1 + 2n, q = 1,
one concludes that

hΓ (G � S1) ≤ log(2q − 1).

This shows in particular that the entropy of the action of G on S1

is finite. Notice that this may also be deduced from the probabilistic
arguments of [3] (see Théorème D therein). However, these arguments
only yield the weaker estimate hΓ (G � S1) ≤ log(2q) when Γ has
cardinality q.

3. Some preparations for the proofs. The statements of our results
are obvious when the non-wandering set of the action equals the whole circle.
Hence, we will assume in what follows that Ω is a proper subset of S1, and
we will denote by I a connected component of the complement of Ω. Let
St(I) denote the stabilizer of I in G.

Lemma 1. The stabilizer St(I) is either trivial or infinite cyclic.

Proof. The (restrictions to I of the) non-trivial elements of St(I)|I have
no fixed points, for otherwise these points would be non-wandering. Thus
St(I)|I acts freely on I, and according to Hölder’s Theorem [4, 7], its action
is semiconjugate to an action by translations. We claim that if St(I)|I is non-
trivial, then it is infinite cyclic. Indeed, if not then the corresponding group
of translations is dense. This implies that the preimage by the semiconjugacy
of any point whose preimage is a single point corresponds to a non-wandering
point for the action. But this contradicts the fact that I is contained in Ωc.

If St(I)|I is trivial then f |I is trivial for every f ∈ St(I), and hence f
itself must be the identity. We then conclude that St(I) is trivial.

Analogously, St(I) is cyclic if St(I)|I is cyclic. In this case, St(I)|I is
generated by the restriction to the interval I of the generator of St(I).

Definition 1. A connected component I of Ωc will be called of type 1
if St(I) is trivial, and of type 2 if St(I) is infinite cyclic.

Notice that the families of connected components of type 1 and 2 are
invariant, that is, for each f ∈ G the interval f(I) is of type 1 (resp. of
type 2) if I is of type 1 (resp. of type 2). Moreover, given two connected
components of type 1 of Ωc, there exists at most one element in G sending
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the former to the latter. Indeed, if f(I) = g(I) then g−1f is in the stabilizer
of I, and hence f = g if I is of type 1.

Lemma 2. Let x1, . . . , xm be points contained in a single type 1 con-
nected component of Ωc. If for some ε > 0 the points xi, xj are (ε, n)-
separated for every i 6= j, then m ≤ 1 + 1/ε.

Proof. Let I = ]a, b[ be the connected component of type 1 of Ωc con-
taining the points x1, . . . , xm. After renumbering the xi’s, we may assume
that a < x1 < · · · < xm < b. For each 1 ≤ i ≤ m − 1 one can choose an
element gi ∈ BΓ (n) such that dist(gi(xi), gi(xi+1)) ≥ ε. Now, since I is of
type 1, the intervals ]gi(xi), gi(xi+1)[ are pairwise disjoint. Therefore, the
number of these intervals times their minimal length is less than or equal
to 1. This gives (m− 1)ε ≤ 1, thus proving the lemma.

The case of connected components I of type 2 of Ωc is much more compli-
cated. The difficulty is that if the generator of the stabilizer of I is subexpo-
nentially distorted inG, then there exist exponentially many (n, ε)-separated
points inside I, and hence a relevant part of the entropy is “concentrated”
in I. To deal with this problem, for each connected component I of type 2
of Ωc we denote by pI its middle point, and then we define `I : G→ N0 as
follows. Let h be the generator of the stabilizer of I such that h(x) > x for
all x in I. For each f ∈ G the element fhf−1 is the generator of the stabi-
lizer of f(I) with the analogous property. We then let `I(f) = |r|, where r
is the unique integer such that

fhrf−1(pf(I)) ≤ f(pI) < fhr+1f−1(pf(I)).

Lemma 3. For all f, g in G one has

`I(g ◦ f) ≤ `f(I)(g) + `I(f) + 1.

Proof. Let r be the unique integer such that

(2) (fhf−1)r(pf(I)) ≤ f(pI) < (fhf−1)r+1(pf(I)),

and let s be the unique integer for which

(gfhf−1g−1)s(pgf(I)) ≤ g(pf(I)) < (gfhf−1g−1)s+1(pgf(I)),

so that
`I(f) = |r|, `f(I)(g) = |s|.

We then have

g−1(gfhf−1g−1)s(pgf(I)) ≤ pf(I) < g−1(gfhf−1g−1)s+1(pgf(I)),

that is,

(fhf−1)sg−1(pgf(I)) ≤ pf(I) < (fhf−1)s+1g−1(pgf(I)).
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Therefore,

(fhf−1)r(fhf−1)sg−1(pgf(I)) ≤ f(pI) < (fhf−1)r+1(fhf−1)s+1g−1(pgf(I)),

and hence

(fhf−1)r+sg−1(pgf(I)) ≤ f(pI) < (fhf−1)r+s+2g−1(pgf(I)).

This easily gives

g(fhf−1)r+sg−1(pgf(I)) ≤ gf(pI) < g(fhf−1)r+s+2g−1(pgf(I)),

and thus

(gfhf−1g−1)r+s(pgf(I)) ≤ gf(pI) < (gfhf−1g−1)r+s+2(pgf(I)).

This shows that `I(gf) equals either |r + s| or |r + s+ 1|, which concludes
the proof.

The following corollary is a direct consequence of the preceding lemma,
but may be proved independently.

Corollary 1. For every f ∈ G one has

|`I(f)− `f(I)(f
−1)| ≤ 1.

Proof. From (2) one obtains

h−(r+1)(pI) < f−1(pf(I)) ≤ h−r(pI) < h−r+1(pI),

and hence `f(I)(f−1) equals either |r| or |r + 1|. Since `I(f) = |r|, the
corollary follows.

4. The proof in the smooth case. To rule out the possibility of
“concentration” of the entropy on a type 2 connected component I of Ωc,
in the C2 case we will use classical control of distortion arguments in order
to construct, starting from the function `I , a kind of quasi-morphism from
G into N0. Slightly more generally, let F be any finite family of connected
components of type 2 of Ωc. We denote by FG the family of all intervals
contained in the orbits of the intervals in F . For each f ∈ G we then define

`F (f) = sup
I∈FG

`I(f).

A priori, the value of `F could be infinite. We claim, however, that, for
groups of C2 diffeomorphisms, this value is necessarily finite for every ele-
ment f .

Proposition 1. For every finite family F of type 2 connected compo-
nents of Ωc, the value of `F (f) is finite for each f ∈ G.

To prove this proposition, we will need to estimate the function `I(f) in
terms of the distortion of f on the interval I.
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Lemma 4. For each fixed type 2 connected component I of Ωc and every
g ∈ G, the value of `I(g) is bounded from above by a number L(V ) depending
on V = var(log(g′|I)), the total variation of the logarithm of the derivative
of the restriction of g to I.

Proof. Write I = ]a, b[ and g(I) = ]ā, b̄[. If h is a generator for the sta-
bilizer of I, then for every f ∈ G the value of `I(f) corresponds (up to
some constant ±1) to the number of fundamental domains for the dynamics
of fhf−1 on f(I) between the points pf(I) and f(pI), which in turn cor-
responds to the number of fundamental domains for the dynamics of h on
I between f−1(pf(I)) and pI . Therefore, we need to show that there exist
c < d in ]a, b[ depending on V and such that g−1(pg(I)) belongs to [c, d]. We
will show that this happens for the values

c = a+
|I|

2eV
and d = b− |I|

2eV
.

We will just check that the first choice works, leaving the second one to the
reader. By the Mean Value Theorem, there exist x ∈ g(I) and y ∈ [ā, pg(I)]
such that

(g−1)′(x) =
|I|
|g(I)|

and

(g−1)′(y) =
|g−1([ā, pf(I)])|
|[ā, pg(I)]|

=
g−1(pg(I))− a
|g(I)|/2

.

By the definition of the constant V , we have (g−1)′(x)/(g−1)′(y) ≤ eV . This
gives

eV ≥ |I|/|g(I)|
2(g−1(pg(I))− a)/|g(I)|

=
|I|

2(g−1(pg(I))− a)
,

thus proving that g−1(pg(I)) ≥ a+ |I|/2eV , as we wanted to show.

Proof of Proposition 1. Let J = ]ā, b̄[ be an interval in the G-orbit of
I = ]a, b[. If g = gin · · · gi1 , gij ∈ Γ , is an element of minimal length send-
ing I to J , then the intervals I, gi1(I), gi2gi1(I), . . . , gin−1 · · · gi2gi1(I) have
pairwise disjoint interiors. Therefore,

var(log(g′|I)) ≤
n−1∑
j=0

var(log(g′ij+1
|gij
···gi1

(I)) ≤
∑
h∈Γ

var(log(h′)) =: W.

Moreover, setting V = var(log(f ′)), we have

var(log((fg)′|I)) ≤ var(log(g′|I)) + var(log(f ′)) = W + V.
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By Lemmas 3 and 4 and Corollary 1,

`J(f) ≤ `J(g−1) + `I(fg) + 1 ≤ `I(g) + `I(fg) + 2
≤ L(W ) + L(W + V ) + 2.

This proves the assertion of the proposition when F consists of a single
interval. The case of general finite F follows easily.

For a given ε > 0 we define `ε = `Fε , where Fε = {I1, . . . , Ik} is the
family of all connected components of Ωc having length greater than or
equal to ε, with k = k(ε). Notice that, by Lemma 3, for every f, g in Γ one
has

(3) `ε(gf) ≤ `ε(g) + `ε(f) + 1.

Lemma 5. There exist constants A(ε) > 0 and B(ε) with the following
property : If x1, . . . , xm are points in a single connected component of type 2
of Ωc and xi, xj are (ε, n)-separated for every i 6= j, then m ≤ A(ε)n+B(ε).

Proof. Write cε = max{`ε(g) : g ∈ Γ} (according to Proposition 1,
the value of cε is finite). Let I be the type 2 connected component of Ωc

containing x1, . . . , xm. We may assume that x1 < · · · < xm. For each 1 ≤
i ≤ k let hi be the generator of St(Ii). Notice that `ε(hri ) ≥ |r| for all r ∈ Z.

If f is an element in BΓ (n) sending I to some Ii, then the number of
points which are ε-separated by f is less than or equal to 1/ε+ 1. We claim
that the number of elements in BΓ (n) sending I to Ii is bounded above
by 4ncε + 4n − 1. Indeed, if g also sends I onto Ii then gf−1 ∈ St(Ii),
hence gf−1 = hri some r. Therefore, using (3) one obtains |r|≤ `ε(hri ) ≤
2ncε + 2n− 1.

Since the previous arguments apply to each type 2 interval Ii, we have

m ≤ k(1/ε+ 1)(4ncε + 4n− 1).

Therefore, letting

A(ε) = (4k + 4k/ε)(1 + cε) and B(ε) = −(k + k/ε)

concludes the proof.

To conclude the proof of Theorem A, the following notation will be useful.

Notation 1. Given ε > 0 and n ∈ N, we denote by s(n, ε) the largest
cardinality of an (n, ε)-separated subset of S1. Likewise, sΩ(n, ε) will de-
note the largest cardinality of an (n, ε)-separated set contained in the non-
wandering set.

Proof of Theorem A. Fix 0 < ε < 1/2L, where L is a common Lipschitz
constant for the elements in Γ . We will show that, for some function pε
growing linearly in n (and whose coefficients depend on ε), one has

(4) s(n, ε) ≤ pε(n)sΩ(n, ε) + pε(n).
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Actually, any function pε with subexponential growth and satisfying such
an inequality suffices. Indeed, taking the logarithm of both sides, dividing
by n, and passing to the limit implies that

hΓ (G � S1, ε) = hΓ (G � Ω, ε).

Letting ε go to zero gives

hΓ (G � S1) ≤ hΓ (G � Ω).

Since the opposite inequality is obvious, this shows the desired equality
between the entropies.

To show (4), fix an (n, ε)-separated set S containing s(n, ε) points. Let
nΩ (resp. nΩc) be the number of points in S which are in Ω (resp. in Ωc).
Obviously, s(n, ε) = nΩ +nΩc . Let t = tS be the number of connected com-
ponents of Ωc containing points in S, and let l = [t/2], where [·] denotes
integer part. We will show that there exists an (n, ε)-separated set T con-
tained in Ω and having cardinality l. This will obviously give sΩ(n, ε) ≥ l.
The inequalities t ≤ 2l + 1 and nΩ ≤ sΩ(n, ε), together with Lemmas 2
and 3, will imply that

s(n, ε) = nΩ + nΩc ≤ nΩ + tk(1 + 1/ε)(4ncε + 4n− 1)
≤ sΩ(n, ε) + (2sΩ(n, ε) + 1)k(1 + 1/ε)(4ncε + 4n− 1),

thus showing (4).
To show the existence of the set T with the properties above, we proceed

in a constructive way. Let us enumerate the connected components of Ωc

containing points in S in a cyclic way as I1, . . . , It. Now for each 1 ≤ i ≤ l
choose a point ti ∈ Ω between I2i−1 and I2i, and let T = {t1, . . . , tl}. We
need to check that, for i 6= j, the points ti and tj are (n, ε)-separated. Now
by construction, for each i 6= j there exist at least two different points x, y
in S contained in the interval of smallest length in S1 joining ti and tj .
Since S is (n, ε)-separated, there exist m ≤ n and gi1 , . . . , gim in Γ such
that dist(h(x), h(y)) ≥ ε, where h = gim · · · gi2gi1 . Unfortunately, because
of the topology of the circle, this does not imply that dist(h(ti), h(tj)) ≥ ε.
However, the proof will be finished if we show that

(5) dist(gir · · · gi1(ti), gir · · · gi1(tj)) ≥ ε for some 0 ≤ r ≤ m.
This claim is obvious if dist(ti, tj) ≥ ε. If this is not the case then, by the
definition of the constants ε and L, the length of the interval [gi1(ti), gi1(tj)]
is smaller than 1/2, and hence it coincides with the distance between its end-
points. If this distance is at least ε, then we are done. If not, the same argu-
ment shows that the length of the interval [gi2gi1(ti), gi2gi1(tj)] is smaller
than 1/2 and coincides with the distance between its endpoints. If this
length is at least ε, then we are done. If not, we continue the procedure.
Clearly, there must be some integer r ≤ m such that the length of the
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interval [gir−1 · · · gi1(ti), gir−1 · · · gi1(tj)] is smaller than ε, and the one of
[gir · · · gi1(ti), gir · · · gi1(tj)] is greater than or equal to ε. As before, the
length of the next interval will be forced to be smaller than 1/2, and hence
it will coincide with the distance between its endpoints. This shows (5) and
concludes the proof of Theorem A.

5. The proof in the absence of subexponentially distorted ele-
ments. Recall that topological entropy is invariant under topological con-
jugacy. Therefore, due to [3, Théorème D], in order to prove Theorem B we
may assume that G is a group of bi-Lipschitz homeomorphisms. Let L be a
common Lipschitz constant for the elements in Γ . Fix again 0 < ε < 1/2L,
and let I1, . . . , Ik be the connected components of Ωc having length greater
than or equal to ε. Let hi be a generator for the stabilizer of Ii (with hi = Id
in case Ii is of type 1). Consider the minimal non-decreasing function qε such
that, for each of the non-trivial hi’s, one has qε(‖hri ‖) ≥ r for all positive r.
We will show that (4) holds for the function

pε(n) = 2k(1 + 1/ε)(2qε(2n) + 1) + 1.

Notice that, by assumption, this function pε grows at most subexponentially
in n. Hence, as in the case of Theorem A, inequality (4) allows us to finish
the proof of the equality between the entropies.

The main difficulty in showing (4) in this case is that Lemma 5 is no
longer available. However, the following still holds.

Lemma 6. If x1, . . . , xm are points in a single type 2 connected compo-
nent I of Ωc having length at least ε, and xi, xj are (ε, n)-separated for all
i 6= j, then m ≤ k(1/ε+ 1)(2qε(2n) + 1).

Proof. Let I be the type 2 connected component of Ωc containing
x1, . . . , xm. We may assume that x1 < · · · < xm. If f is an element in BΓ (n)
sending I to some Ii, then the number of points which are ε-separated by
f is less than or equal to 1/ε+ 1. We claim that the number of elements in
BΓ (n) sending I to Ii is bounded above by qε(r). Indeed, if g also sends I
to Ii then gf−1 ∈ St(Ii), hence gf−1 = hri some r. Therefore,

2n ≥ ‖gf−1‖ = ‖hri ‖,
and hence

qε(2n) ≥ qε(‖hri ‖) ≥ |r|.
Since the previous arguments apply to each type 2 interval Ii, this gives

m ≤ k(1/ε+ 1)(2qε(2n) + 1),

thus proving the lemma.

To show (4) in the present case, we proceed as in the proof of The-
orem A. We fix an (n, ε)-separated set S containing s(n, ε) points. We let nΩ
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(resp. nΩc) be the number of points in S which are in Ω (resp. in Ωc), so that
s(n, ε) = nΩ+nΩc . Let t = tS be the number of connected components of Ωc

containing points in S, and let l = [t/2]. As before, one can show that there
exists an (n, ε)-separated set contained in Ω and having cardinality l. This
will obviously give sΩ(n, ε) ≥ l. The inequalities t ≤ 2l+1 and nΩ ≤ sΩ(n, ε)
still hold. Using Lemmas 2 and 6 one now obtains

s(n, ε) = nΩ + nΩc ≤ nΩ + tk(1 + 1/ε)(2qε(2n) + 1)
≤ sΩ(n, ε) + (2sΩ(n, ε) + 1)k(1 + 1/ε)(2qε(2n) + 1).

This concludes the proof of Theorem B.
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