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Abstract. In answering questions of J. Mař́ıková [Fund. Math. 209 (2010)] we prove
a triangulation result that is of independent interest. In more detail, let R be an o-minimal
field with a proper convex subring V , and let st : V → k be the corresponding standard
part map. Under a mild assumption on (R, V ) we show that a definable set X ⊆ V n

admits a triangulation that induces a triangulation of its standard part st X ⊆ kn.

1. Introduction. This paper is a sequel to [6], and answers some ques-
tions it raised. To discuss this we adopt the notations and conventions
from [6]. In particular, R is an o-minimal field, that is, an o-minimal ex-
pansion of an ordered field, V is a proper convex subring of R with maximal
ideal m, ordered residue field k = V/m, and residue map (or standard part
map) st : V → k. For each n this induces st : V n → kn, and for X ⊆ Rn

we set stX := st(X ∩ V n) ⊆ kn. The primitives of the expansion kind

of the ordered field k are the ordered ring primitives plus the n-ary rela-
tions stX with X ∈ Defn(R), for all n. Throughout, k, l,m, n range over
N = {0, 1, 2, . . . }. The problem studied in [6] is the following:

What conditions on (R, V ) guarantee that kind is o-minimal, and
what are the definable relations of kind in that case?

Here is the main result of [6] on this issue: If (R, V ) |= Σi, then for all n the
boolean algebra Defn(kind) is generated by {stX : X ∈ Defn(R)}. Here Σi is
a certain first-order axiom scheme to be stated below. It is satisfied in most
cases where kind was known to be o-minimal: when V is Th(R)-convex in
the sense of [5], and also when R is ω-saturated and V is the convex hull of
Q in R. (In the latter case, k is isomorphic to the real field R.)

In particular, [6] shows that if (R, V ) |= Σi, then kind is o-minimal. Here
we prove a kind of converse:
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Theorem 1.1. If Def2(kind) is generated as a boolean algebra by its
subset {stX : X ∈ Def2(R)}, then (R, V ) |= Σ.

Here Σ is a strong version of Σi. To define Σi and Σ, put

I := {x ∈ R : |x| ≤ 1},
and for X ⊆ R1+n and r ∈ R, put X(r) := {x ∈ Rn : (r, x) ∈ X}. “De-
finable” means “definable in R with parameters from R” unless we specify
otherwise. The conditions Σi and Σ on (R, V ) are as follows:

Σi(n): for all definable X ⊆ I1+n, if X(r) ⊆ X(s) for all r ≤ s in I,
then there exists ε0 ∈ m>0 such that stX(ε0) = stX(ε) for all
ε ∈ m>ε0 ;

Σ(n): for all definable X ⊆ I1+n there exists an ε0 ∈ m>0 such that
stX(ε0) = stX(ε) for all ε ∈ m>ε0 .

Also, let C(n) be the condition that every closed subset of kn definable in
kind equals stX for some X ∈ Defn(R). Finally, Σi, Σ, and C mean “Σi(n)
for all n”, “Σ(n) for all n”, and “C(n) for all n”, respectively. Here is a
sharper version of Theorem 1.1, incorporating also results from [6]:

Theorem 1.2. The following conditions on (R, V ) are equivalent:

(1) C(2);
(2) C;
(3) Σ;
(4) Σi;
(5) Defn(kind) is generated by {stX : X ∈ Defn(R)}, for all n;
(6) Def2(kind) is generated by {stX : X ∈ Def2(R)}.
In Section 2 we prove (1)⇒(3). Since (3)⇒(2) is in [6] and (2)⇒(1) is

obvious, this yields the equivalence of conditions (1)–(3). The implications
(3)⇒(4) and (5)⇒(6) are also obvious, and (4)⇒(5) is in [6], but (6)⇒(1)
requires a new tool: V -triangulation. In Sections 3, 4, 5 we prepare this tool.
The main result about it is Theorem 6.1; we need only a special case of it
to derive (6)⇒(1). In triangulating we try to follow Chapter 8 of [3], but we
have to respect the standard part map and this requires a lot of extra care.
The last Section 7 contains two more applications of V -triangulation.

The main problem left open here is whether the o-minimality of kind

implies that (R, V ) |= Σ. While the present paper was being refereed, the
second author answered this question positively; see [7].

Triangulation respecting the standard part map. Our V -triangu-
lation result seems of independent interest, and may be new even when R is
a real closed field without further structure. In the rest of this Introduction
we state it precisely, and define some notation used throughout the paper.
We let r, s, t (sometimes with subscripts or accents) range over R. For points
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a0, . . . , am ∈ Rn (allowing repetitions) we let 〈a0, . . . , am〉 denote the affine
span of {a0, . . . , am} in Rn:

〈a0, . . . , am〉 = {t0a0 + · · ·+ tmam : t0 + · · ·+ tm = 1},

and let [a0, , . . . , am] be the convex hull of {a0, . . . , am} in Rn:

[a0, . . . , am] = {t0a0 + · · ·+ tmam : t0 + · · ·+ tm = 1, all ti ≥ 0}.

A simplex in Rn is a set [a0, . . . , am] with affinely independent a0, . . . , am
in Rn, and given such a simplex S = [a0, . . . , am] we put

So = (a0, . . . , am) := {t0a0 + · · ·+ tmam : t0 + · · ·+ tm = 1, all ti > 0},

so So is the interior of S in its affine span 〈a0, . . . , am〉, and S is the clo-
sure of So (1). Let a0, . . . , am ∈ Rn be affinely independent. Then we call
S = [a0, . . . , am] an m-simplex. The points a0, . . . , am can be recovered from
S because they are exactly the extreme points of S, as defined in [3, p. 120];
they are also referred to as the vertices of S. A face of S is a simplex
[ai0 , . . . , aik ] with 0 ≤ i0 < · · · < ik ≤ m. A complex in Rn is a finite collec-
tion K of simplexes in Rn such that each face of each S ∈ K is in K, and for
all S, S′ ∈ K, if S∩S′ 6= ∅, then S∩S′ is a common face of S and S′. For ex-
ample, the collection of faces of a simplex S in Rn is a complex K(S) in Rn.
Let K be a complex in Rn. Then So ∩S′o = ∅ for all distinct S, S′ ∈ K. Let
|K| be the union of the simplexes in K. Then Ko := {So : S ∈ K} is a finite
partition of |K|. A triangulation of a definable X ⊆ Rn is a pair (φ,K) con-
sisting of a complex K in Rn and a definable homeomorphism φ : X → |K|;
note that then X is closed and bounded in Rn. Such a triangulation is said
to be compatible with the set X ′ ⊆ X if φ(X ′) is a union of sets So with
S ∈ K.

Up to this point this subsection does not require the presence of V and
makes sense for any (not necessarily o-minimal) expansion of an ordered
field in place of R, for example kind.

A set X ⊆ Rn is V -bounded if for some r ∈ V >0 we have |x| ≤ r for all
x ∈ X. Note that if a0, . . . , am ∈ V n, then [a0, . . . , am] is V -bounded and

st[a0, . . . , am] = [st(a0), . . . , st(am)] ⊆ kn,

but if S is a V -bounded simplex in Rn, then stS is not necessarily a simplex
in kn, and even if it is, it might be just a single point while S is not.

A complex K in Rn is said to be V -bounded if |K| is V -bounded. For
a V -bounded complex K in Rn we set stK := {stS : S ∈ K}; this is not

(1) Our terminology here is a little different from that in [3]: there the simplexes were
the sets So, but for the present purpose it is more convenient for our simplexes to be
closed. Likewise, our definition of “complex” and “triangulation” here is not exactly the
same as that in [3], but it is easy to go from one setting to the other.
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always a complex in kn, and even if it is we can have stS = stS′ with
distinct S, S′ ∈ K.

A map f : X → Rn with X ⊆ Rm is said to be V -bounded if its graph
Γf ⊆ Rm+n is V -bounded. Suppose f : X → Rn is definable and V -bounded
(so X is definable and V -bounded). Then we say that f induces (2) the map
g : stX → kn if st(f(x)) = g(st(x)) for all x ∈ X, equivalently, st(Γf) = Γg;
note that then g is definable in kind.

A V -triangulation of a definable V -bounded X ⊆ Rn is a triangulation
(φ,K) of X such that K is V -bounded, φ induces a map φst : stX → st |K|,
and (φst, stK) is a triangulation of stX in the sense of kind.

With this terminology in place we can state our triangulation theorem:

Theorem 1.3. If Def2(kind) is generated by {stX : X ∈ Def2(R)}, then
each definable closed V -bounded set X ⊆ Rn with definable X1, . . . , Xk ⊆ X
has a V -triangulation compatible with X1, . . . , Xk.

We finish this introduction with some more notation and a useful fact.
Let n ≥ 1. For x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn we set

d(x, y) := max{|xi − yi| : i = 1, . . . , n}.
Likewise for x, y ∈ kn.

Lemma 1.4. Suppose X ⊆ Rn and f : X → R are definable and V -
bounded, and f induces a function g : stX → k. Then g is continuous.

Proof. We can assume n ≥ 1. Assume towards a contradiction that a ∈
X and ε ∈ R>m are such that for every δ ∈ R>m there is x ∈ X such that
d(st(a), st(x)) < st(δ) and |g(st(a))− g(st(x))| > st(ε). Then the set

{r ∈ R>0 : there is x ∈ X such that d(a, x) < r and |f(a)− f(x)| > ε)}
has an element in m, by o-minimality of R. This contradicts that f induces
a function.

2. C(2) ⇒ Σ. The conditions C(n) and Σ(n) were defined in the intro-
duction. We begin with some observations about the case n = 1. It is clear
that the o-minimality of kind is equivalent to the condition that Def1(kind)
is generated as a boolean algebra by {stX : X ∈ Def1(R)}. Next, we have
the equivalence

kind is o-minimal ⇔ C(1).

The forward direction is obvious. For the converse, note first that (R, V ) is
weakly o-minimal by a result of Baizhanov in [2] (see also [1]). Next, every
Y ⊆ kn definable in kind equals stX for some X ⊆ V n definable in (R, V );

(2) This notion is a little different from that with the same name in [6], where it was
necessary to allow the possibility that domain(g) is a proper subset of st X.
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this can be proved just like Lemma 4.1 in [6]. It remains to note that if
Y ⊆ k is bounded and convex in k, and has neither infimum nor supremum
in k, then Y is closed (and open) in k.

It follows easily by cell decomposition that Σ(1) is equivalent to the
condition that for all definable f : I → I there is ε0 ∈ m>0 such that
st(f(ε)) = st(f(ε0)) for all ε ∈ m>ε0 . Later in this section we prove that
for all n we have C(n)⇒ Σ(n), and so by the above this gives

kind is o-minimal ⇒ Σ(1).

We have C(n) ⇒ C(m) for n > m since projection maps and standard part
maps commute. In particular, if C(n) holds for some n ≥ 1, then kind is
o-minimal.

It is convenient to introduce the following weak version C′(2) of C(2):

For all continuous φ : I(k)→ k that are definable in kind there exists
a set X ∈ Def2(R) such that Γφ = stX.

(That C(2) implies C′(2) is because the graph of a continuous φ : I(k) → k
is closed in k2.) Using as above the weak o-minimality of kind we see that
C′(2) ⇒ C(1), and in particular C′(2) ⇒ kind is o-minimal. In the rest of
this section we assume that kind is o-minimal.

Lemma 2.1. Let φ : I(k) → k be continuous and definable in kind, and
suppose Γφ = stX for some X ∈ Def2(R). Then φ is induced by some
V -bounded continuous definable f : I → R.

Proof. Take a V -bounded closed X ⊆ I × R with X ∈ Def2(R) such
that Γφ = stX. Let p : R2 → R be the projection map given by p(x, y) = x.
Then p(X) ⊆ I with st(p(X)) = I(k), and by definable choice we have a
definable h : p(X) → R such that Γh ⊆ X. By the piecewise continuity of
h we can shrink p(X) slightly to a closed definable set P ⊆ p(X) such that
stP = I(k) and g := h|P is continuous. Since st(Γg) ⊆ Γφ, it follows that
st(Γg) = Γφ. In particular, for a, b ∈ P with a < b and (a, b) ∩ P = ∅,
we have st(a) = st(b) and st(g(a)) = st(g(b)). It is easy to extend g to a
continuous definable f : I → R such that for all a, b ∈ P as before, f is
monotone on [a, b]. It follows that f is V -bounded and st(Γf) = Γφ, so f
induces φ.

Lemma 2.2. Suppose C′(2) holds. Then every closed and bounded Y ∈
Defn(kind) with dimY ≤ 1 equals stX for some X ∈ Defn(R).

Proof. This is clear for n = 1, so let n > 1 and Y ∈ Defn(kind) be closed
and bounded with dimY ≤ 1. For a permutation σ of {1, . . . , n} and Z ⊆ kn

we put
σ(Z) := {(aσ(1), . . . , aσ(n)) : (a1, . . . , an) ∈ Z}.
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The assumptions on Y imply that Y is a finite union of sets σ(Γφ) where
φ : [a, b] → kn−1 is continuous and definable in kind, a ≤ b in k, and σ is
a permutation of {1, . . . , n}. So in order to show that Y = stX for some
definable X ∈ Defn(R) we can assume that Y = Γφ where φ : [a, b]→ kn−1

is continuous and definable in kind and a ≤ b in k. If a = b, then Y is a
singleton, and there is no problem, so we can assume a < b. Then we can
reduce to the case that a = 0, b = 1, so φ = (φ1, . . . , φn−1) : I(k) → kn−1.
By the previous lemma and the hypothesis of the present lemma we have V -
bounded definable continuous f1, . . . , fn−1 : I → R that induce φ1, . . . , φn−1,
so f = (f1, . . . , fn−1) : I → Rn−1 induces φ, and thus st(Γf) = Γφ = Y , as
desired.

The next two definitions and Lemma 2.5 use only that R is an o-minimal
field and do not require a proper convex subring V of R, so they apply also to
kind (which we have assumed to be o-minimal). For results about Hausdorff
limits of definable families in an o-minimal expansion of the real field, see [4].
The notion of Hausdorff distance is also useful in our setting of an arbitrary
o-minimal field.

Definition 2.3. Let n ≥ 1 and put d(x, Y ) := inf{d(x, y) : y ∈ Y } for
x ∈ Rn and nonempty definable Y ⊆ Rn. Next, let X,Y ⊆ Rn be definable,
closed, bounded and nonempty. Then the Hausdorff distance between X
and Y is defined to be

dH(X,Y ) := min{r ≥ 0 : d(x, Y ), d(y,X) ≤ r for all x ∈ X and all y ∈ Y }.

With X,Y as in this definition, note that dH(X,Y ) ∈ R≥0, dH(X,Y ) = 0
iff X = Y , dH(X,Y ) = dH(Y,X), and whenever Z ⊆ Rn is also definable,
closed, bounded, and nonempty, then

dH(X,Z) ≤ dH(X,Y ) + dH(Y, Z).

So dH behaves like a metric (but takes values in R≥0 rather than R≥0).

Definition 2.4. Let n ≥ 1 and let X ⊆ R1+n be definable such that
the set X(t) ⊆ Rn is closed, bounded and nonempty for all sufficiently small
t > 0. Then a Hausdorff limit of X(t) as t → 0+ is a definable, closed,
bounded, and nonempty set Q ⊆ Rn such that limt→0+ dH(X(t), Q) = 0.

Lemma 2.5. Let n ≥ 1, and let X ⊆ R1+n be definable such that X(t)
is closed, bounded and nonempty for all sufficiently small t > 0. Then there
is a unique Hausdorff limit of X(t) as t→ 0+. Moreover, if dimX(t) ≤ m
for all t > 0, then dimQ ≤ m for this Hausdorff limit Q.

Proof. If Q,Q′ are Hausdorff limits of X(t) as t → 0+, then dH(Q,Q′)
= 0, hence Q = Q′. So there is at most one Hausdorff limit of X(t) as
t→ 0+.
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To show existence, let Y := {(t, x) ∈ X : t > 0} and Q := cl(Y )(0) ⊆ Rn.
It is clear that Q is definable, closed, bounded, and, by cell decomposition,
nonempty. We claim that limt→0+ dH(Q,X(t)) = 0. Suppose not. Then
we have δ > 0 such that for every s > 0 there is a positive t < s with
dH(Q,X(t)) > δ. By o-minimality we can take s > 0 such that either there
is for every t ∈ (0, s) a point at ∈ Q with d(at, X(t)) > δ, or there is for
every t ∈ (0, s) a point bt ∈ X(t) with d(bt, Q) > δ. In the first case we
can assume by definable choice that t 7→ at : (0, s) → Q is definable; set
a := limt→0+ at. Then a ∈ Q since Q is closed, but it is also easy to check
that (0, a) /∈ cl(Y ), so a /∈ Q, a contradiction. In the second case we can
assume that t 7→ bt : (0, s) → Rn is definable; set b := limt→0+ bt. Then
(0, b) ∈ cl(Y ), so b ∈ Q, but also d(b,Q) ≥ δ, a contradiction.

Suppose now that dimX(t) ≤ m for all t > 0. Then for Y ⊆ X and
Q = cl(Y )(0) as above we have {0} ×Q ⊆ cl(Y ) \ Y , so dimQ ≤ m.

In the rest of this section s, s′, s0, s1, s2 range over I.

Lemma 2.6. Let s0 ∈ m and s1 > m, and suppose f : (s0, s1) → R is
definable and f(s) ∈ m for all s with m < s < s1. Then there is a p ∈ m>s0

such that f(s) ∈ m for all s with p ≤ s < s1.

Proof. We can assume that f is of class C1. For m < s < s1 we have

f(s)− f(s/2) = (s/2)f ′(s′)

with s′ ∈ [s/2, s], so f ′(s′) ∈ m. It follows that the definable set

{x ∈ (s0, s1) : |f ′(x)| ≤ 1}

contains a set [p, q] with s0 < p ∈ m and m < q < s1. Let s with p ≤ s ∈ m be
fixed, and take a variable s′ with m < s′ ≤ q. Then f(s′)−f(s) = (s′−s)f ′(x)
for some x with s ≤ x ≤ s′, so |f(s′) − f(s)| ≤ s′ − s ≤ s′. Since f(s′) ∈ m
and we can take s′ arbitrarily small, subject to s′ > m, we obtain f(s) ∈ m.

More than the result itself, the proof of the following is crucial.

Lemma 2.7. For all n ≥ 1 we have C(n)⇒ Σ(n).

Proof. Let n ≥ 1, and assume (R, V ) satisfies C(n). Let X ⊆ I1+n be
definable. Our job is to show the existence of ε0 ∈ m>0 such that stX(ε0) =
stX(ε) for all ε ∈ m>ε0 . We can assume that X(s) 6= ∅ for all s ∈ I. Put
Y := stX ⊆ I(k)1+n. Let Q ⊆ I(k)n be the Hausdorff limit of Y (t) as t > 0
tends to 0 in k, so Q is definable in kind, and Q is closed, bounded, and
nonempty. Using C(n) we take a closed definable P ⊆ In such that stP = Q.

Claim. Let δ ∈ R>m. Then there is an s′ > m such that dH(cl(X(s)), P )
< δ for all s with m < s < s′.
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Suppose the claim is false. This gives s0, s1 with s0 ∈ m < s1 such that

dH(cl(X(s)), P ) ≥ δ for all s ∈ (s0, s1),
dH(Y (t), Q) < st(δ) for all t with 0 < t ≤ t1 := st(s1).

Let m < s < s1. Then dH(cl(X(s)), P ) ≥ δ gives either an x ∈ cl(X(s))
with d(x, P ) ≥ δ, or a point p ∈ P with d(X(s), p) ≥ δ. But x ∈ cl(X(s))
with d(x, P ) ≥ δ would give st(x) ∈ Y (st(s)) with 0 < st(s) ≤ t1 and
d(st(x), Q) ≥ st(δ), a contradiction. Thus d(X(s), p) ≥ δ for some p ∈ P .

By increasing s0 we can therefore arrange that for each s ∈ (s0, s1) there
is p ∈ P with d(X(s), p) ≥ δ. Definable choice gives a definable function
p : (s0, s1) → P such that d(X(s), p(s)) ≥ δ for all s ∈ (s0, s1). Definable
choice in the structure kind then gives a function q : (0, t1) → Q, definable
in kind, such that (t, q(t)) ∈ st(Γp) for all t ∈ (0, t1). Let q0 := limt→0 q(t),
so q0 ∈ Q. Take p0 ∈ P with st(p0) = q0. Since d(q(t), q0) < st(δ)/2 for all
sufficiently small t > 0, there is for each s′ with m < s′ < s1 an s such that
m < s < s′ and d(p(s), p0) < δ/2, and thus d(X(s), p0) > δ/2. Then by the
o-minimality of R we can decrease s1 to arrange that d(X(s), p0) > δ/2 for
all s with m < s < s1 and d(Y (t), q0) < st(δ)/2 for all t with 0 < t < t1.
For such t, take y ∈ Y (t) with d(y, q0) < st(δ)/2; then (t, y) ∈ Y , so (t, y) =
st(s, x) with (s, x) ∈ X, so d(x, p0) < δ/2 with m < s < s1 and x ∈ X(s), a
contradiction. This concludes the proof of the claim.

Define f : I → R by f(s) = dH(cl(X(s)), P ), so f is definable. By chang-
ing s0 and s1, if need be, we arrange that the restriction of f to [s0, s1]
is continuous and monotone. If this restriction of f is increasing, then it
follows from the Claim that f(ε) ∈ m for all ε ∈ m with ε ≥ s0, and thus
dH(cl(X(ε)), cl(X(s0))) ∈ m for all such ε, that is, stX(ε) = stX(s0) for all
such ε, and we are done.

So we can assume for the rest of the proof that f is decreasing on (s0, s1).
Then f(s) ∈ m for all s with m < s < s1 by the Claim. Then Lemma 2.6
gives ε0 ∈ m, ε0 > s0, such that f(s) ∈ m for all s with ε0 ≤ s < s1. As
before, this yields stX(ε) = stX(ε0) for all ε ≥ ε0 in m.

Next a reduction to 1-parameter families of 1-dimensional sets:

Lemma 2.8. Let n ≥ 1, and suppose that for all definable X ⊆ I1+n with
dimX(r) ≤ 1 for all r ∈ I there is ε0 ∈ m>0 such that stX(ε0) = stX(ε)
for all ε ∈ m>ε0. Then (R, V ) |= Σ(n).

Proof. Let X ⊆ I1+n be definable such that X(r) is nonempty for all
r ∈ I. Definable choice gives a definable map f : I2 → In such that for all
r, s ∈ I we have f(r, s) ∈ cl(X(r)) and

d(f(r, s), X(s)) = sup{d(x,X(s)) : x ∈ X(r)}.
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Define Y ⊆ I1+n by Y (r) = cl({f(r, s) : s ∈ I}) for r ∈ I. Then

Y (r)⊆ cl(X(r)), dimY (r)≤ 1, dH(Y (r), Y (s))≥ dH(cl(X(r)), cl(X(s))),

for all r, s ∈ I. The hypothesis of the lemma gives ε0 ∈ m>0 such that
stY (ε0) = stY (ε) for all ε ∈ m>ε0 , hence dH(Y (ε0), Y (ε)) ∈ m for all ε ∈
m>ε0 , so dH(cl(X(ε0)), cl(X(ε))) ∈ m for all ε ∈ m>ε0 , and thus stX(ε0) =
stX(ε) for all ε ∈ m>ε0 .

Corollary 2.9. C′(2)⇒ Σ.

Proof. Assume (R, V ) satisfies C′(2). Towards proving (R, V ) |= Σ, con-
sider a definable X ⊆ I1+n, n ≥ 1, with X(r) 6= ∅ and dimX(r) ≤ 1 for
all r ∈ I; by Lemma 2.8 it suffices to show that then there is ε0 ∈ m>0

such that stX(ε0) = stX(ε) for all ε ∈ m>ε0 . Towards this goal we use the
proof of Lemma 2.7. The present X satisfies dimX ≤ 2, so the set Y = stX
in that proof has also dimension at most 2 in the sense of the o-minimal
structure kind, by Corollary 2.8 in [6]. So for all but finitely many t ∈ I(k)
the section Y (t) has dimension at most 1. As in that proof, let Q ⊆ I(k)n

be the Hausdorff limit of Y (t) as t > 0 tends to 0 in k. Then dimQ ≤ 1, by
Lemma 2.5. In the proof of Lemma 2.7 we only used the assumption C(n)
to provide a P ∈ Defn(R) with stP = Q. Since dimQ ≤ 1 and C′(2) holds,
we can appeal here instead to Lemma 2.2 to provide such a P . With this P
the rest of the proof of Lemma 2.7 goes through to give an ε0 as desired.

In particular, we have C(2) ⇒ Σ, and together with the results from [6]
this gives the equivalence of conditions (1)–(3) of Theorem 1.2. Of course,
these conditions are also equivalent to C′(2).

3. Construction of a complex. As we mentioned in the introduction,
we shall adapt to our purpose the proof of the o-minimal triangulation
theorem in Chapter 8 of [3]. The first nontrivial issue that comes up in
doing this is of a purely semilinear nature, and consists of finding a version
of Lemma (1.10) in that chapter that is compatible with the standard part
map. That lemma constructs a complex in Rn+1 based on a simplex in Rn,
and to make this construction compatible with the standard part map we
need to linearly order the vertices of the simplex in a special way.

In more detail, recall that if S is a simplex in Rn, then K(S) is the
complex in Rn whose elements are the faces of S. Define a V -simplex in
Rn to be a V -bounded simplex S ⊆ Rn such that st(K(S)) is a complex
in kn. Note that if S is a V -simplex in Rn, then stS is a simplex in kn and
K(stS) = st(K(S)). We also define a V -complex in Rn to be a V -bounded
complex K in Rn such that stK is a complex in kn; note that then the
simplexes of K are V -simplexes.
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Given a V -simplex S in Rn, our construction will require an ordering
a0 < a1 < · · · < am of its vertices such that there are indices 0 = i0 < i1 <
· · · < ik ≤ m for which st(ai0), . . . , st(aik) are the distinct vertices of stS,
and st(aiκ) = st(ai) whenever iκ ≤ i < iκ+1. This suggests the following
notion (to be applied to the standard parts of points in V n).

Let a0, . . . , am ∈ kn. We call the sequence a0, . . . , am simplicial if there
are indices i0 < · · · < ik in {0, . . . ,m} with i0 = 0 such that ai0 , . . . , aik are
affinely independent in kn, and aiκ = ai whenever

0 ≤ κ ≤ k, iκ ≤ i < iκ+1 (with ik+1 := m+ 1).

Suppose the sequence a0, . . . , am is simplicial and let i0, . . . , ik be as
above. Then [a0, . . . , am] = [ai0 , . . . , aik ] is a k-simplex; if 0 ≤ j0 < · · · <
jl ≤ m, then the sequence aj0 , . . . , ajl is also simplicial, and [aj0 , . . . , ajl ] is
a face of [a0, . . . , am]; all faces of [a0, . . . , am] are obtained in this way, but
different sequences j0, . . . , jl can give the same face.

Let ri, si ∈ k for i = 0, . . . ,m be such that ri ≤ si for all i and

riκ = ri and siκ = si whenever
0 ≤ κ ≤ k, iκ ≤ i < iκ+1 (with ik+1 := m+ 1).

Put bi := (ai, ri), ci = (ai, si) (points in kn+1). Then we have the following
variant of Lemma (1.10) in Chapter 8 of [3].

Lemma 3.1. If 0 ≤ j0 < · · · < jp ≤ jp+1 < · · · < jq ≤ m, p < q, then
the sequence bj0 , . . . , bjp , cjp+1 , . . . , cjq is simplicial. Let L be the set of all
simplexes [bj0 , . . . , bjp , cjp+1 , . . . , cjq ] obtained from such sequences j0, . . . , jq,
and all faces of these simplexes. Then L is a complex with

|L| = {t(t0b0 + · · ·+ tmbm) + (1− t)(t0c0 + · · ·+ tmcm) :
0 ≤ t ≤ 1, all ti ≥ 0, t0 + · · ·+ tm = 1}

= convex hull of {b0, . . . , bm, c0, . . . , cm}.
Proof. It is routine to check that the first statement is true. As to the

rest, consider first the case that ri = si for all i. Then bi = ci for all i, so
L is just the set of faces of the k-simplex [b0, . . . , bm], and the claim about
|L| then holds trivially. Suppose ri < si for some i. Then, if 0 ≤ p ≤ k and
rip < sip we have a (k+1)-simplex [bi0 , . . . , bip , cip , . . . , cik ] ∈ L. It is routine
to check that L is the set of the (k+1)-simplexes obtained in this way and all
their faces. Then our claim follows from Lemma (1.10) in Chapter 8 of [3].

Lemma 3.2. Let S be a V -bounded m-simplex in Rn. Then the following
are equivalent:

(1) S is a V -simplex;
(2) there is an enumeration a0, . . . , am of the vertices of S such that the

sequence st(a0), . . . , st(am) is simplicial.
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Proof. Assume (1). Then every vertex a of S yields a vertex st(a) of the
simplex stS, so with k := dim(stS) we have an enumeration of the vertices
of S and indices i0 < · · · < ik as in (2).

It is routine to check that (2) implies (1).

Let S be a V -simplex. Then Lemma 3.2 yields an enumeration a0, . . . , am
of its vertices and indices 0 = i0 < · · · < ik in {0, . . . ,m} such that
st(ai0), . . . , st(aik) are affinely independent in kn, and st(aiκ)= st(ai) when-
ever

0 ≤ κ ≤ k, iκ ≤ i < iκ+1 (with ik+1 := m+ 1).

Let ri, si ∈ V for i = 0, . . . ,m be such that ri ≤ si for all i,

st(ri) = st(riκ) and st(si) = st(siκ) whenever
iκ ≤ i < iκ+1, 0 ≤ κ ≤ k (with ik+1 := m+ 1),

and ri < si for some i. Put bi := (ai, ri), ci = (ai, si) (points in V n+1). Let
L be the set of all (m+ 1)-simplexes [b0, . . . , bi, ci, . . . , cm] with bi 6= ci, and
all faces of these simplexes. Then by Lemma (1.10) of Chapter 8 in [3], L is
a complex with

|L| = convex hull of {b0, . . . , bm, c0, . . . , cm}.

Corollary 3.3. L is a V -complex.

Proof. It follows easily from the assumptions on ri, si that each simplex
[b0, . . . , bi, ci, . . . , cm] with bi 6= ci is a V -simplex. A face of a V -simplex is
also a V -simplex, so each simplex of L is a V -simplex. That stL is a complex
follows from Lemma 3.1 with the st(bi), st(cj) in the role of bi, cj .

4. Extension lemmas. The first extension lemma below is a V -version
of Lemma (2.1) in Chapter 8 of [3], but requires a very different proof. Before
stating it we make some preliminary remarks and definitions.

First, let E be an affine subspace of Rn of dimension k ≥ 1, so E = e+L
with e ∈ Rn and L a linear subspace of Rn of dimension k. Let H1 and H2

be affine hyperplanes in E, so Hi = ei+Li with ei ∈ E and a linear subspace
Li of L of dimension k− 1, for i = 1, 2. Let u ∈ L \ (L1 ∪L2). Then we have
a direct sum decomposition L = Ru⊕ L2, which yields a map

(H1, H2) : H1 → H2, {(H1, H2)(x)} = (x+Ru) ∩H2 for all x ∈ H1.

This map is easily seen to be affine, and thus continuous, and to be a bijec-
tion with inverse (H2, H1).

Next, let S be a simplex in Rn. A proper face of S is a face F of S
such that F 6= S. We set δ(S) := union of the proper faces of S; this is the
topological boundary of S in the affine span of its vertices.
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These definitions and remarks go through for any ordered field instead
of R, for example k. In the rest of this section we assume that kind is
o-minimal.

Lemma 4.1. Let S ⊆ Rn be a V -bounded simplex and let f : δ(S)→ R be
a continuous V -bounded definable function inducing a function st δ(S)→ k.
Then f has a continuous V -bounded definable extension g : S → R inducing
a function stS → k.

Proof. Let a0, . . . , ak be the distinct vertices of S. The lemma holds
trivially for k = 0 since δ(S) = ∅ in that case. So let k ≥ 1, and let
E = 〈a0, . . . , ak〉 be the affine span of the vertices of S. Below i ranges over
{0, . . . , k}, and we set

Hi := 〈a0, . . . , ai−1, ai+1, . . . , ak〉, Fi := [a0, . . . , ai−1, ai+1, . . . , ak].

Let L be the linear subspace of Rn of which E is a translate, and let Li be
the proper linear subspace of L of which Hi is a translate. Take a vector
u ∈ L \

⋃
i Li. (Later in the proof we impose further restrictions on u.) For

x ∈ δ(S) we have (x+Ru)∩S = [x, y] for a unique y ∈ S, and for this y we
have (x+Ru) ∩ δ(S) = {x, y}; we define λ : δ(S)→ δ(S) by λ(x) = y for y
as above. Note that λ ◦ λ = idδ(S).

Claim 1. λ is continuous.

To see this note that the closed subsets Fi ∩ (Hi, Hj)−1(Fj) (0≤i, j≤k)
of δ(S) cover δ(S). By a remark at the beginning of this section, λ agrees
on each such Fi ∩ (Hi, Hj)−1(Fj) with the continuous map (Hi, Hj).

We now extend f to g : S → R by setting, for x ∈ δ(S),

g((1− t)x+ tλ(x)) = (1− t)f(x) + tf(λ(x)).

Claim 2. g is continuous.

To see this, define

α : [0, 1]× δ(S)→ Rn, α(t, x) = (1− t)x+ tλ(x).

Then α is definable and continuous, α([0, 1] × δ(S)) = S, and g ◦ α is con-
tinuous, so g is continuous by p. 96, Corollary 1.13 in [3].

It is easy to check that if the points st(a0), . . . , st(ak) in kn are affinely
independent, then g induces a function on stS, so in what follows we assume
that st(a0), . . . , st(ak) are not affinely independent. Then stS has dimension
d < k, and we can assume that st(a0), . . . , st(ad) are affinely independent.

Claim 3. stS = st δ(S).

To see this, note first that the affine span of stS = [st(a0), . . . , st(ak)] in
kn has dimension d. Then by a lemma of Carathéodory (p. 126 in [3]), each
element of stS is in the convex hull of a subset of {st(a0), . . . , st(ak)} of size
≤ d+ 1, and so in stF for some proper face F of S. This proves Claim 3.
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The functions λ and g depend on u, and without further specifying u we
cannot expect g to induce a function on stS. We now restrict u as follows:
ak /∈ Hk = 〈a0, . . . , ak−1〉 but st(ak) ∈ stHk, so we can take u as above such
that ak + u ∈ Hk and st(u) is the zero vector of kn.

Claim 4. d(x, λ(x)) ∈ m for all x ∈ δ(S).

To see this, note that S lies between Hk and Hk + u, that is,

S ⊆ {x+ tu : x ∈ Hk, 0 ≤ t ≤ 1}.
This is because {x+tu : x ∈ L, 0 ≤ t ≤ 1} is convex, and contains a0, . . . , ak.
For a ∈ Hk,

(a+Ru) ∩ {x+ tu : x ∈ Hk, 0 ≤ t ≤ 1} = [a, a+ u].

Given x ∈ δ(S) the line x+Ru equals a+Ru where (x+Ru) ∩Hk = {a},
and so [x, λ(x)] ⊆ [a, a+ u], so d(x, λ(x)) ≤ d(a, a+ u), whence the claim.

It is clear from Claims 2 and 4 that g induces a function on stS.

A subcomplex of a complex K in Rn is a subset L of K such that if F is
a face of any S ∈ L, then F ∈ L; note that then L is also a complex in Rn.

Lemma 4.2. Let L be a subcomplex of a V -bounded complex K in Rn,
and let f : |L| → R be a V -bounded continuous definable function inducing a
function st |L| → k. Then f has a V -bounded continuous definable extension
|K| → R inducing a function st |K| → k.

Proof. We can assume L 6= K, and it suffices to obtain a strictly larger
subcomplex L′ of K and a V -bounded continuous definable extension f ′ :
|L′| → R of f inducing a function st |L′| → k. Take a simplex S ∈ K \ L of
minimal dimension.

Suppose S = {a} with a ∈ Rn. Then L′ = L ∪ {S} is a subcomplex of
K and L 6= L′. If d(a, |L|) > m, then f ′(a) = 0 determines an extension of
f to |L′| → R with the required properties. If d(a, |L|) ∈ m, then we can
pick b ∈ |L| such that d(a, b) ∈ m and define an extension as desired by
f ′(a) = f(b).

Next, assume that S is a k-simplex with k > 0. Then all proper faces of
S are in L, so δ(S) ⊆ |L|, and by the previous lemma, the function f |δ(S)
extends to a V -bounded continuous definable function g : S → R inducing
a function stS → k. Also, L′ = L ∪ {S} is a subcomplex of K, L 6= L′,
f extends to a V -bounded continuous function f ′ : |L′| → R defined by
f ′(x) = f(x) when x ∈ |L| and f ′(x) = g(x) when x ∈ S, and f ′ induces a
function st |L′| → k.

Good directions. In o-minimal triangulation we use extension lemmas
in combination with the existence of good directions. For V -triangulation
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we need to sharpen this a little bit. Let
Sn := {(x1, . . . , xn+1) ∈ Rn+1 : x2

1 + · · ·+ x2
n+1 = 1}

and define Sn(k) ⊆ kn+1 likewise, with k instead of R. A unit vector u ∈ Sn
is a good direction for a set X ⊆ Rn+1 if for each a ∈ Rn+1 the line a+Ru
intersects X in only finitely many points. Likewise we define what it means
for a vector in Sn(k) to be a good direction for a set X ⊆ kn+1.

Lemma 4.3. Let X ⊆ Rn+1 be definable with dimX ≤ n. Then there is
a good direction v ∈ Sn(k) for stX such that all u ∈ Sn with st(u) = v are
good directions for X.

Proof. We have dim(stX) ≤ n, for example by Corollary 2.8 in [6]. Call
u ∈ Sn a bad direction for X if u is not a good direction for X, and define
bad directions for stX similarly. Let B ⊆ Sn be the set of bad directions
for X, so B is definable and dimB < n by the Good Directions Lemma on
p. 117 of [3]. Put

B′ := st(B) ∪ set of bad directions for stX ⊆ Sn(k).
Since kind is o-minimal, the set B′ is definable in kind, and dimB′ < n.
It follows that we have a box C ⊆ kn+1 such that C ∩ Sn(k) 6= ∅ and
cl(C) ∩B′ = ∅. Then any v ∈ C ∩ Sn(k) has the desired property.

We define a V -good direction for a set X ⊆ Rn+1 to be a unit vector u ∈
Sn such that u is a good direction for X and st(u) ∈ Sn(k) is a good direction
for stX. The above lemma yields an abundance of V -good directions for X
if X ⊆ Rn+1 is definable with dimX ≤ n.

5. The triangulation lemma. In this section we construct a V -trian-
gulation of a definable closed V -bounded set in Rn+1 if a suitable V -triangu-
lation of its projection in Rn is given. First some more notation and termi-
nology.

Let K be a complex in Rn. Let Vert(K) denote the set of vertices of the
simplexes in K. Let (φ,K) be a triangulation of a definable closed X ⊆ Rn,
and let p = pn+1

n : Rn+1 → Rn be the projection map given by

p(x1, . . . , xn+1) = (x1, . . . , xn).

Then, given definable closed Y ⊆ Rn+1, a triangulation (ψ,L) of Y is said
to be a lifting of (φ,K) if K = {p(T ) : T ∈ L} (so Ko = {p(T o) : T ∈ L})
and the diagram

Y

��

ψ // |L|

��
X

φ // |K|

commutes where the vertical maps are restrictions of p (so p(Y ) = X).
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To construct liftings we use triangulated sets and multifunctions on
them, and we proceed to define these notions. We set

φ−1(K) := {φ−1(S) : S ∈ K},

and call the pair (X,φ−1(K)) a triangulated set. To simplify notation, let
P := φ−1(K). For P,Q ∈ P we call Q a face of P if Q ⊆ P (equivalently,
φ(Q) is a face of the simplex φ(P )). For P ∈ P, a proper face of P is a face
Q ∈ P of P such that P 6= Q. For P ∈ P we put

P o := P \ union of the proper faces of P,

so φ(P o) = φ(P )o. A point x ∈ X such that {x} ∈ P (that is, φ(x) ∈
Vert(K)) is said to be a vertex of (X,P). A multifunction on (X,P) is a
finite collection F of continuous definable functions f : X → R such that for
all f, g ∈ F and P ∈ P, either f(x) < g(x) for all x ∈ P o, or f(x) = g(x)
for all x ∈ P o, or g(x) < f(x) for all x ∈ P o.

Let F be a multifunction on (X,P). For P ∈ P and f, g ∈ F we say that g
is the successor of f on P (in F ) if f(x) < g(x) for all x ∈ P o (so f(x) ≤ g(x)
for all x ∈ P ), and there is no h ∈ F such that f(x) < h(x) < g(x) for all
(equivalently, for some) x ∈ P o. We set

(a) ΓF :=
⋃
f∈F Γf ⊆ Rn+1;

(b) F |P := {f |P : f ∈ F} for P ∈ P;
(c) PF is the collection of all sets Γ(f |P ) with f ∈ F and P ∈ P, and all

sets
[f |P, g|P ] := {(x, y) : x ∈ P and f(x) ≤ y ≤ g(x)}

with P ∈ P, f, g ∈ F and g the successor of f on P ;
(d) XF := union of the sets in PF , so XF ⊆ Rn+1.

So ΓF and XF are closed and bounded in Rn+1.

The above material in this section does not require the presence of V ,
and so makes sense and goes through for any o-minimal field instead of R, in
particular, for kind if the latter is o-minimal. We now bring in V again, and
note that if (φ,K) is a V -triangulation of the definable closed V -bounded
X ⊆ Rn, then the triangulation (φst, stK) of stX yields the triangulated
set (stX, st P), with P := φ−1(K), and

st P := {stP : P ∈ P} = φ−1
st (stK).

Remark. Suppose kind is o-minimal. Let (φ,K) be a V -triangulation
of the definable closed V -bounded set X ⊆ Rn. Let F be a multifunction
on (X,P) with P := φ−1(K) such that each f ∈ F induces a function
fst : stX → k, and for all f, g ∈ F the set {y ∈ stX : fst(y) = gst(y)} is
a union of sets in st P. Then Fst := {fst : f ∈ F} is a multifunction on
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(stX, st P), with

ΓFst = st(ΓF ), (st P)Fst = {stQ : Q ∈ PF }, (stX)Fst = st(XF ).

(The middle equality requires a little thought.)

Lemma 5.1. Suppose kind is o-minimal, and φ,K,X,P, F are as in the
remark above. Assume also that for all P ∈ P and all Q ∈ st P:

(∗) if f, g ∈ F |P , f 6= g, then f(a) 6= g(a) for some vertex a of P ;
(∗∗) if f, g ∈ Fst|Q, f 6= g, then f(a) 6= g(a) for some vertex a of Q.

Then there is a V -triangulation (ψ,L) of XF such that (ψ,L) is a lifting of
(φ,K) compatible with the sets in PF , and (ψst, stL) is a lifting of (φst, stK)
compatible with the sets in (st P)Fst.

Proof. Choose a total ordering ≤ on Vert(K) such that for all a, b, c ∈
Vert(K) with a ≤ b ≤ c and st(a) = st(c) we have st(a) = st(b). This gives
a total ordering ≤ on Vert(stK) such that if a, b ∈ Vert(K) and a ≤ b,
then st(a) ≤ st(b). Now (φ,K), X, F are as in the proof of Lemma 2.8,
p. 129 in [3], and we apply the construction from that proof, using the given
ordering on Vert(K), to obtain a triangulation (ψ,L) of XF that is a lifting
of (φ,K) and is compatible with the sets in PF . We now briefly recall the
construction of (ψ,L) from [3].

Let P ∈ P, let a0, . . . , am be the vertices of φ(P ) such that in the ordering
above we have a0 < a1 < · · · < am, and let f ∈ F |P . Then the complex
L(f) in Rn+1 consists of the m-simplex [b0, . . . , bm] and all its faces, where
bi = (ai, ri) ∈ Rn+1, ri := f(φ−1(ai)). Define

ψf : Γf → |L(f)|, ψf (x, f(x)) := φb(x),

where φb(x) is the point of [b0, . . . , bm] with the same affine coordinates with
respect to b0, . . . , bm as φ(x) has with respect to a0, . . . , am. Then ψf is a
homeomorphism.

Suppose in addition that f has a successor g ∈ F |P . Then L(f, g) is the
complex L constructed just before Corollary 3.3, so |L(f, g)| is the convex
hull of {b0, . . . , bm, c0, . . . , cm}, where ci = (ai, si) ∈ Rn+1, si := g(φ−1(ai)).
Then the homeomorphism ψf,g : [f, g]→ |L(f, g)| is given by

(x, tf(x) + (1− t)g(x)) 7→ tφb(x) + (1− t)φc(x),

where φc(x) is defined in the same way as φb(x), and 0 ≤ t ≤ 1.
The complex L is the union of the complexes L(f) and L(f, g) obtained

in this way, and ψ : XF → |L| extends each of the ψf and ψf,g above.
Also, (φst, stK), stX and Fst are as in the proof of Lemma 2.8, p. 129

in [3], with kind instead of R. Thus using the given ordering on Vert(stK)
we construct in the same way as before a triangulation (θ,M) of (stX)Fst

that is a lifting of (φst, stK) and is compatible with the sets in (st P)Fst .
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Claim. ψ induces θ.

To prove this, let P ∈ P and let a0 < · · · < am be the vertices of the
simplex φP ∈ K. Put Q := stP ∈ st P, and let the simplex φst(Q) =
st(φP ) ∈ stK have vertices α0 < · · · < αk. Then

{0, . . . ,m} = I0 ∪ · · · ∪ Ik (disjoint union) with Ij := {i : st(ai) = αj}.
Here and later in the proof, i ranges over {0, . . . ,m} and j over {0, . . . , k}.
Let f ∈ F and, towards showing that ψ induces θ on Γ(f |P ), put

bi := (ai, ri) ∈ Rn+1, ri := f(φ−1(ai)),

βj := (αj , ρj) ∈ kn+1, ρj := fst(φ−1
st (αj)),

so st(bi) = βj for i ∈ Ij . Let x ∈ P . Then φ(x) =
∑

i tiai, where ti ≥ 0 and∑
i ti = 1, so φst(st(x)) =

∑
j τjαj with τj =

∑
i∈Ij ti. Then

ψ(x, f(x)) =
∑
i

tibi, θ(st(x), fst(st(x))) =
∑
j

τjβj ,

so st(ψ(x, f(x))) = θ(st(x, f(x))). Thus ψ induces θ on Γ(f |P ).
Next, assume also that f has a successor g ∈ F on P , and put

ci := (ai, si) ∈ Rn+1, si := g(φ−1(ai))

γj := (αj , σj) ∈ kn+1, σj := gst(φ−1
st (αj)),

so st(ci) = γj for i ∈ Ij . Then, with x̄ := st(x), t̄ := st(t),

ψ(x, tf(x) + (1− t)g(x)) = t
∑
i

tibi + (1− t)
∑
i

tici,

θ(x̄, t̄fst(x̄) + (1− t̄)gst(x̄)) = t̄
∑
j

σjβj + (1− t̄)
∑
j

σjγj .

To obtain the second identity, note that either fst and gst coincide on stP ,
or gst is the successor of fst on stP (in Fst). It follows as with Γ(f |P ) that
ψ induces θ on [f |P, g|P ]. Since P ∈ P was arbitrary, this proves the claim.

For (ψ,L) to have the property stated in the lemma it only remains to
check that stL = M . This equality follows from Section 3 in view of how
we ordered Vert(K) and Vert(stK) and constructed L and M .

Satisfying conditions (∗) and (∗∗). In the situation of the remark
before the triangulation lemma 5.1, condition (∗) might fail for some P ∈ P.
We can then replace K by its barycentric subdivision to satisfy (∗), as is
done in [3], but a simplex of this barycentric subdivision is not necessarily a
V -simplex, so this fails to deal with (∗∗). Fortunately, a slight generalization
of the barycentric subdivision solves this problem, as we describe below.

Recall that the barycenter of an m-simplex S = [a0, . . . , am] in Rn is the
point 1

m+1(a0 + · · · + am) in S0. Let K be a complex in Rn. A subdivision
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of K is a complex K ′ in Rn such that |K| = |K ′| and each simplex of K
is a union of simplexes of K ′; it follows easily that then each set So with
S ∈ K is a union of sets S′o with S′ ∈ K ′. Define a K-flag to be a sequence
S0, . . . , Sk in K such that Si is a proper face of Si+1 for all i < k. Given such
a K-flag and a point bi ∈ So

i for i = 0, . . . , k we have a k-simplex [b0, . . . , bk].
Assume now that to each S ∈ K is assigned a point b(S) ∈ So. This yields
a subdivision b(K) of K whose simplexes are the [b(S0), . . . , b(Sk)] with
S0, . . . , Sk a K-flag. (In Chapter 8 of [3] we took b(S) := barycenter of S,
for each S ∈ K, and then b(K) is the barycentric subdivision of K.)

The above paragraph uses only the semilinear structure of R, and so
goes through with k instead of R. We now apply this to a V -complex K in
Rn as follows. We choose for each S ∈ K a point b(S) ∈ So such that

st(b(S)) = barycenter of stS.

We claim that then the subdivision b(K) of K has the following property:

b(K) is a V -complex, and st(b(K)) = barycentric subdivision of stK.

To see this, let S0, . . . , Sk be a K-flag and T := [b(S0), . . . , b(Sk)]. Then

stT = [barycenter(stS0), . . . ,barycenter(stSk)]

is a simplex of the barycentric subdivision of stK (even if the sequence
stS0, . . . , stSk has repetitions), and each simplex of the barycentric subdi-
vision of stK arises in this way from a K-flag.

Lemma 5.2. Assume kind is o-minimal. Let K be a V -complex in Rn,
X := |K|, and F a multifunction on (X,K) such that each f ∈ F induces
a function fst : st |K| → k and for all f, g ∈ F the set

{y ∈ X : fst(y) = gst(y)}
is a union of sets in stK. Then there is a subdivision K ′ of K such that K ′

is a V -complex, and F as a multifunction on (X,K ′) satisfies the following
conditions for all P ∈ K ′ and all Q ∈ stK ′:

(∗) if f, g ∈ F |P , f 6= g, then f(a) 6= g(a) for some vertex a of P ;
(∗∗) if f, g ∈ Fst|Q, f 6= g, then f(a) 6= g(a) for some vertex a of Q.

Proof. Just take as K ′ a complex b(K) as constructed in the paragraph
just before the statement of the lemma. Then K ′ has the desired proper-
ties.

Small paths. To apply the triangulation lemma in the next section
we also need to construct a multifunction. This will require the extension
Lemma 4.2 as well as the lemma below about the “small path” property.
In the rest of this section kind is o-minimal, and we consider a definable V -
bounded set X ⊆ Rn. We say that X has small paths if for all x, y ∈ X with
st(x) = st(y) there is ε ∈ m>0 and a definable continuous path γ : [0, ε]→ X
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such that γ(0) = x, γ(ε) = y, and st(γ(t)) = st(x) for all t ∈ [0, ε]; such a
γ will be called a small path. Note that if X is convex, then X has small
paths. It follows that if there is a V -bounded simplex S in Rn and a definable
homeomorphism X → S inducing a homeomorphism stX → stS, then X
has small paths.

Lemma 5.3. Assume X has small paths, and let f : X → R be definable,
continuous, and V -bounded, such that the upward unit vector en+1 ∈ kn+1

is a good direction for st(Γf). Then f induces a function stX → k.

Proof. Let x, y ∈ X be such that st(x) = st(y); it is enough to show
that then st(f(x)) = st(f(y)). Take a small path γ : [0, ε] → X such that
γ(0) = x and γ(ε) = y. Then the standard parts of the points (γ(t), f(γ(t)))
all lie on the same vertical line in kn+1, and since en+1 is a good direction
for st(Γf), this yields st(f(x)) = st(f(y)).

6. Proof of V -triangulation. Recall the V -triangulation theorem
stated on page 136:

Theorem 6.1. Suppose the boolean algebra Def2(kind) is generated by
its subset {stX : X ∈ Def2(R)}. Then every V -bounded closed definable
X ⊆ Rn with definable subsets X1, . . . , Xk has a V -triangulation compatible
with X1, . . . , Xk.

Before we start the proof, first note that the hypothesis of the theorem
implies that Def1(kind) is generated by {stX : X ∈ Def1(R)}, which in turn
is equivalent to kind being o-minimal. If kind is o-minimal, the conclusion of
the theorem clearly holds for n = 1. The proof will show that the conclusion
of the theorem for n = 2 also follows just from assuming that kind is o-
minimal. The stronger hypothesis about Def2(kind) will only be used to
obtain the conclusion for n > 2.

Proof. As already noted, kind is o-minimal, and the theorem holds for
n = 1. We proceed by induction on n, so assume inductively that for a
certain n ≥ 1:

(i) Defn(kind) is generated by {stX : X ∈ Defn(R)};
(ii) every V -bounded closed definable X ⊆ Rn with definable subsets

X1, . . . , Xk has a V -triangulation compatible with X1, . . . , Xk.

Claim. C(n) holds.

To prove this claim, let Z ∈ Defn(kind) be closed and bounded in kn; we
have to show that Z = stQ for some Q ∈ Defn(R). Now by part (i) of the
inductive assumption, Z is a boolean combination of stX1, . . . , stXk with
X1, . . . , Xk ∈ Defn(R), and we can assume that X1, . . . , Xk are V -bounded.
Take a V -bounded closed X ∈ Defn(R) containing all Xi as subsets and
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such that Z ⊆ stX. Then by part (ii) of the inductive assumption we have
triangulated sets (X,P) and (stX, st P) such that each Xi is a union of sets
P o with P ∈ P. Then each stXi is a union of sets stP o = stP ∈ st P. Each
stP with P ∈ P is a union of sets from the partition (st P)o = {(stP )o :
P ∈ P} of stX, so each stXi is such a union as well, and so is their boolean
combination Z. But Z is closed, so Z is then a union of closures stP of sets
(stP )o with P ∈ P, and so Z = stQ where Q is a union of sets P ∈ P. This
proves the claim.

Then by Lemma 2.7 we have (R, V ) |= Σ(n). Also (i) holds with n + 1
instead of n: for n = 1 this is just the hypothesis of the theorem, and if n ≥ 2,
then Σ holds by the claim and Section 2, and so we can use Theorem 2.22
from [6].

In order to prove that (ii) holds with n + 1 instead of n, let Y ⊆ Rn+1

be V -bounded, closed, and definable, with definable subsets Y1, . . . , Yk; our
aim is then to construct a V -triangulation of Y compatible with Y1, . . . , Yk.
Put

T := bd(Y0) ∪ bd(Y1) ∪ · · · ∪ bd(Yk), Y0 := Y.

Then dimT ≤ n, so by Lemma 4.3 we can replace T, Y0, . . . , Yk by their
images under a suitable orthogonal transformation of Rn+1 to arrange that
en+1 is a V -good direction for T as defined at the end of Section 4. (See [3],
top of p. 131, for a similar argument.)

We are going to construct a V -triangulation ofX := pn+1
n T = pn+1

n Y ⊆Rn
so that we can use the triangulation lemma 5.1.

Cell decomposition gives a finite partition C of X into cells C such that
T ∩ (C ×R) is the union of the graphs of definable continuous functions

fC,1 < · · · < fC,l(C) : C → R, l(C) ≥ 1,

such that for i = 0, . . . , k and j = 1, . . . , l(C),

either ΓfC,j ⊆ Yi or ΓfC,j ∩ Yi = ∅, and for 1 ≤ j < l(C) :
either (fC,j , fC,j+1) ⊆ Yi or (fC,j , fC,j+1) ∩ Yi = ∅.

Since en+1 is a good direction for T and T ⊇ cl(Γf) for each f = fC,j ,
each fC,j extends continuously to a definable function cl(C) → R, and we
denote this extension also by fC,j . We need to extend these functions fC,j
to all of X in a nice way, and towards this goal we note that the inductive
assumption (ii) gives a V -triangulation (φ,K) of X compatible with all
C ∈ C. This gives a triangulated set (X,P) with P := φ−1(K). Let C ∈ C be
given. Then the set cl(C) is a finite union of sets P ∈ P. The sets P ∈ P have
small paths, and so by Lemma 5.3 each function fC,j : cl(C) → R induces
a function on st(cl(C)), and thus, by Lemma 4.2, extends to a definable
continuous V -bounded function f : X → R such that f induces a function
stX → k. In this way we obtain a finite set F of definable continuous
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V -bounded functions f : X → R such that each f ∈ F induces a function
fst : stX → k, each f ∈ F extends some fC,j , and each fC,j has an extension
in F . To make F into a multifunction on (X,P) that induces a multifunction
on (stX, st P) we may have to refine P, and this is done as follows. Since Σ(n)
holds in (R, V ), we have ε0 ∈ m>0 such that for all f, g ∈ F and ε ∈ m>ε0 ,

st{x ∈ X : |f(x)− g(x)| ≤ ε0} = st{x ∈ X : |f(x)− g(x)| ≤ ε},

and thus for all f, g ∈ F ,

st{x ∈ X : |f(x)− g(x)| ≤ ε0} = st{x ∈ X : f(x)− g(x) ∈ m}.

Using again the inductive assumption (ii) we arrange that our V -triangu-
lation (φ,K) above is also compatible with all sets

{x ∈ X : f(x) = g(x)} and {x ∈ X : |f(x)− g(x)| ≤ ε0} (f, g ∈ F ).

Note that then F is a multifunction on (X,P), and that for all Yi and f ∈ F
and P ∈ P, either Γ(f |P o) ⊆ Yi or Γ(f |P o)∩Yi = ∅, and if also g ∈ F is the
successor of f on P , then either (f |P o, g|P o) ⊆ Yi or (f |P o, g|P o) ∩ Yi = ∅.
Note that for all f, g ∈ F ,

st{x ∈ X : |f(x)− g(x)| ≤ ε0} = {y ∈ stX : fst(y) = gst(y)},

and the set on the left is a union of sets in st P. Hence we are in the situation
of the remark preceding Lemma 5.1, so Fst := {fst : f ∈ F} is a multifunc-
tion on (stX, st P). By Lemma 5.2 we can replace K by a subdivision and
P accordingly to arrange also that for all P ∈ P and Q ∈ st P conditions (∗)
and (∗∗) of Lemma 5.1 are satisfied. This triangulation lemma then yields
a V -triangulation (ψ,L) of XF that lifts (φ,K) and is compatible with the
sets in PF , and such that (ψst, stL) is a lifting of (φst, stK) compatible with
the sets in (st P)Fst . Let L′ be the subcomplex of L for which |L′| = ψ(Y ),
and put ψ′ := ψ|Y . Then (ψ′, L′) is a V -triangulation of Y compatible with
Y1, . . . , Yk, as promised.

In the course of the proof just given we have also established the implica-
tion (6)⇒(1) of Theorem 1.2, and this concludes the proof of that theorem,
by remarks following its statement.

7. Two applications of V -triangulation. In this section we assume
that (R, V ) satisfies the (equivalent) conditions of Theorem 1.2. Here is an
easy consequence of V -triangulation and Lemma 4.2:

Corollary 7.1. Let X,Y ⊆ Rn be closed and V -bounded definable sets
with X ⊆ Y , and let f : X → R be a continuous V -bounded definable
function inducing a function stX → k. Then f extends to a continuous
V -bounded definable function Y → R inducing a function stY → k.
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Here is a related open question: Does the above corollary go through
if the assumption that X and Y are closed is replaced by the weaker one
that X is closed in Y ? That would give a V -version of the o-minimal Tietze
extension result (3.10) of Chapter 8 in [3].

A finiteness result. Let X ⊆ Rm and Y ⊆ Rn be V -bounded and
definable. Then a V -homeomorphism f : X → Y is by definition a definable
homeomorphism X → Y that induces a homeomorphism fst : stX → stY .

For a V -bounded definable X ⊆ Rm+n the sets X(a) ⊆ Rn with a ∈ Rm
fall into only finitely many V -homeomorphism types. Towards proving this
(in a stronger form), consider triples (N, C, E) such that N ∈ N, C is a
collection of nonempty subsets of {1, . . . , N} with {i} ∈ C for i = 1, . . . , N
and I ∈ C whenever I is a nonempty subset of some J ∈ C, and E is an
equivalence relation on {1, . . . , N}. Note that for any given N ∈ N there are
only finitely many such triples (N, C, E), so in total there are only countably
many such triples.

Let (N, C, E) be a triple as above. We say that a V -complex K in Rn is
of type (N, C, E) if there is a bijection i : Vert(K) → {1, . . . , N} such that
C is the collection of sets {i(a) : a is a vertex of S} with S ∈ K, and for all
a, b ∈ Vert(K), i(a)Ei(b) ⇔ st(a) = st(b). Suppose the V -complexes K in
Rn and K ′ in Rn

′
are both of type (N, C, E), witnessed by the bijections

i : Vert(K) → {1, . . . , N} and j : Vert(K ′) → {1, . . . , N}. We claim that
then |K| and |K ′| are V -homeomorphic. To see this, note that the map
v := j−1 ◦ i : Vert(K)→ Vert(K ′) is a bijection such that

(i) for all a0, . . . , ak ∈ Vert(K), a0, . . . , ak are the vertices of a simplex
in K iff va0, . . . , vak are the vertices of a simplex in K ′;

(ii) for all a, b ∈ Vert(K), st(a) = st(b) iff st(va) = st(vb).

By (i) we can extend v uniquely to a homeomorphism φ : |K| → |K ′|
that is affine on each simplex of K. Using Lemma 3.2 and the assump-
tion that K and K ′ are V -complexes it then follows from (ii) that φ is a
V -homeomorphism.

For the proof below it is convenient to fix a sequence of V -complexes
K1,K2,K3, . . . in Rn such that every V -complex K in Rn is of the same
type (N, C, E) as some complex in this sequence.

Corollary 7.2. Let Z ⊆ Rm be definable, and let X ⊆ Z×Rn ⊆ Rm+n

be definable such that each section X(a) with a ∈ Z is V -bounded. Then there
is a partition of Z into subsets Z1, . . . , Zk, definable in (R, V ), such that if
a, b ∈ Z are in the same Zi, then X(a) and X(b) are V -homeomorphic.

Proof. We shall establish this in the stronger form that there are M ∈ N
and definable sets Φ1, . . . ,Φl ⊆ RM ×R2n such that for each a ∈ Z there is
j ∈ {1, . . . , l} and b ∈ RM for which Φj(b) ⊆ R2n is the graph of a map φ :
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cl(X(a))→ |Kj | that makes (φ,Kj) a V -triangulation of cl(X(a)) compati-
ble with X(a). For simplicity, assume that X(a) is closed for all a ∈ Z; the
general case is very similar. To prove the stronger statement we can assume
that (R, V ) is κ-saturated with uncountable κ > |L| where L is the language
of Th(R). Consider L-formulas φ(u, x, y) where u = (u1, u2, . . . ) is an infi-
nite sequence of variables and x = (x1, . . . , xn), y = (y1, . . . , yn). (Of course,
in each such φ(u, x, y) only finitely many ui occur.) By V -triangulation and
saturation there are such formulas φ1(u, x, y), . . . , φl(u, x, y) with the prop-
erty that for each a ∈ Z there is j ∈ {1, . . . , l} and b ∈ RN for which
φ(b, x, y) defines the graph of a map φ : X(a) → |Kj | that makes (φ,Kj)
a V -triangulation of X(a). Now take M ∈ N such that no variable ui with
i > M occurs in any of the φj . With this M the claim at the beginning of
the proof is established.
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